
Fundamentals of Computer Systems

Combinational Logic

Martha A. Kim

Columbia University

Fall 2014

1 / 43



Combinational Circuits

Combinational circuits are stateless.

Their output is a function only of the current input.

Combinational
Circuit

Inputs Outputs

2 / 43



Basic Combinational Circuits

Enabler

Encoders and Decoders

Multiplexers

Shifters

Circuit Timing

Critical and Shortest Paths

Glitches

Arithmetic Circuits

Ripple Carry Adder

Adder/Subtractor

Carry Lookahead Adder

3 / 43



Enablers

4 / 43



Overview: Enabler
An enabler has two inputs:

É data: can be several bits, but 1 bit examples for
now

É enable/disable: 1 bit on/off switch

When enabled, the circuit’s output is its input data.
When disabled, the output is 0.

DATAX

ENABLE

1

OUTPUT X

When enabled

DATAX

ENABLE

0

OUTPUT 0

When disabled

5 / 43



Enabler Implementation

Note abbreviated truth table: input, A, listed in output
column

EN F

0 0
1 A

A
EN

F

EN F

0 1
1 A

A
EN

F

In both cases, output is enabled when EN = 1, but they
handle the disabled (EN = 0) cases differently.

6 / 43



Encoders and Decoders

7 / 43



Overview: Decoder

A decoder takes a k − bit input and produces 2k

single-bit outputs.

The input determines which output will be 1, all others
0. This representation is called one-hot encoding.

I11

I01

O3 1

O2 0

O1 0

O0 0

8 / 43



1:2 Decoder

The smallest decoder: one bit input, two bit outputs

A

A

A

9 / 43



2:4 Decoder
Decoder outputs are simply minterms. Those values
can be constructed as a flat schematic (manageable at
small sizes) or hierarchically, as below.

1:2 DECB
B

B

1:2 DECA
A

A

AB

AB

AB

AB

10 / 43



3:8 Decoder
Applying hierarchical design again, the 2:4 DEC helps
construct a 3:8 DEC.

1:2 DECA
A

A

2:4 DEC
B

C

BC

BC

BC

BC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

ABC

11 / 43



Implementing a function with a decoder

E.g., F = AC+BC

C B A F

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

A

B

C

0
1
2
3
4
5
6
7

F

Warning: Easy, but not a minimal circuit.

12 / 43



Encoders and Decoders

3:8 DECk bits 2k bits

BCD One-Hot

0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 0
0 1 1 0 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 0
1 1 0 0 1 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0

3:8 ENCk bits 2k bits

13 / 43



Priority Encoder

An encoder designed to accept any input bit pattern.

I3 I2 I1 I0 V O1 O0

0 0 0 0 0 X X
0 0 0 1 1 0 0
0 0 1 X 1 0 1
0 1 X X 1 1 0
1 X X X 1 1 1

V = I3 + I2 + I1 + I0
O1 = I3 + I3I2
O0 = I3 + I3 I2I1

14 / 43



Multiplexers

15 / 43



Overview: Multiplexer (or Mux)
A mux has a k − bit selector input and 2k data inputs
(multi or single bit).

It outputs a single data output, which has the value of
one of the data inputs, according to the selector.

IN0A

IN1B

IN2C

IN3D

S1

0

S0

1

OUT B

16 / 43



2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of
this size.

S I1 I0 0

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

S

I0

I1

O

Enabler!

Enabler!

1:2 Decoder!

17 / 43



2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of
this size.

S I1 I0 0

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1 S

I0

I1

O

Enabler!

Enabler!

1:2 Decoder!

17 / 43



2:1 Mux Circuit

There are a handful of implementation strategies.

E.g., a truth table and k-map are feasible for a design of
this size.

S I1 I0 0

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1 S

I0

I1

O

Enabler!

Enabler!

1:2 Decoder!

17 / 43



4:1 Mux Circuit

2:4 DEC
EN3 EN2 EN1 EN0

I3

I2

I1

I0

S1 S0

O

18 / 43



Muxing Wider Values (Overview)

2:4 DEC
EN3 EN2 EN1 EN0

I3

I2

I1

I0

S1 S0

O

19 / 43



Muxing Wider Values (Components)

X3
X2

X1
X0

EN

Y3
Y2

Y1
Y0

X3
X2

X1
X0

Y0
Y1
Y2
Y3

Z3
Z2

Z1
Z0

20 / 43



Using a Mux to Implement an Arbitrary Function
Version 1

Think of a function as using k input bits to choose from
2k outputs.

E.g., F = BC+AC

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

00
10
20
31
41
50
61
71

A B C

F

21 / 43



Using a Mux to Implement an Arbitrary Function
Version 1

Think of a function as using k input bits to choose from
2k outputs.

