Combinational circuits

- Combinational circuits are stateless
- The outputs are functions only of the inputs

Enabler Circuit (High-level view)

- Enabler circuit has 2 inputs
- data (can be several bits, but 1 bit examples for now)
- enable/disable (i.e., on/off)
- Enable circuit "on": output = data, Enable circuit "off": output is "zeroed" (e.g., output signal is all 0's)

MUX Circuit (High-level)

- k Data values enter as input
- Selector chooses which one comes out

Decoder Circuit (high-level view)

- No DATA inputs
- $2^{\mathrm{k}} 1$-bit outputs
- Selector input chooses which output $=1$, all other outputs $=0$

Building "big" circuits: Hierarchical design

3-4
"Big"Circuit

(a)

Design small circuits to be used in a bigger circuit

Smaller
Circuits

(b)

(c)

Notation: Emulating a k-input gate via 2-input

- Each stage in the circuit cuts \# of gates by half
- k input gate emulated with $\log _{2} k$ depth 2-input gate circuits
- Same process works for OR, XOR as well

Enabler circuits: 1 bit Data input "A"

(a)

(b)

For both enabler circuits above, output is "enabled" ($F=X$) only when input 'ENABLE' signal is asserted (EN=1). Note the different output when DISABLED

© 2008 Pearson Education, Inc
M. Morris Mano \& Charles R. Kime
LOGIC AND COMPUTER DESIGN FUNDAMENTALS, 4e

Decoder-based circuits

Converts n-bit input to m-bit output, where $\mathrm{n}<=\mathrm{m}<=2^{\text {n }}$

"Standard" Decoder: $\mathrm{i}^{\text {th }}$ output $=1$, all others $=0$, where i is the binary representation of the input (ABC)

Decoder-based circuits

Converts n -bit input to m -bit output, where $\mathrm{n}<=\mathrm{m}<=2^{\mathrm{n}}$

"Standard" Decoder: $\mathrm{i}^{\text {th }}$ output $=1$, all others $=0$, where i is the binary representation of the input (ABC)

Decoder (1:2) Internal Design

3-17

\mathbf{A}	$\mathbf{D}_{\mathbf{0}}$	$\mathbf{D}_{\mathbf{1}}$
0	1	0
1	0	1

(a)

(b)

Decoder (2:4)

\mathbf{A}_{1}	\mathbf{A}_{0}	\mathbf{D}_{0}	\mathbf{D}_{1}	\mathbf{D}_{2}	\mathbf{D}_{3}
0	0	1	0	0	0
0	1	0	1	0	0
1	0	0	0	1	0
1	1	0	0	0	1

(a)

"Standard" Decoder: $i^{\text {th }}$ output $=1$, all others $=0$, where i is the binary representation of the input

Hierarchical design of decoder (2:4 decoder)

Can build 2:4 decoder out of two 1:2 decoders (and some additional circuitry)

Decoder (3:8)

Hierarchical design: use small decoders to build bigger decoder

Note: A2 "selects" whether the 2-to-4 line decoder is active in the top half $\left(\mathrm{A}_{2}=0\right)$ or the bottom ($\mathrm{A}_{2}=1$)

Encoders

Inverse of a decoder: converts m-bit input to n-bit output, where $n<=m<=2^{n}$
\square TABLE 3-7
Truth Table for Octal-to-Binary Encoder

Inputs								Outputs		
D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D	A_{2}	A_{1}	A_{0}
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	0	0	0	1
0	0	0	0	0	1	0	0	0	1	0
0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	0	0
0	0	1	0	0	0	0	0	1	0	1
0	1	0	0	0	0	0	0	1	1	0
1	0	0	0	0	0	0	0	1	1	1

Decoders and encoders

	va						c			
0	0	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	1	0	0	0	0	0	0	1	0	0
0	1	1	0	0	0	0	1	0	0	0
1	0	0	0	0	0	1	0	0	0	0
1	0	1	0	0	1	0	0	0	0	0
1	1	0	0	1	0	0	0	0	0	0
1	1	1	1	0	0	0	0	0	0	0
$n\{\leftleftarrows \text { Encoder }$										

Note: for Encoders - input is assumed to be just one 1, the rest 0's

Priority Encoder

T 3-8

- Designed for any combination of inputsTABLE 3-8
Truth Table of Priority Encoder

Inputs				Outputs			
	\mathbf{D}_{3}	\mathbf{D}_{2}	\mathbf{D}_{1}	\mathbf{D}_{0}		$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{0}}$
0	0	0	0	X	V		
0	0	0	1		X	0	
0	0	1	X	0	0	1	
0	1	X	X	1	1	1	
1	X	X	X	1	0	1	

General code conversion: a circuit that coverts some inputs to outputs

3-3

(a) Segment designation

(b) Numeric designation for display

Code conversion

Code conversion

Code conversion

Algebra and Circuit for "f"

Multiplexers

- Combinational circuit that selects binary information from one of many input lines and directs it to one output line

1 output
n selection bits
indicate (in binary) which input feeds to the output

Multiplexer example

Multiplexers \& Demultiplexers

Muxes and demuxes called "steering logic"

"merge"

"fork"

Demultiplexers

1 input	n-b	CD	lue	$2^{\wedge} \mathrm{n}$ outputs							
a	0	0	0	a	0	0	0	0	0	0	0
b	0	0	1	0	b	0	0	0	0	0	0
C	0	1	0	0	0	C	0	0	0	0	0
d	0	1	1	0	0	0	d	0	0	0	0
e	1	0	0	0	0	0	0	e	0	0	0
f	1	0	1	0	0	0	0	0	f	0	0
g	1	1	0	0	0	0	0	0	0	g	0
h	1	1	1	0	0	0	0	0	0	0	h

Internal mux organization

Selector Logic (selects which input "flows through")

Representing Functions with Decoders and MUXes

- e.g., $F=A \bar{C}+B C$

A	B	C	minterm	F
0	0	0	$\overline{\mathrm{~A}} \overline{\mathrm{~B}} \overline{\mathrm{C}}$	0
0	0	1	$\overline{\mathrm{~A}} \overline{\mathrm{~B}} \mathrm{C}$	0
0	1	0	$\overline{\mathrm{~A}} \mathrm{~B} \overline{\mathrm{C}}$	0
0	1	1	$\overline{\mathrm{~A}} \mathrm{BC}$	1
1	0	0	$\mathrm{~A} \overline{\mathrm{~B}} \overline{\mathrm{C}}$	1
1	0	1	$\mathrm{~A} \overline{\mathrm{~B}} \mathrm{C}$	0
1	1	0	$\mathrm{AB} \overline{\mathrm{C}}$	1
1	1	1	ABC	1

- Decoder: OR minterms for which F should evaluate to 1

- MUX: Feed in the value of F for each minterm

A Slick MUX trick

- Can use a smaller MUX with a little trick e.g., $F=A C+B \bar{C}$
- Note for rows paired below, A\&B have same values, C iterates between 0\&1
- For the pair of rows, F either equals $0,1, C$ or $\overline{\mathrm{C}}$

Slick MUX trick: Example

- e.g., $F=\bar{A} C+\bar{B} \bar{C}+A \bar{C}$

