Fundamentals of Computer Systems Boolean Logic

Martha A. Kim

Columbia University

Fall 2014

Boolean Logic

AN INVESTIGATION

OF

THE LAWS OF THOUGHT,

ON WHICH ARE FOUNDED

THE MATHEMATICAL THEORIES OF LOGIC AND PROBABILITIES.

BY

GEORGE BOOLE, LL.D.

PROFESSOR OF MATHEMATICS IN QUEEN'S COLLEGE, CORE.

George Boole 1815–1864

LONDON:

WALTON AND MABERLY, UPPER GOWER-STREET, AND IVT-LANE, PATERNOSTER-ROW. CAMBRIDGE: MACMILLAN AND CO.

1854.

Boole's Intuition Behind Boolean Logic

Variables X, Y, ... represent classes of things No imprecision: A thing either is or is not in a class

If X is "sheep" and Y is "white things," XY are all white sheep,

XY = YX

and

XX = X.

If X is "men" and Y is "women," X + Yis "both men and women,"

X + Y = Y + X

and

X + X = X.

If X is "men," Y is "women," and Z is "European," Z(X + Y) is "European men and women" and

$$Z(X+Y)=ZX+ZY.$$

The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of A set of values A An "and" operator " \cdot " An "or" operator "+"

A "not" operator \overline{X} A "false" value $0 \in A$ A "true" value $1 \in A$

The Axioms of (Any) Boolean Algebra

An "or" operator "+"	A "true" value $1 \in A$ xioms				
An "and" operator "."	A "false" value $0 \in A$				
A set of values A	A "not" operator \overline{X}				
A Boolean Algebra consists of					

X + Y = Y + X	$X \cdot Y = Y \cdot X$
X + (Y + Z) = (X + Y) + Z	$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$
$X + (X \cdot Y) = X$	$X \cdot (X + Y) = X$
$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$	$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$
$X + \overline{X} = 1$	$X \cdot \overline{X} = 0$

The Axioms of (Any) Boolean Algebra

A Boolean Algebra consists of					
A set of values A An "and" operator "•" An "or" operator "+"	A "not" operator \overline{X} A "false" value $0 \in A$ A "true" value $1 \in A$				
Axioms					

$$\begin{array}{ll} X+Y=Y+X & X\cdot Y=Y\cdot X \\ X+(Y+Z)=(X+Y)+Z & X\cdot (Y\cdot Z)=(X\cdot Y)\cdot Z \\ X+(X\cdot Y)=X & X\cdot (X+Y)=X \\ X\cdot (Y+Z)=(X\cdot Y)+(X\cdot Z) & X+(Y\cdot Z)=(X+Y)\cdot (X+Z) \\ X+\overline{X}=1 & X\cdot \overline{X}=0 \end{array}$$

We will use the first non-trivial Boolean Algebra: $A = \{0, 1\}$. This adds the law of excluded middle: if $X \neq 0$ then X = 1 and if $X \neq 1$ then X = 0.

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."

Axioms

$$X + Y = Y + X$$

$$X \cdot Y = Y \cdot X$$

$$X + (Y + Z) = (X + Y) + Z$$

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

$$X + (X \cdot Y) = X$$

$$X \cdot (X + Y) = X$$

$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

$$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$$

$$X + \overline{X} = 1$$

$$X \cdot \overline{X} = 0$$

Lemma:

,

$$X \cdot 1 = X \cdot (X + \overline{X})$$

= X \cdot (X + Y) if Y = \overline{X}
= X

$$X + (\overline{X} \cdot Y)$$

 $X + (\overline{X} \cdot Y)$

 $= (X + \overline{X}) \cdot (X + Y)$

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."

Axiom	

$$X + Y = Y + X$$

$$X \cdot Y = Y \cdot X$$

$$X + (Y + Z) = (X + Y) + Z$$

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

$$X + (X \cdot Y) = X$$

$$X \cdot (X + Y) = X$$

$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

$$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$$

$$X + \overline{X} = 1$$

$$X \cdot \overline{X} = 0$$

Lemma:

,

$$X \cdot 1 = X \cdot (X + \overline{X})$$

= X \cdot (X + Y) if Y = \overline{X}
= X

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."