E.g., F = BC+AC

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

00
10
20
31
41
50
61
71

A B C

F

21 / 43



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C

1 0 C

1 1 1

0
1
2
3

BA

F

0
C

1

22 / 43



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C

1 0 C

1 1 1

0
1
2
3

BA

F

0
C

1

22 / 43



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C

1 0 C

1 1 1

0
1
2
3

BA

F

0
C

1

22 / 43



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C

1 0 C

1 1 1

0
1
2
3

BA

F

0
C

1

22 / 43



Using a Mux to Implement an Arbitrary Function
Version 2

Can we use a smaller MUX?

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

A B F

0 0 0
0 1 C

1 0 C

1 1 1

0
1
2
3

BA

F

0
C

1

Instead of feeding just 0 or 1 into the mux, as in Version
1, one can remove a bit from the select, and feed it into

the data ports along with the constant.

22 / 43



Shifters

23 / 43



Overview: Shifters
A shifter shifts the inputs bits to the left or to the right.

SHIFTER

IN

OUT

CNTL

n

n

k

There are various types of shifters.

É Barrel: Selector bits indicate (in binary) how far to
the left to shift the input.

É L/R with enable: Two control bits (upper enables,
lower indicates direction).

In either case, bits may “roll out” or “wraparound”
24 / 43



Example: Barrel Shifter with Wraparound

SHIFTER

11001010

01010110

011

8

8

3

25 / 43



Implementation of Barrel Shifter with
Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use
muxes to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1,CNTL0

26 / 43



Implementation of Barrel Shifter with
Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use
muxes to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1,CNTL0

26 / 43



Implementation of Barrel Shifter with
Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use
muxes to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1,CNTL0

26 / 43



Implementation of Barrel Shifter with
Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use
muxes to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1,CNTL0

26 / 43



Implementation of Barrel Shifter with
Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use
muxes to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1,CNTL0

26 / 43



Implementation of Barrel Shifter with
Wraparound (Part 2)

Main idea: wire up all possible shift amounts and use
muxes to select correct one.

IN3 IN2 IN1 IN0

0123012301230123

OUT0OUT1OUT2OUT3

CNTL1,CNTL0

26 / 43



Circuit Timing

27 / 43



Computation Always Takes Time

74LS00

There is a delay between
inputs and outputs, due to:

· Limited currents charging
capacitance

· The speed of light

28 / 43



The Simplest Timing Model

tp

In

Out

É Each gate has its own
propagation delay tp.

É When an input
changes, any changing
outputs do so after tp.

É Wire delay is zero.

29 / 43



A More Realistic Timing Model

tp(max)

tp(min)

In

Out

It is difficult to manufacture
two gates with the same
delay; better to treat delay
as a range.

É Each gate has a
minimum and
maximum propagation
delay tp(min) and tp(max).

É Outputs may start
changing after tp(min)
and stablize no later
than tp(min).

30 / 43



Critical Paths and Short Paths

A

B

C

D
Y

How slow can this be?

31 / 43



Critical Paths and Short Paths

A

B

C

D
Y

How slow can this be?

The critical path has the longest possible delay.

tp(max) = tp(max, AND) + tp(max, OR) + tp(max, AND)

31 / 43



Critical Paths and Short Paths

A

B

C

D
Y

How fast can this be?

The shortest path has the least possible delay.

tp(min) = tp(min, AND)

31 / 43



Glitches

A glitch is when a single change in input values can
cause multiple output changes.

A

B

C

F

0 0 0 0 0

1 0 0 0 0

1 1 1 1 1

1 1 1 0 1

1 1 1 1 1

0 0 1 1 1

1 1 0 0 0

0 0 0 1 1

Glitches may occur when there are multiple paths of
different length from input I to output O.

32 / 43



Glitches

A glitch is when a single change in input values can
cause multiple output changes.

A

B

C

F

0 0 0 0 0

1 0 0 0 0

1 1 1 1 1

1 1 1 0 1

1 1 1 1 1

0 0 1 1 1

1 1 0 0 0

0 0 0 1 1

Glitches may occur when there are multiple paths of
different length from input I to output O.

32 / 43



Glitches

A glitch is when a single change in input values can
cause multiple output changes.

A

B

C

F

0 0 0 0 0

1 0 0 0 0

1 1 1 1 1

1 1 1 0 1

1 1 1 1 1

0 0 1 1 1

1 1 0 0 0

0 0 0 1 1

Glitches may occur when there are multiple paths of
different length from input I to output O.

32 / 43



Glitches

A glitch is when a single change in input values can
cause multiple output changes.

A

B

C

F

0 0 0 0 0

1 0 0 0 0

1 1 1 1 1

1 1 1 0 1

1 1 1 1 1

0 0 1 1 1

1 1 0 0 0

0 0 0 1 1

Glitches may occur when there are multiple paths of
different length from input I to output O.

