Fundamentals of Computer Systems Thinking Digitally

Martha A. Kim

Columbia University

Fall 2014

Computer Systems Work Because of Abstraction

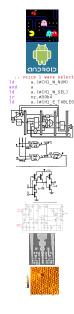
Application Software

Operating Systems

Architecture

Micro-Architecture

Logic


Digital Circuits

Analog Circuits

Devices

Physics

Computer Systems Work Because of Abstraction

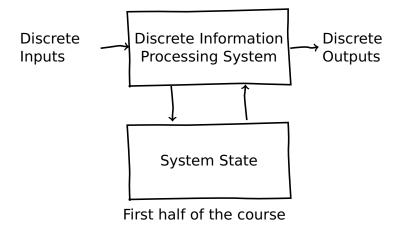
Application Software COMS 3157, 4156, et al.

Operating Systems COMS W4118

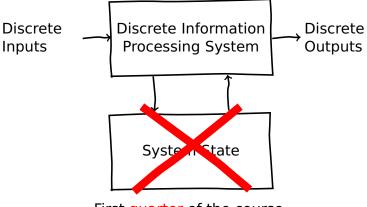
Architecture Second Half of 3827

Micro-Architecture Second Half of 3827

Logic First Half of 3827


Digital Circuits First Half of 3827

Analog Circuits ELEN 3331


Devices ELEN 3106

Physics ELEN 3106 et al.

Simple information processing system

Simple information processing system

First quarter of the course

Administrative Items

http://www.cs.columbia.edu/~martha/courses/3827/au14/

https://piazza.com/class/hza49pnzbdf1ng

Prof. Martha A. Kim martha@cs.columbia.edu 469 Computer Science Building

Lectures 10:10–11:25 AM Tue, Thur 501 Schermerhorn Hall Sep 2–Dec 4 Holidays: Nov 4 (Election Day), Nov 27 (Thanksgiving)

4/27

Assignments and Grading

Weight	What	When
40%	Six homeworks	See Webpage
30%	Midterm exam #1	October 14th
30%	Midterm exam #2	December 4th

Homework is due at the beginning of lecture.

We will drop the lowest of your six homework scores; you can _____ one assignment with no penalty.

There will be no extensions.

Rules and Regulations

You may collaborate with classmates on homework.

Each assignment turned in must be unique; work must ultimately be your own.

List your collaborators on your homework.

Do not cheat.

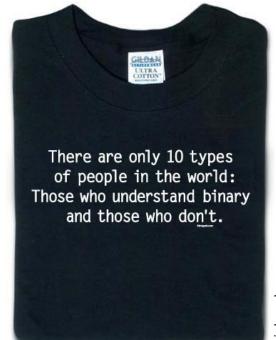
Tests will be closed-book with a one-page "cheat sheet" of your own devising.

The Text(s): Alternative #1

No required text. There are two recommended alternatives.

David Harris and Sarah Harris. Digital Design and Computer Architecture.

Almost precisely right for the scope of this class: digital logic and computer architecture.


The Text(s): Alternative #2

 M. Morris Mano and Charles Kime. Logic and Computer Design Fundamentals, 4th ed.

Computer Organization and Design, The Hardware/Software Interface, 4th ed. David A. Patterson and John L. Hennessy

thinkgeek.com

The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

$$7 \times 10^2 + 3 \times 10^1 + 0 \times 10^0 = 730_{10}$$

$$9\times 10^2 + 9\times 10^1 + 0\times 10^0 = 990_{10}$$


Why base ten?

Which Numbering System Should We Use? Some Older Choices:

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60

Hexadecimal, Decimal, Octal, and Binary

Hex	Dec	Oct	Bin
0	0	0	0
1	1	1	1
2	2	2	10
3	3	3	11
4	4	4	100
5	5	5	101
6	6	6	110
7	7	7	111
8	8	10	1000
9	9	11	1001
Α	10	12	1010
В	11	13	1011
С	12	14	1100
D	13	15	1101
Е	14	16	1110
F	15	17	1111

Binary and Octal

	Oct	Bin
968	0	000
13	1	001
j	2	010
	3	011
ထု	4	100
₫	5	101
	6	110
DE	7	111

PC =
$$0 \times 2^{11} + 1 \times 2^{10} + 0 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$$