Axioms

$$X + Y = Y + X$$

$$X + (Y + Z) = (X + Y) + Z$$

$$X + (Y + Z) = (X + Y) + Z$$

$$X + (X + Y) = X$$

$$X + (X + Y) = X$$

$$X \cdot (Y + Z) = (X + Y) + (X + Z)$$

$$X + (Y + Z) = (X + Y) \cdot (X + Z)$$

$$X + (X + Z) = (X + Y) \cdot (X + Z)$$

$$X + X = 1$$

$$X \cdot \overline{X} = 0$$

Lemma:

,

$$X \cdot 1 = X \cdot (X + \overline{X})$$

= X \cdot (X + Y) if Y = \overline{X}
= X

$$X + (\overline{X} \cdot Y)$$

= $(X + \overline{X}) \cdot (X + Y)$
= $1 \cdot (X + Y)$

"You are a New Yorker if you were born in New York or were not born in New York and lived here ten years."

Axioms					
X + Y = Y + X	x				

$$X \cdot Y = Y \cdot X$$

$$X + (Y + Z) = (X + Y) + Z$$

$$X \cdot (Y \cdot Z) = (X \cdot Y) \cdot Z$$

$$X + (X \cdot Y) = X$$

$$X \cdot (X + Y) = X$$

$$X \cdot (Y + Z) = (X \cdot Y) + (X \cdot Z)$$

$$X + (Y \cdot Z) = (X + Y) \cdot (X + Z)$$

$$X + \overline{X} = 1$$

$$X \cdot \overline{X} = 0$$

Lemma:

$$X \cdot 1 = X \cdot (X + \overline{X})$$

= X \cdot (X + Y) if Y = \overline{X}
= X

$$X + (\overline{X} \cdot Y)$$

= $(X + \overline{X}) \cdot (X + Y)$
= $1 \cdot (X + Y)$
= $X + Y$

More properties

More Examples

XY + YZ(Y + Z) = XY + YZY + YZZ= XY + YZ= Y(X + Z)

X + Y(X + Z) + XZ = X + YX + YZ + XZ= X + YZ + XZ= X + YZ

More Examples

$$\begin{array}{rcl} XYZ + X(\overline{Y} + \overline{Z}) &=& XYZ + X\overline{Y} + X\overline{Z} & \text{Expand} \\ &=& X(YZ + \overline{Y} + \overline{Z}) & \text{Factor w.r.t. } X \\ &=& X(YZ + \overline{Y} + \overline{Z} + Y\overline{Z}) & \overline{Z} \rightarrow \overline{Z} + Y\overline{Z} \\ &=& X(YZ + Y\overline{Z} + \overline{Y} + \overline{Z}) & \text{Reorder} \\ &=& X\left(Y(Z + \overline{Z}) + \overline{Y} + \overline{Z}\right) & \text{Factor w.r.t. } Y \\ &=& X(Y + \overline{Y} + \overline{Z}) & Y + \overline{Y} = 1 \\ &=& X(1 + \overline{Z}) & 1 + \overline{Z} = 1 \\ &=& X & X1 = X \end{array}$$

 $(X + \overline{Y} + \overline{Z})(X + \overline{Y}Z) = XX + X\overline{Y}Z + \overline{Y}X + \overline{Y}\overline{Y}Z + \overline{Z}X + \overline{Z}\overline{Y}Z$ $= X + X\overline{Y}Z + X\overline{Y} + \overline{Y}Z + X\overline{Z}$ $= X + \overline{Y}Z$

Sum-of-products form

Can always reduce a complex Boolean expression to a sum of product terms:

$$\begin{array}{rcl} XY + \overline{X} \left(X + Y(Z + X\overline{Y}) + \overline{Z} \right) &=& XY + \overline{X} (X + YZ + YX\overline{Y} + \overline{Z}) \\ &=& XY + \overline{X}X + \overline{X}YZ + \overline{X}\overline{Y}\overline{X} \\ &=& XY + \overline{X}YZ + \overline{X}\overline{Z} \\ &=& XY + \overline{X}YZ + \overline{X}\overline{Z} \\ & (\text{can do better}) \\ &=& Y(X + \overline{X}Z) + \overline{X}\overline{Z} \\ &=& Y(X + Z) + \overline{X}\overline{Z} \\ &=& Y\overline{\overline{X}}\overline{\overline{Z}} + \overline{X}\overline{Z} \\ &=& Y + \overline{X}\overline{Z} \end{array}$$

What Does This Have To Do With Logic Circuits?

