
Fundamentals of Computer Systems
Thinking Digitally

Martha A. Kim

Columbia University

Fall 2014

1 / 27



Computer Systems Work Because of Abstraction

Application Software

Operating Systems

Architecture

Micro-Architecture

Logic

Digital Circuits

Analog Circuits

Devices

Physics

2 / 27



Computer Systems Work Because of Abstraction

Application Software COMS 3157, 4156, et al.

Operating Systems COMS W4118

Architecture Second Half of 3827

Micro-Architecture Second Half of 3827

Logic First Half of 3827

Digital Circuits First Half of 3827

Analog Circuits ELEN 3331

Devices ELEN 3106

Physics ELEN 3106 et al.

2 / 27



Simple information processing system

Discrete Information
Processing System

System State

Discrete
Inputs

Discrete
Outputs

First half of the course

3 / 27



Simple information processing system

Discrete Information
Processing System

System State

Discrete
Inputs

Discrete
Outputs

First quarter of the course

3 / 27



Administrative Items

http://www.cs.columbia.edu/~martha/courses/3827/au14/

https://piazza.com/class/hza49pnzbdf1ng

Prof. Martha A. Kim
martha@cs.columbia.edu
469 Computer Science Building

Lectures 10:10–11:25 AM Tue, Thur
501 Schermerhorn Hall
Sep 2–Dec 4
Holidays: Nov 4 (Election Day), Nov 27 (Thanksgiving)

4 / 27

http://www.cs.columbia.edu/~martha/courses/3827/au14/
https://piazza.com/class/hza49pnzbdf1ng


Assignments and Grading

Weight What When

40% Six homeworks See Webpage
30% Midterm exam #1 October 14th
30% Midterm exam #2 December 4th

Homework is due at the beginning of lecture.

We will drop the lowest of your six homework scores;
you can one assignment with no penalty.

There will be no extensions.

5 / 27



Rules and Regulations

You may collaborate with classmates on homework.

Each assignment turned in must be unique; work must
ultimately be your own.

List your collaborators on your homework.

Do not cheat.

Tests will be closed-book with a one-page “cheat sheet”
of your own devising.

6 / 27



The Text(s): Alternative #1

No required text. There are two recommended
alternatives.

É David Harris and Sarah Harris. Digital Design and
Computer Architecture.

Almost precisely right for the scope of this class:
digital logic and computer architecture.

7 / 27



The Text(s): Alternative #2

É M. Morris Mano and
Charles Kime. Logic
and Computer Design
Fundamentals, 4th ed.

É Computer Organization
and Design, The
Hardware/Software
Interface, 4th ed. David
A. Patterson and John L.
Hennessy

8 / 27



th
in

kg
ee

k.
co

m
9 / 27



The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

7× 102 + 3× 101 + 0× 100 = 73010

9× 102 + 9× 101 + 0× 100 = 99010

Why base ten?

10 / 27



Which Numbering System Should We Use?
Some Older Choices:

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60

11 / 27



Hexadecimal, Decimal, Octal, and Binary

Hex Dec Oct Bin

0 0 0 0
1 1 1 1
2 2 2 10
3 3 3 11
4 4 4 100
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
A 10 12 1010
B 11 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1111

12 / 27



Binary and Octal

D
E
C

PD
P-

8
/I
,
c.

1
9

6
8

Oct Bin

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

PC = 0× 211 + 1× 210 + 0× 29 + 1× 28 + 1× 27 + 0× 26 +

1× 25 + 1× 24 + 1× 23 + 1× 22 + 0× 21 + 1× 20

= 2× 83 + 6× 82 + 7× 81 + 5× 80

= 146910
13 / 27



Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F

Instead of groups of 3 bits (octal), Hex uses groups of 4.

CAFEF00D16 = 12× 167 + 10× 166 + 15× 165 + 14× 164 +

15× 163 + 0× 162 + 0× 161 + 13× 160

= 3,405,705,22910

C A F E F 0 0 D Hex
11001010111111101111000000001101 Binary
3 1 2 7 7 5 7 0 0 1 5 Octal

14 / 27



Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you

represent with 5

binary
octal
decimal
hexadecimal

digits?