= $2 \times 8^3 + 6 \times 8^2 + 7 \times 8^1 + 5 \times 8^0$

$$= 1469_{10}$$

Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Instead of groups of 3 bits (octal), Hex uses groups of 4.

$$\begin{array}{lll} \text{CAFEF00D}_{16} & = & 12\times 16^7 + 10\times 16^6 + 15\times 16^5 + 14\times 16^4 + \\ & & 15\times 16^3 + 0\times 16^2 + 0\times 16^1 + 13\times 16^0 \\ & = & 3,405,705,229_{10} \end{array}$$

```
| C | A | F | E | F | 0 | 0 | D | Hex 110010101111111101111000000001101 Binary | 3 | 1 | 2 | 7 | 7 | 5 | 7 | 0 | 0 | 1 | 5 | Octal
```

Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you

binary

represent with 5

octal digits?

hexadecimal

Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSB Least Significant Bit ("rightmost")

MSB Most Significant Bit ("leftmost")

	+	0	1	2	3	4	5	6	7	8	9	
434	0	0	1	2	3	4	5	6	7	8	9	
 4628	1	1	2	3	4	5	6	7	8	9	10	
+020	2	2	3	4	5	6	7	8	9	10	11	
	3	3	4	5	6	7	8	9	10	11	12	
	4	4	5	6	7	8	9	10	11	12	13	
	5	5	6	7	8	9	10	11	12	13	14	
	6	6	7	8	9	10	11	12	13	14	15	
4 + 8 = 12	7	7	8	9	10	11	12	13	14	15	16	
	8	8	9	10	11	12	13	14	15	16	17	
	9	9	10	11	12	13	14	15	16	17	18	
	10	10	11	12	13	14	15	16	17	18	19	

$$4+8 = 12$$

 $1+3+2 = 6$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

$$\begin{array}{rcl}
 & & & 1 \\
 & & 434 \\
 & & +628 \\
\hline
 & & 62 \\
\end{array}$$

$$\begin{array}{rcl}
 & & 4+8 & = & 12 \\
 & & 1+3+2 & = & 6 \\
 & & 4+6 & = & 10
\end{array}$$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

$$\begin{array}{rcl}
1 & 1 \\
 & 434 \\
 & +628 \\
\hline
 & 062
\end{array}$$

$$\begin{array}{rcl}
4 + 8 & = & 12 \\
1 + 3 + 2 & = & 6 \\
4 + 6 & = & 10
\end{array}$$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

$$\begin{array}{rcl}
1 & 1 \\
 & 434 \\
 & +628 \\
\hline
 & 1062
\end{array}$$

$$\begin{array}{rcl}
4 + 8 & = & 12 \\
1 + 3 + 2 & = & 6 \\
4 + 6 & = & 10
\end{array}$$

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18
10	10	11	12	13	14	15	16	17	18	19

$$10011 \\ +11001$$

$$1 + 1 = 10$$

+	0 1
0	00 01
1	01 <mark>10</mark>
10	10 11

$$\begin{array}{r}
 1 \\
 10011 \\
 +11001 \\
 \hline
 0
 \end{array}$$

$$\begin{array}{rcl} 1+1 & = & 10 \\ 1+1+0 & = & 10 \end{array}$$

+	0 1
0	00 01
1	01 10
10	10 11

$$\begin{array}{r}
 11 \\
 10011 \\
 +11001 \\
 \hline
 00
 \end{array}$$

$$1+1 = 10$$
 $1+1+0 = 10$
 $1+0+0 = 01$

$$\begin{array}{r}
 011 \\
 10011 \\
 +11001 \\
\hline
 100
 \end{array}$$

$$1+1 = 10$$
 $1+1+0 = 10$
 $1+0+0 = 01$
 $0+0+1 = 01$

+	0 1
0	00 <mark>01</mark>
1	01 10
10	10 11

$$0011 \\ 10011 \\ +11001 \\ \hline 1100$$

$$\begin{array}{rcl} 1+1 & = & 10 \\ 1+1+0 & = & 10 \\ 1+0+0 & = & 01 \\ 0+0+1 & = & 01 \\ 0+1+1 & = & 10 \end{array}$$

+	0 1
0	00 01
1	01 10
10	10 11

$$\begin{array}{rcl} 1+1 & = & 10 \\ 1+1+0 & = & 10 \\ 1+0+0 & = & 01 \\ 0+0+1 & = & 01 \\ 0+1+1 & = & 10 \end{array}$$

+	0 1
0	00 01
1	01 10
10	10 11

Signed Numbers: Dealing with Negativity

How should both positive and negative numbers be represented?