A SYMBOLIC ANALYSIS OF RELAY AND SWITCHING CIRCUITS

Ъÿ

Claude Elwood Shannon B.S., University of Michigan 1956

Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER OF SOLENCE from the Massachusetts Institute of Technology 1940

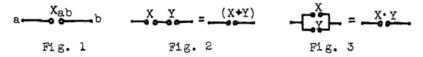
Signature of Author_____

Department of Electrical Engineering, August 10, 1937

Signature of Professor in Charge of Research_____

Signature of Chairman of Department Committee on Graduate Students_____

Claude Shannon 1916–2001


Shannon's MS Thesis

"We shall limit our treatment to circuits containing only relay contacts and switches, and therefore at any given time the circuit between any two terminals must be either open (infinite impedance) or closed (zero impedance).

Shannon's MS Thesis

"It is evident that with the above definitions the following postulates hold.

$0 \cdot 0 = 0$	A closed circuit in parallel with a closed circuit is a closed circuit.
1 + 1 = 1	An open circuit in series with an open circuit is an open circuit.
1 + 0 = 0 + 1 = 1	An open circuit in series with a closed circuit in either order is an open circuit.
$0 \cdot 1 = 1 \cdot 0 = 0$	A closed circuit in parallel with an open circuit in either order is an closed circuit.
0 + 0 = 0	A closed circuit in series with a closed circuit is a closed circuit.
$1 \cdot 1 = 1$	An open circuit in parallel with an open circuit is an open circuit.
	At any give time either $X = 0$ or $X = 1$

Alternate Notations for Boolean Logic

Operator	Math	Engineer	Schematic
Сору	x	X	x- or $x x$
Complement	$\neg x$	\overline{X}	
AND	<i>x</i> ∧ <i>y</i>	XY or $X \cdot Y$	
OR	<i>x</i> ∨ <i>y</i>	X + Y	

Definitions

Literal: a Boolean variable or its complement

E.g.,
$$X \overline{X} Y \overline{Y}$$

Implicant: A product of literals

E.g., X XY
$$X\overline{Y}Z$$

Minterm: An implicant with each variable once

E.g., $X\overline{Y}Z$ XYZ $\overline{X}\overline{Y}Z$

Maxterm: A sum of literals with each variable once

E.g., $X + \overline{Y} + Z$ X + Y + Z $\overline{X} + \overline{Y} + Z$

Be Careful with Bars

$\overline{X}\overline{Y} \neq \overline{XY}$

Be Careful with Bars

$\overline{X}\overline{Y} \neq \overline{XY}$

Let's check all the combinations of X and Y:

X	Y	\overline{X}	Ŷ	$\overline{X} \cdot \overline{Y}$	XY	XΥ
0	0	1	1	1	0	1
0	1	1	0	0	0	1
1	0	0	1	0	0	1
1	1	0	0	0	1	0

Truth Tables

A *truth table* is a canonical representation of a Boolean function

X	Y	Minterm	Maxterm	X	XY	\overline{XY}	X + Y	$\overline{X+Y}$
0	0	$\overline{X}\overline{Y}$	X + Y	1	0	1	0	1
0	1	XΥ	$X+\overline{Y}$	1	0	1	1	0
1	0	$X\overline{Y}$	$\overline{X} + Y$	0	0	1	1	0
1	1	XY	$\overline{X}+\overline{Y}$	0	1	0	1	0

Each row has a unique minterm and maxterm

The $\begin{array}{c} \text{minterm is 1} \\ \text{maxterm is 0} \end{array}$ for only its row

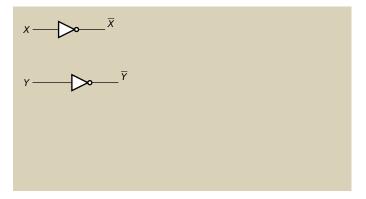
Sum-of-minterms and Product-of-maxterms

Two mechanical ways to translate a function's truth table into an expression:

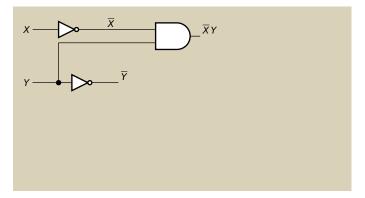
X	Y	Minterm	Maxterm	F
0	0	$\overline{X}\overline{Y}$	X + Y	0
0	1	ΧY	$X + \overline{Y}$	1
1	0	XY	$\overline{X} + Y$	1
1	1	XY	$\overline{X} + \overline{Y}$	0

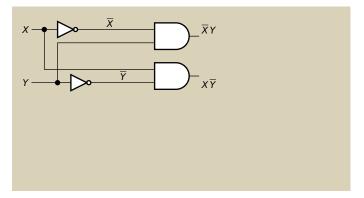
The sum of the minterms where the function is 1:

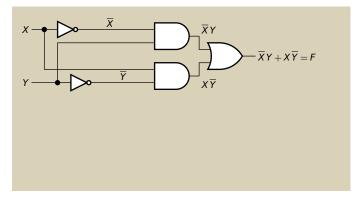
$$F = \overline{X}Y + X\overline{Y}$$

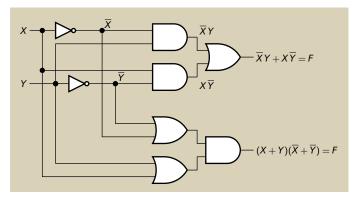

The product of the maxterms where the function is 0:

$$F = (X + Y)(\overline{X} + \overline{Y})$$


$$F = \overline{X}Y + X\overline{Y}$$


$$F = \overline{X}Y + X\overline{Y}$$


$$F = \overline{X}Y + X\overline{Y}$$


$$F = \overline{X}Y + X\overline{Y}$$

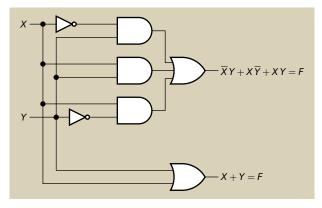
$$F = \overline{X}Y + X\overline{Y}$$

$$F = \overline{X}Y + X\overline{Y} = (X + Y)(\overline{X} + \overline{Y})$$

Minterms and Maxterms: Another Example

The minterm and maxterm representation of functions may look very different:

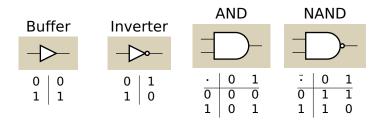
X	Y	Minterm	Maxterm	F
0	0	$\overline{X}\overline{Y}$	X + Y	0
0	1	XΥ	$X + \overline{Y}$	1
1	0	XY	$\overline{X} + Y$	1
1	1	XY	$\overline{X} + \overline{Y}$	1

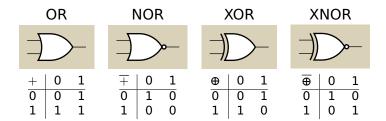

The sum of the minterms where the function is 1:

$$F = \overline{X}Y + X\overline{Y} + XY$$

The product of the maxterms where the function is 0:

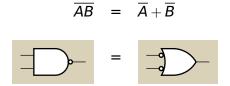
$$F = X + Y$$


$$F = \overline{X}Y + X\overline{Y} + XY = X + Y$$



The Menagerie of Gates

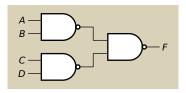
The Menagerie of Gates


De Morgan's Theorem

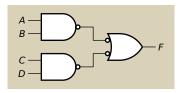
$$\overline{X+Y} = \overline{X} \cdot \overline{Y} \qquad \overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Proof by Truth Table:

X	Y	X + Y	$\overline{X} \cdot \overline{Y}$	X·Y	$\overline{X} + \overline{Y}$
0	0	0	1	0	1
0	1	1	0	0	1
1	0	1	0	0	1
1	1	1	0	1	0


De Morgan's Theorem in Gates

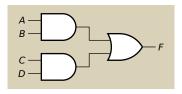
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$


Bubble Pushing

Apply De Morgan's Theorem:

Transform NAND into OR with inverted inputs

Bubble Pushing

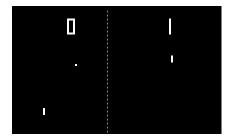


Apply De Morgan's Theorem:

Transform NAND into OR with inverted inputs

Two bubbles on a wire cancel

Bubble Pushing


Apply De Morgan's Theorem:

Transform NAND into OR with inverted inputs

Two bubbles on a wire cancel

PONG

PONG, Atari 1973

Built from TTL logic gates; no computer, no software

Launched the video arcade game revolution

М	L	R	Α	В
0	0	0	Х	Х
0	0	1	0	1
0	1	0	0	1
0	1	1	Х	Х
1	0	0	Х	Х
1	0	1	1	0
1	1	0	1	1
1	1	1	Х	Х

The ball moves either left or right.

Part of the control circuit has three inputs: *M* ("move"), *L* ("left"), and *R* ("right").

It produces two outputs A and B.

Here, "X" means "I don't care what the output is; I never expect this input combination to occur."