15 / 27



Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the pro-
cessor, e.g., 16, 32, 64

LSB Least Significant Bit (“rightmost”)

MSB Most Significant Bit (“leftmost”)

16 / 27



Decimal Addition Algorithm

1 1

434
+628

1062

4+ 8 = 12

1+ 3+ 2 = 6
4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

17 / 27



Decimal Addition Algorithm

1

1
434

+628

106

2

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

17 / 27



Decimal Addition Algorithm

1

1
434

+628

10

62

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

17 / 27



Decimal Addition Algorithm

1 1
434

+628

1

062

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

17 / 27



Decimal Addition Algorithm

1 1
434

+628
1062

4+ 8 = 12
1+ 3+ 2 = 6

4+ 6 = 10

+ 0 1 2 3 4 5 6 7 8 9

0 0 1 2 3 4 5 6 7 8 9
1 1 2 3 4 5 6 7 8 9 10
2 2 3 4 5 6 7 8 9 10 11
3 3 4 5 6 7 8 9 10 11 12
4 4 5 6 7 8 9 10 11 12 13
5 5 6 7 8 9 10 11 12 13 14
6 6 7 8 9 10 11 12 13 14 15
7 7 8 9 10 11 12 13 14 15 16
8 8 9 10 11 12 13 14 15 16 17
9 9 10 11 12 13 14 15 16 17 18

10 10 11 12 13 14 15 16 17 18 19

17 / 27



Binary Addition Algorithm

10011

10011
+11001

101100

1+ 1 = 10

1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

18 / 27



Binary Addition Algorithm

1001

1
10011

+11001

10110

0

1+ 1 = 10
1+ 1+ 0 = 10

1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

18 / 27



Binary Addition Algorithm

100

11
10011

+11001

1011

00

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01

0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

18 / 27



Binary Addition Algorithm

10

011
10011

+11001

101

100

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01

0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

18 / 27



Binary Addition Algorithm

1

0011
10011

+11001

10

1100

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

18 / 27



Binary Addition Algorithm

10011
10011

+11001
101100

1+ 1 = 10
1+ 1+ 0 = 10
1+ 0+ 0 = 01
0+ 0+ 1 = 01
0+ 1+ 1 = 10

+ 0 1

0 00 01
1 01 10

10 10 11

18 / 27



Signed Numbers: Dealing with Negativity

How should both positive and negative numbers be
represented?

19 / 27



Signed Magnitude Numbers

You are most familiar with this:
negative numbers have a leading −

In binary, a
leading 1 means
negative:

00002 = 0

00102 = 2

10102 = −2

11112 = −7

10002 = −0?

Can be made to work, but addition is
annoying:

If the signs match, add the magnitudes
and use the same sign.

If the signs differ, subtract the smaller
number from the larger; return the
sign of the larger.

20 / 27



One’s Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative
One’s Complement number.

To negate a number, complement (flip) each bit.

00002 = 0

00102 = 2

11012 = −2

10002 = −7

11112 = −0?

Addition is nicer: just add the one’s
complement numbers as if they were
normal binary.

Really annoying having a −0: two
numbers are equal if their bits are the
same or if one is 0 and the other is −0.

21 / 27



22 / 27



Two’s Complement Numbers
Really neat trick: make the most
significant bit represent a negative
number instead of positive:

11012 = −8+ 4+ 1 = −3

11112 = −8+ 4+ 2+ 1 = −1

01112 = 4+ 2+ 1 = 7

10002 = −8

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one’s
complement) then add 1.

Very good property: no −0

Two’s complement numbers are equal if all their bits
are the same.

23 / 27



Number Representations Compared

Bits Binary Signed One’s Two’s
Mag. Comp. Comp.

0000 0 0 0 0
0001 1 1 1 1

...
0111 7 7 7 7
1000 8 −0 −7 −8
1001 9 −1 −6 −7

...
1110 14 −6 −1 −2
1111 15 −7 −0 −1

Smallest number
Largest number

24 / 27



Fixed-point Numbers

How to represent fractional
numbers? In decimal, we continue
with negative powers of 10:

31.4159 = 3× 101 + 1× 100 +

4× 10−1 + 1× 10−2 + 5× 10−3 + 9× 10−4

The same trick works in binary:

1011.01102 = 1× 23 + 0× 22 + 1× 21 + 1× 20 +

0× 2−1 + 1× 2−2 + 1× 2−3 + 0× 2−4

= 8+ 2+ 1+ 0.25+ 0.125
= 11.375

25 / 27



Need a bigger range? Try Floating Point
Representation.

Floating point can represent very large numbers in a
compact way.

A lot like scientific notation, −7.776× 103, where you
have the mantissa (−7.776) and exponent (3).

But for this course, think in binary: −1.10x20111

The bits of a 32-bit word are separated into fields. The
IEEE 754 standard specifies

É which bits represent which fields (bit 31 is sign, bits
30-23 are 8-bit exponent, bits 22-00 are 23-bit
fraction)

É how to interpret each field
26 / 27



Characters and Strings? ASCII.

27 / 27