Signed Magnitude Numbers

You are most familiar with this: negative numbers have a leading –

In binary, a leading 1 means negative:

$$0000_2 = 0$$

$$0010_2 = 2$$

$$1010_2 = -2$$

$$1111_2 = -7$$

$$1000_2 = -0$$
?

Can be made to work, but addition is annoying:

If the signs match, add the magnitudes and use the same sign.

If the signs differ, subtract the smaller number from the larger; return the sign of the larger.

One's Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative One's Complement number.

To negate a number, complement (flip) each bit.

0	0	O	02	=	0
\sim	v	v	\mathbf{v}	_	v

$$0010_2 = 2$$

$$1101_2 = -2$$

$$1000_2 = -7$$

$$1111_2 = -0?$$

Addition is nicer: just add the one's complement numbers as if they were normal binary.

Really annoying having a -0: two numbers are equal if their bits are the same or if one is 0 and the other is -0.

Two's Complement Numbers

Really neat trick: make the most significant bit represent a *negative* number instead of positive:

$$1101_2 = -8 + 4 + 1 = -3$$

$$1111_2 = -8 + 4 + 2 + 1 = -1$$

$$0111_2 = 4 + 2 + 1 = 7$$

$$1000_2 = -8$$

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one's complement) then add 1.

Very good property: no −0

Two's complement numbers are equal if all their bits are the same.

Number Representations Compared

Bits	Binary	Signed Mag.	One's Comp.	Two's Comp.
0000	0	0	0	0
0001	1	1	1	1
:				
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
:				
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Smallest number Largest number

Fixed-point Numbers

How to represent fractional numbers? In decimal, we continue with negative powers of 10:

31.4159 =
$$3 \times 10^{1} + 1 \times 10^{0} + 4 \times 10^{-1} + 1 \times 10^{-2} + 5 \times 10^{-3} + 9 \times 10^{-4}$$

The same trick works in binary:

$$1011.0110_{2} = 1 \times 2^{3} + 0 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4}$$
$$= 8 + 2 + 1 + 0.25 + 0.125$$
$$= 11.375$$

Need a bigger range? Try Floating Point Representation.

Floating point can represent very large numbers in a compact way.

A lot like scientific notation, -7.776×10^3 , where you have the *mantissa* (-7.776) and *exponent* (3).

But for this course, think in binary: $-1.10x2^{0111}$

The bits of a 32-bit word are separated into fields. The IEEE 754 standard specifies

- which bits represent which fields (bit 31 is sign, bits 30-23 are 8-bit exponent, bits 22-00 are 23-bit fraction)
- how to interpret each field

Characters and Strings? ASCII.

www.theasciicode.com.ar The ASCII code **ASCII control characters ASCII printable characters Extended ASCII characters**