32 / 43



Preventing Single Input Glitches

Additional terms can prevent single input glitches (at a
cost of a few extra gates).

1 0 0 0
1 1 1 0

B

A

C

A

B

C

F

33 / 43



Preventing Single Input Glitches
Additional terms can prevent single input glitches (at a
cost of a few extra gates).

1 0 0 0
1 1 1 0

B

A

C

A

B

C

F

33 / 43



Arithmetic Circuits

34 / 43



Arithmetic: Addition

Adding two one-bit numbers: A and B

Produces a two-bit result: C and S (carry and sum)

A B C S

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

A

B

C

S

Half Adder

35 / 43



Full Adder
In general, due to a possible carry in, you need to add
three bits:

CiAB Co S

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A

B

Ci

Co

S

S

Co

Ci

A

B

36 / 43



A Four-Bit Ripple-Carry Adder

FA CiCo

A B

S

FA

S0

A0 B0

FA

S1

A1 B1

FA

S2

A2 B2

FA

S3

A3 B3

0

S4

37 / 43



A Two’s Complement Adder/Subtractor

To subtract B from A, add A and −B.
Neat trick: carry in takes care of the +1 operation.

FA

S0

B0A0

FA

S1

B1A1

FA

S2

B2A2

FA

S3

B3A3

S4

SUBTRACT/ADD

38 / 43



Overflow in Two’s-Complement Representation
When is the result too positive or too negative?
+ −2 −1 0 1

−2

10
10

+10
00

%

−1

10
10

+11
01

%

11
11

+11
10

0

00
10

+00
10

00
11

+00
11

00
00

+00
00

1

00
10

+01
11

11
11

+01
00

00
00

+01
01

01
01

+01
10

%

The result does not fit
when the top two carry
bits differ.

An
Bn

An−1
Bn−1

Sn Sn−1

Overflow

· · ·

39 / 43



Overflow in Two’s-Complement Representation
When is the result too positive or too negative?
+ −2 −1 0 1

−2

10
10

+10
00 %

−1

10
10

+11
01 %

11
11

+11
10

0

00
10

+00
10

00
11

+00
11

00
00

+00
00

1

00
10

+01
11

11
11

+01
00

00
00

+01
01

01
01

+01
10 %

The result does not fit
when the top two carry
bits differ.

An
Bn

An−1
Bn−1

Sn Sn−1

Overflow

· · ·

39 / 43



Ripple-Carry Adders are Slow

S0

A0

B0

S1

A1

B1

S2

A2

B2

S3

A3

B3

C0

C4

The depth of
a circuit is
the number
of gates on a
critical path.

This four-bit
adder has a
depth of 8.

n-bit
ripple-carry
adders have
a depth of 2n.

40 / 43



Carry Generate and Propagate

The carry chain is the slow part of an adder;
carry-lookahead adders reduce its depth using the
following trick:

0 0 1 0

0 1 1 1

A

B

C

K-map for the
carry-out
function of a full
adder

For bit i,

Ci+1 = AiBi +AiCi +BiCi

= AiBi +Ci(Ai +Bi)

= Gi +CiPi

Generate Gi = AiBi sets carry-out
regardless of carry-in.

Propagate Pi = Ai +Bi copies carry-in to
carry-out.

41 / 43



Carry Lookahead Adder
Expand the carry functions into sum-of-products form:

Ci+1 = Gi +CiPi

C1 = G0 +C0P0

C2 = G1 +C1P1

= G1 + (G0 +C0P0)P1

= G1 +G0P1 +C0P0P1

C3 = G2 +C2P2

= G2 + (G1 +G0P1 +C0P0P1)P2

= G2 +G1P2 +G0P1P2 +C0P0P1P2

C4 = G3 +C3P3

= G3 + (G2 +G1P2 +G0P1P2 +C0P0P1P2)P3

= G3 +G2P3 +G1P2P3 +G0P1P2P3 +C0P0P1P2P3

42 / 43



The 74283 Binary Carry-Lookahead Adder
(From National Semiconductor)

11

12

B4

A4

15

14

B3

A3

2

3

B2

A2

6

5

B1

A1

C0
7

Σ1

Σ2

Σ3

Σ4

C4
9

10

13

1

4

Carry out i has i+ 1
product terms, largest
of which has i+ 1
literals.

If wide gates don’t
slow down, delay is
independent of
number of bits.

More realistic: if
limited to two-input
gates, depth is
O(log2 n).

43 / 43


	Basic Combinational Circuits
	Enabler
	Encoders and Decoders
	Multiplexers
	Shifters

	Circuit Timing
	Critical and Shortest Paths
	Glitches

	Arithmetic Circuits
	Ripple Carry Adder
	Adder/Subtractor
	Carry Lookahead Adder