М	L	R	Α	В
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	0	0
1	0	0	0	0
1	0	1	1	0
1	1	0	1	1
1	1	1	0	0

- E.g., assume all the X's are 0's and use Minterms:
- $A = M\overline{L}R + ML\overline{R}$
- $B = \overline{M}\,\overline{L}R + \overline{M}\,L\overline{R} + ML\overline{R}$
- 3 inv + 4 AND3 + 1 OR2 + 1 OR3

М	L	R	Α	В
0	0	0	1	1
0	0	1	0	1
0	1	0	0	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

Assume all the X's are 1's and use Maxterms:

$$A = (M + L + \overline{R})(M + \overline{L} + R)$$

$$B=\overline{M}+L+\overline{R}$$

М	L	R	Α	В
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	1	1
1	0	1	1	0
1	1	0	1	1
1	1	1	1	0

Choosing better values for the X's and being much more clever:

$$A = M$$

$$B = \overline{MR}$$

1 NAND2 (!)

М	L	R	Α	В	
0	0	0	Х	Х	
0	0	1	0	1	The <i>M</i> 's are alread
0	1	0	0	1	arranged nicely
0	1	1	Х	Х	
1	0	0	Х	Х	
1	0	1	1	0	
1	1	0	1	1	
1	1	1	Х	Х	

0 0 1 0 1 <i>L</i> 's by	
0 0 1 0 1 <i>L</i> 's by 0 1 0 0 1 pairs 0 1 1 X X	
0 1 0 0 1 pairs 0 1 1 X X	rearrange the
0 1 1 X X	permuting two
	of rows
1 0 0 X X	
1 0 1 1 0	
$1 \ 1 \ 0 \ 1 \ 1$	
<u> 1 1 1 X X</u>	,

М	L	R	Α	В						
0	0	0	Х	Х		Let	's re	arran	ge t	he
0	0	1	0	1		L's	by p	bermu	iting	two
0	1	0	0	1		pai	rs o	f rows		
0	1	1	Х	Х						
1	0	0	Х	Х						
1	0	1	1	0						
					1	1	0	1	1	
					1	1	1	Х	Х	

М	L	R	Α	В					
0	0	0	Х	Х	Let	's re	earran	ge t	he
0	0	1	0	1	L's	by j	bermu	iting	two
0	1	0	0	1			f rows	-	
0	1	1	Х	Х					
1	0	0	Х	Х		-	_	_	
1	0	1	1	0 1	1	0	1	1	
				1	1	1	Х	Х	

Μ	L	R	Α	В	
0	0	0	Х	Х	Let's rearrange the
0	0	1	0	1	L's by permuting two
0	1	0	0	1	pairs of rows
0	1	1	Х	Х	
1 1	0 0	0 1	X 1	x 1 0	1 0 1 1 1 1 X X

М	L	R	Α	В					
0	0	0	Х	Х	-	Let	's re	arran	ge the
0	0	1	0	1		L's	by p	bermu	iting two
0	1	0	0	1		pai	irs of	f rows	
0	1	1	Х	Х					
					1	1	0	1	1
					1	1	1	Х	Х
1	0	0	Х	Х					
1	0	1	1	0	_				

М	L	R	Α	В				
0	0	0	Х	Х	-	Let's ı	rearr	ange the
0	0	1	0	1		L's by	per	muting two
0	1	0	0	1		pairs	of ro	WS
0	1	1	Х	Х				
			1	1	0	1	1	
			1	1	1	Х	Х	
1	0	0	Х	Х				
1	0	1	1	0	_			

М	L	R	Α	В	
0	0	0	Х	Х	Let's rearrange the
0	0	1	0	1	L's by permuting two
0	1	0	0	1	pairs of rows
0	1	1	Х	Х	
		1	1 0	1	1
		1	1 1	Х	X
1	0	0	Х	Х	
1	0	1	1	0	

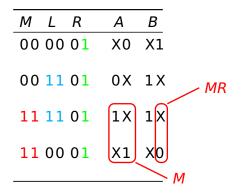
Basic trick: put "similar" variable values near each other so simple functions are obvious

М	L	R	Α	В
0	0	0	Х	Х
0	0	1	0	1
0	1	0	0	1
0	1	1	Х	Х
1	1	0	1	1
1	1	1	Х	Х
1	0	0	Х	Х
1	0	1	1	0

Let's rearrange the L's by permuting two pairs of rows

Basic trick: put "similar" variable values near each other so simple functions are obvious

