Fundamentals of Computer Systems

Memory

Martha A. Kim

Columbia University

Fall 2013
Memory Interface

Data stored in *word* units

A word is several bytes (powers of two are typical)

write operations store data to memory

read operations retrieve data from memory

General ROM:

- 2^k words
- n bits per word
Conceptual View of Memory

Memory is an array of cells.
Each cell stores a single bit.
Cell Behavior

Implementation of cell depends on type of memory.
Address is decoded into set of wordlines.
Wordlines select row to be read/written.
Only one wordline=1 at a time.
Multiple cells read in parallel, setting values of multiple bitlines.
Coincident Selection Saves Decode Logic

- 15-bit address
- 32,768 row selects
- 64 col selects
- 32,800 gates
- 512 row selects
- 608 gates
- Bottom 6 bits of address
Static Random-Access Memory Cell (SRAM)
Dynamic RAM Cell

Bit line

Word line
CMOS Mask-Programmed ROMs

<table>
<thead>
<tr>
<th>Add. Data</th>
<th>00 011</th>
<th>01 110</th>
<th>10 100</th>
<th>11 010</th>
</tr>
</thead>
</table>

ROM “programmed” by selectively connecting drain wires

Active-high wordlines
EPROMs and FLASH use Floating-Gate MOSFETs
Volatile Storage Comparisons

<table>
<thead>
<tr>
<th></th>
<th>Flip-Flop</th>
<th>SRAM</th>
<th>DRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transistors/Bit</td>
<td>Approx. 20</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Density</td>
<td>Low</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>Access Time</td>
<td>Fast</td>
<td>Medium</td>
<td>Slow</td>
</tr>
<tr>
<td>Destructive Read?</td>
<td>No</td>
<td>No</td>
<td>Yes1</td>
</tr>
<tr>
<td>Power</td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
</tbody>
</table>

1Therefore refresh required
Atari Space Race, 1973
Atari Space Race PCB

Front

Back (mirrored)
The Space Race ROM

A means and D means
The Space Race ROM

The decoder or “AND plane”

In a RAM or ROM, computes every minterm

Pattern is not programmable
The decoder or “OR plane”
One term for every output
Pattern is programmable = the contents of the ROM
The Space Race ROM

Can we do better?
Simplifying the Space Race ROM

<table>
<thead>
<tr>
<th></th>
<th>A0</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>A1</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Essential minterms mean don’t expand these

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

10 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0
0 1 1 1 0 1 0 0 0
0 1 0 0 0 1 0 0 0
The Space Race ROM – using PAL

\[D_0 = 32\overline{10} \]
The Space Race ROM – using PAL

\[D_0 = 32\overline{1}0 \]
\[D_1 = 32\overline{1} \]
The Space Race ROM – using PAL

\[D_0 = 32\overline{1}0 \]
\[D_1 = 32\overline{1} \]
\[D_2 = 3\overline{2}10 + 32\overline{1}0 \]
The Space Race ROM – using PAL

\[D_0 = \overline{3210} \]
\[D_1 = \overline{321} \]
\[D_2 = \overline{3210} + 32\overline{10} \]
\[D_3 = \overline{3210} + 3\overline{10} + 32\overline{10} + 3210 \]
The Space Race ROM – using PAL

\[D_0 = 32\overline{10} \]
\[D_1 = 32\overline{1} \]
\[D_2 = 32\overline{10} + 32\overline{10} \]
\[D_3 = \overline{32\overline{10}} + 31\overline{0} + 32\overline{10} + 3210 \]
\[D_4 = \overline{32\overline{10}} + \overline{32\overline{10}} + 32\overline{10} + 3210 \]
The Space Race ROM – using PAL

\[D_0 = 32\bar{1}0 \]
\[D_1 = 32\bar{1} \]
\[D_2 = 32\bar{1}0 + 32\bar{1}0 \]
\[D_3 = 32\bar{1}0 + 31\bar{0} + 32\bar{1}0 + 32\bar{1}0 \]
\[D_4 = 3\bar{2}10 + 32\bar{1}0 + 32\bar{1}0 + 32\bar{1}0 \]
\[D_5 = 31\bar{0} + 20 + 21 + 32\bar{1}0 + 32\bar{1}0 \]
The Space Race ROM – using PAL

\[
\begin{align*}
D_0 &= \overline{3210} \\
D_1 &= \overline{321} \\
D_2 &= \overline{3210} + \overline{3210} \\
D_3 &= \overline{3210} + \overline{310} + \overline{3210} + \overline{3210} \\
D_4 &= \overline{3210} + \overline{3210} + \overline{3210} + \overline{3210} \\
D_5 &= \overline{310} + 20 + 21 + \overline{3210} + \overline{3210} \\
D_6 &= \overline{3210} + \overline{3210}
\end{align*}
\]
The Space Race ROM – using PAL

\[D_0 = \overline{3210} \]
\[D_1 = \overline{321} \]
\[D_2 = \overline{3210} + \overline{3210} \]
\[D_3 = \overline{3210} + \overline{310} + \overline{3210} + \overline{3210} \]
\[D_4 = \overline{3210} + \overline{3210} + \overline{3210} + \overline{3210} \]
\[D_5 = \overline{310} + 20 + 21 + \overline{3210} + \overline{3210} \]
\[D_6 = \overline{3210} + \overline{3210} \]
\[D_7 = \overline{3210} + \overline{3210} \]

Saved two ANDs
Field-Programmable Gate Arrays (FPGAs)

Switch Block
16×1 RAM
programmable switch
Switch Box: 6 programmable switches