DEC	HEX	Si	mbolo ASCII	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DE	СН	EX S	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo	DEC	HEX	Simbolo
00		NULL	(carácter nulo)	32		espacio	64	40h	@	96			12	8 8		C	160		á	192		L	224		Ó
01	01h	SOH	(inicio encabezado)	33	21h	11	65	41h	Ā	97	61h	а	12	9 8	th -	ű	161	A1h	í	193	C1h		225	E1h	В
02		STX	(inicio texto)	34			66	42h	В	98		b	13			é	162		ó	194		Τ.	226	E2h	Ó
03	03h	ETX	(fin de texto)	35	23h	#	67	43h	C	99	63h	c	13		3h	â	163	A3h	ú	195	C3h	- 1	227	E3h	Ò
04	04h	EOT	(fin transmisión)	36	24h	\$	68	44h	D	100	64h	d	13	2 8	4h	ă	164	A4h	ñ	196	C4h	_	228	E4h	õ
05		ENQ	(enquiry)	37	25h	%	69	45h	E	101	65h	e	13			à	165		Ñ	197	C5h	+	229	E5h	Ő
06		ACK	(acknowledgement)	38		8	70	46h	F	102		f	13			á	166			198		ä	230		μ
07		BEL	(timbre)	39			71	47h	G	103	67h	g	13			Ç	167	A7h	•	199		Ä	231		þ
80		BS	(retroceso)	40	28h	(72	48h	H	104	68h	ĥ	13		8h	ê	168	A8h	ž.	200	C8h	Ŀ	232	E8h	Þ
09	09h	HT	(tab horizontal)	41	29h	j	73	49h	1	105	69h	1	13	7 8	9h	ě	169	A9h	ē	201	C9h	1	233	E9h	Ú
10		LF	(salto de linea)	42	2Ah	*	74	4Ah	J	106		i	13		Ah	è	170	AAh	7	202	CAh	1	234	EAh	Û
11		VT	(tab vertical)	43		+	75	4Bh	K	107		k	13		Bh	T .	171	ABh	%	203	CBh	70	235		Ü
12		FF	(form feed)	44	2Ch		76	4Ch	L	108	6Ch	1	14		Ch	î	172	ACh	1/4	204		Ļ	236	ECh	ý
13		CR	(retorno de carro)	45			77	4Dh	M	109	6Dh	m	14	1 8	Dh	1	173	ADh	1	205		=	237	EDh	Ý
14		SO	(shift Out)	46			78	4Eh	N	110		n	14			Ä	174		- K	206		#	238		-
15		SI	(shift In)	47		,	79	4Fh	0	111		0	14			A	175	AFh	30	207			239		
16	10h	DLE	(data link escape)	48	30h	0	80	50h	P	112	70h	р	14		0h	É	176	Boh	#	208	DOh	ð	240	F0h	
17		DC1	(device control 1)	49		1	81		Q	113	71h	q	14			æ	177	B1h	- 100 100	209		Ð	241	F1h	±
18		DC2	(device control 2)	50	32h	2	82	52h	R	114		ŕ	14			Æ	178	B2h		210		É	242	F2h	_
19	13h	DC3	(device control 3)	51	33h	3	83	53h	S	115	73h	s	14		3h	ô	179	B3h	T	211	D3h	E	243	F3h	2/4
20	14h	DC4	(device control 4)	52	34h	4	84	54h	T	116	74h	t	14		4h	ò	180	B4h	4	212	D4h	Ė	244	F4h	1
21		NAK	(negative acknowle.)	53	35h	5	85		U	117	75h	u	14			ò	181	B5h	Á	213		1.0	245	F5h	ş
22		SYN	(synchronous idle)	54	36h	6	86		V	118	76h	v	15			ű	182	B6h	Å	214		- (246	F6h	÷
23		ETB	(end of trans. block)	55	37h	7	87	57h	w	119	77h	w	15		7h	ù	183	B7h	À	215	D7h	T .	247	F7h	
24	18h	CAN	(cancel)	56	38h	8	88	58h	X	120	78h	x	15			ÿ	184	B8h	0	216	D8h	T	248	F8h	ě
25		EM	(end of medium)	57	39h	9	89	59h	Υ	121	79h	у	15		9h	Ö	185	B9h	4	217	D9h	4	249	F9h	-
26	1Ah	SUB	(substitute)	58	3Ah		90	5Ah	Z	122	7Ah	z	15		Ah	Ü	186	BAh		218	DAh	г	250	FAh	
27	1Bh	ESC	(escape)	59	3Bh	;	91	5Bh	[123	7Bh	{	15		Bh	ø	187	BBh	j	219	DBh		251	FBh	1
28	1Ch	FS	(file separator)	60	3Ch	<	92	5Ch	ĺ	124	7Ch	ĺ	15		Ch	£	188	BCh	4	220			252	FCh	
29	1Dh	GS	(group separator)	61	3Dh	-	93]	125	7Dh	}	15		Dh	Ø	189	BDh	¢	221		T	253	FDh	2
30		RS	(record separator)	62	3Eh	>	94	5Eh	Ä	126		2	15			×	190		¥	222		1	254		
31	1Fh	US	(unit separator)	63	3Fh	?	95		_			de.com.ar	15	9 9		f	191	BFh	- 1	223			255	FFh	
127	20h	DEL	(delete)							inex	SCIICO	de.com.ar													