М	L	R	Α	В
0	0	0	Х	Х
0	0	1	0	1
0	1	0	0	1
0	1	1	Х	Х
1	1	0	1	1
1	1	1	Х	Х
1	0	0	Х	Х
1	0	1	1	0

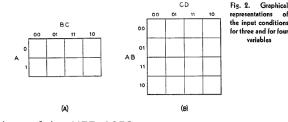

The *R*'s are really crazy; let's use the second dimension

Basic trick: put "similar" variable values near each other so simple functions are obvious

М	L	R	Α	В
0	0	0	х _о	X
0	ł	0	٥x	Ίχ
ł	ł	0 <mark>1</mark>	Ίχ	Ίχ
ł	0	0 <mark>1</mark>	х	x

The *R*'s are really crazy; let's use the second dimension

М	L	R	Α	В	
00	00	01	X0	X1	The <i>R</i> 's are really
00	11	01	0 X	1X	crazy; let's use the second dimension
11	11	01	1X	1 X	
11	00	01	X1	X0	

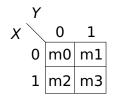


Maurice Karnaugh's Maps The Map Method for Synthesis of Combinational Logic Circuits

M. KARNAUGH

THE SEARCH for simple abstract techniques to be applied to the design of switching systems is still, despite some recent advances, in its early stages. The problem in this area which has been attacked most energetically is that of the synthesis of efficient combinational that is, nonsequential, logic circuits. be convenient to describe other methods in terms of Boolean algebra. Whenever the term "algebra" is used in this paper, it will refer to Boolean algebra, where addition corresponds to the logical connective "or," while multiplication corresponds to "and."

The minimizing chart,2 developed at

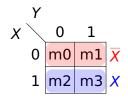

Transactions of the AIEE, 1953

Karnaugh maps (a.k.a., K-maps)

All functions can be expressed with a map. There is one

square for each minterm in a function's truth table

X	Y	minterm	
0	0	$\overline{X}\overline{Y}$	m0
0	1	ΧY	m1
1	0	XY	m2
1	1	XY	m3

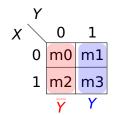


Karnaugh maps (a.k.a., K-maps)

All functions can be expressed with a map. There is one

square for each minterm in a function's truth table

X	Y	minterm	
0	0	$\overline{X}\overline{Y}$	m0
0	1	ΧY	m1
1	0	XY	m2
1	1	XY	m3

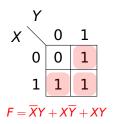


Karnaugh maps (a.k.a., K-maps)

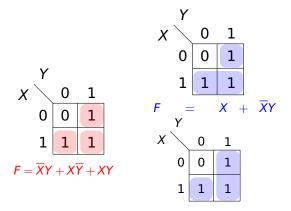
All functions can be expressed with a map. There is one

square for each minterm in a function's truth table

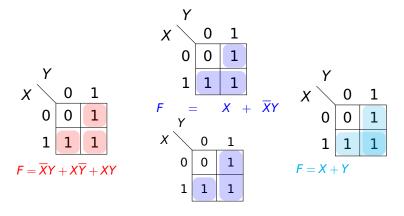
X	Y	minterm	
0	0	$\overline{X}\overline{Y}$	m0
0	1	ΧY	m1
1	0	XY	m2
1	1	XY	m3



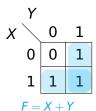
Fill out the table with the values of some function.


Χ	Y	F
0	0	0
0	1	1
1	0	1
1	1	1

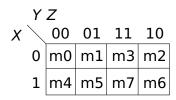
When two cells share an edge and both are 1, those two terms can be combined to form a single, simpler term.



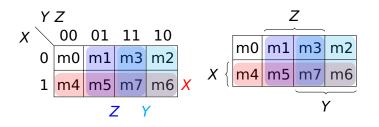
When two cells share an edge and both are 1, those two terms can be combined to form a single, simpler term.


 $F = Y + X\overline{Y}$

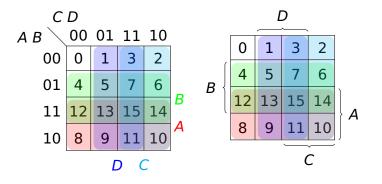
When two cells share an edge and both are 1, those two terms can be combined to form a single, simpler term.


Karnaugh maps (a.k.a., K-maps) – Summary So Far

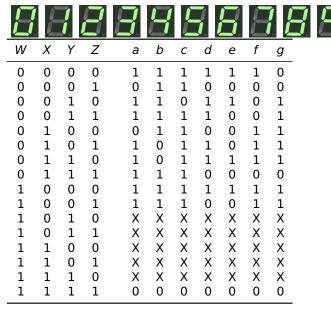
- Circle contiguous groups of 1s (circle sizes must be a power of 2)
- There is a correspondence between circles on a k-map and terms in a function expression
- The bigger the circle, the simpler the term
- Add circles (and terms) until all 1s on the k-map are circled
- Prime implicant: circles that can be no bigger (smallest product term)
- Essential prime implicant: circles that uniquely covers a 1 is "essential"


3-Variable Karnaugh Maps

- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")


3-Variable Karnaugh Maps

- Use gray ordering on edges with multiple variables
- Gray encoding: order of values such that only one bit changes at a time
- Two minterms are considered adjacent if they differ in only one variable (this means maps "wrap")



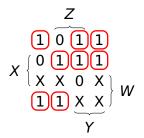
4-Variable Karnaugh Maps

An extension of 3-variable maps.

The Seven-Segment Decoder Example

W	Х	Y	Ζ	а
0	0	0	0	1
0	0 0 0 1 1 1 1 0 0 0 0 1 1 1	0	0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	0
0	0	1	0	1
0	0	1 0 0 1 0 0 1 1 0 0	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Х
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1		1	0	1 0 1 1 0 1 1 1 1 X X X X X 0
1	1	1	1	0

1 0 1 1 $\begin{array}{cccc} x \left\{ \begin{matrix} 0 & 1 & 1 & 1 \\ x & x & 0 & x \\ 1 & 1 & \underline{x & x} \end{matrix} \right\} W$

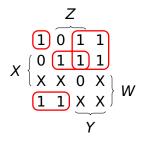

The Karnaugh Map Sum-of-Products Challenge

Cover all the 1's and none of the 0's using as few literals (gate inputs) as possible.

Few, large rectangles are good.

Covering X's is optional.

W	Х	Y	Ζ	а
0	0	0	0	1
0 0 0 0 0 0 0 1 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 0 1 1 1	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	1 0 1 1 0 1 1 0	$ 1 \\ 0 \\ 0 \\ $	1
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1	1	Х
1	1	0	0	Х
1	1	0	1	Х
1		1		1 0 1 1 1 1 1 1 X X X X X 0
1	1	1	1	0

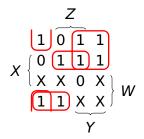

The minterm solution: cover each 1 with a single implicant.

$$a = \overline{W}\overline{X}\overline{Y}\overline{Z} + \overline{W}\overline{X}YZ + \overline{W}\overline{X}Y\overline{Z} + \overline{W}X\overline{Y}Z + \overline{W}XYZ + \overline{W}XY\overline{Z} + W\overline{X}\overline{Y}\overline{Z} + W\overline{X}\overline{Y}Z$$

 $8 \times 4 = 32$ literals

4 inv + 8 AND4 + 1 OR8

W	Х	Y	Ζ	а
0	0	0	0	1
0	0	0	1	0
0 0	0	1	0	1
0	0	1	1 0	1 0
0	1	0	0	0
0	1	0	1 0	1
0	1	1	0	1
0	1	1	1 0	1
1	0	0	0	1
1 1 1	0	0	1 0	1
1	0	1	0	Х
1	0	1	1 0	Х
1	1	0	0	Х
1	1	0	1	Х
1	1	1	0	1 1 1 X X X X X 0
1	1	1	1	0

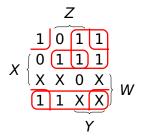

Merging implicants helps Recall the distributive law: AB + AC = A(B + C)

$$a = \overline{W}\overline{X}\overline{Y}\overline{Z} + \overline{W}Y + \overline{W}XZ + W\overline{X}\overline{Y}$$

4 + 2 + 3 + 3 = 12 literals

4 inv + 1 AND4 + 2 AND3 + 1 AND2 + 1 OR4

W	Х	Y	Ζ	а
0	0	0	0	1
0 0 0 0 0 0 1 1 1 1 1 1	0 0 1 1 1 1 0 0 0 0 1 1	0	1	0
0	0	1	0	1
0	0	1	1	1
0	1	0	0	0
0	1	1 1 0 0	1 0 1 0 1 0 1 0 1 0 1 0	1
0	1	1	0	1
0	1	1	1	1
1	0	1 1 0 0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1 1 0	1	Х
1	1	0	0	Х
1	1	0	1	Х
	1	1		1 0 1 1 1 1 1 X X X X X 0
1	1	1	1	0


Missed one: Remember this is actually a torus.

$$a = \overline{X}\overline{Y}\overline{Z} + \overline{W}Y + \overline{W}XZ + W\overline{X}\overline{Y}$$

3 + 2 + 3 + 3 = 11 literals

4 inv + 3 AND3 + 1 AND2 + 1 OR4

W	Х	Y	Ζ	а
0	0	0	0	1
0	0	0	1	0
0 0 0 0 0 0 1 1 1 1 1 1	0 0 1 1 1 1 0 0 0 0 1 1	1	1 0 1 0 1 0 1 0 1 0 1 0	1
0	0	1 1 0 0	1	1
0	1	0	0	0
0	1	0	1	1
0	1	1	0	1
0	1	1	1	1
1	0	1 1 0 0	0	1
1	0	0	1	1
1	0	1	0	Х
1	0	1 1 0	1	Х
1	1	0	0	Х
1	1	0	1	Х
	1	1		1 0 1 1 1 1 1 X X X X X 0
1	1	1	1	0

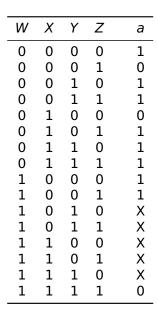
Taking don't-cares into account, we can enlarge two implicants:

$$a = \overline{X}\overline{Z} + \overline{W}Y + \overline{W}XZ + W\overline{X}$$

2 + 2 + 3 + 2 = 9 literals

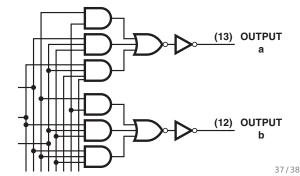
3 inv + 1 AND3 + 3 AND2 + 1 OR4

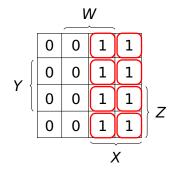
W	Х	Y	Ζ	а
0	0	0	0	1
0	0	0	1 0	0
0	0	1	0	1
0	0	1 1 0	1	1
0	1	0	1 0	0
0 0 0 0 1 1 1 1 1	1 1 1 0 0 0 0	0	1	1
0	1		0	1
0	1	1 1 0 0	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	Х
1		1 1 0	1	Х
1	1	0	0	Х
1	1	0	1 0 1 0 1 0 1 0 1 0	Х
1	1	1		1 0 1 1 1 1 X X X X X X 0
1	1	1	1	0


Can also compute the complement of the function and invert the result.

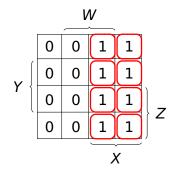
Covering the 0's instead of the 1's:

$$\overline{a} = \overline{W}\overline{X}\overline{Y}Z + X\overline{Y}\overline{Z} + WY$$


4 + 3 + 2 = 9 literals

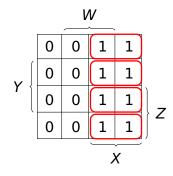

5 inv + 1 AND4 + 1 AND3 + 1 AND2 + 1 OR3

7 1 Х Х 0 W


To display the score, PONG used a TTL chip with this solution in it:

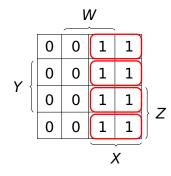
 $WX\overline{Y}\overline{Z} + \overline{W}X\overline{Y}\overline{Z} + WX\overline{Y}\overline{Z} + WXY\overline{Z} + WXY\overline{Z} + WXY\overline{Z} + WXYZ + WXYZ + WX\overline{Y}Z + WX\overline{Y}Z$

Factor out the W's

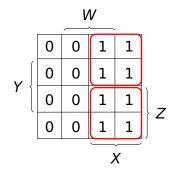

$$(W + \overline{W}) X \overline{Y} \overline{Z} + (W + \overline{W}) X Y \overline{Z} + (W + \overline{W}) X Y \overline{Z} + (W + \overline{W}) X \overline{Y} Z$$

Use the identities

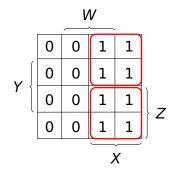
$$W + \overline{W} = 1$$


and

$$1X = X.$$

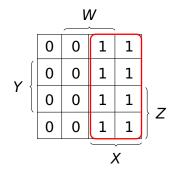


Factor out the Y's



 $(\overline{Y} + Y) X \overline{Z} + (\overline{Y} + Y) X Z$

Apply the identities again



 $X(\overline{Z}+Z)$

Simplify

Done