Fundamentals of Computer Systems
Thinking Digitally

Martha A. Kim

Columbia University

Fall 2013

1/1

The Subject of this Class

2/1

The Subjects of this Class

2/1

Engineering Works Because of Abstraction

Application Software
Operating Systems
Architecture

Micro-Architecture

Logic
Digital Circuits
Analog Circuits

Devices

Physics

3/1

Engineering Works Because of Abstraction

Application Software COMS 3157, 4156, et al.
Operating Systems COMS W4118

Architecture Second Half of 3827

Micro-Architecture Second Half of 3827
Logic First Half of 3827
Digital Circuits First Half of 3827
Analog Circuits ELEN 3331

Devices ELEN 3106

Physics ELEN 3106 et al.

3/1

Simple information processing system

Discrete | Discrete Information Discrete
Inputs Processing System Outputs

L

System State

First half of the course

4/1

Simple information processing system

Discrete
Inputs

Discrete Information
Processing System

Sys ate

First quarter of the course

Discrete
Outputs

4/1

Administrative ltems

Mailing list: csee3827-staff@lists.cs.columbia.edu
http://www.cs.columbia.edu/~martha/courses/3827/aul3/

Prof. Martha A. Kim
martha@cs.columbia.edu
469 Computer Science Building

Lectures 10:10-11:25 AM Tue, Thur

209 Havemeyer

Sep 3-Dec 5

Holidays: Nov 5 (Election Day), Nov 28 (Thanksgiving)

5/1

http://www.cs.columbia.edu/~martha/courses/3827/au13/

Assignments and Grading

Weight What When

40% Six homeworks See Webpage
30% Midterm exam (Tentatively) October 15th
30% Final exam During Finals Week (Dec 13-20)

Homework is due at the beginning of lecture.

We will drop the lowest of your six homework scores;
skip
omit

forget

ignore
you can A blow off + one with no penalty.
screw up
feed to dog
flake out on
sleep through

6/1

Rules and Regulations

You may collaborate with classmates on homework.

Each assignment turned in must be unique; work must
ultimately be your own.

List your collaborators on your homework.
Do not cheat.

Tests will be closed-book with a one-page “cheat sheet”
of your own devising.

7/1

The Text(s): Alternative #1

No required text. There are two recommended
alternatives.

» David Harris and Sarah Harris. Digital Design and
Computer Architecture.

Almost precisely right for the scope of this class:
digital logic and computer architecture.

Digital Design and
Computer Architecture

8/1

The Text(s): Alternative #2

» M. Morris Mano and
Charles Kime. Logic
and Computer Design
Fundamentals, 4th ed.

. Logic and Computer :
~ Desion Fundamentals :

Fourth Edition

M. Morris Mano = Charles R. Kime

» Computer Organization
and Design, The
Hardware/Software
Interface, 4th ed. David
A. Patterson and John L.
Hennessy

COMPUTER

9/1

Registration and Wait List

This class is currently full.

If we can secure a larger lecture hall, we will increase
cap.

The course has a waitlist:
https://docs.google.com/forms/d/
1GygsbDZvP64hAiOnNWYqBgeXIbS70CxMgR0e5-5Y3q8/
viewform

It is offered every semester.

10/1

https://docs.google.com/forms/d/1GygsbDZvP64hAi0nNWYqBqeXIbS70CxMgROe5-5Y3q8/viewform
https://docs.google.com/forms/d/1GygsbDZvP64hAi0nNWYqBqeXIbS70CxMgROe5-5Y3q8/viewform
https://docs.google.com/forms/d/1GygsbDZvP64hAi0nNWYqBqeXIbS70CxMgROe5-5Y3q8/viewform

There are only 10 types
of people in the world:
Those who understand binary
and those who don't.

thinkgeek.com

11/1

Which Numbering System Should We Use?
Some Older Choices:

Roman: LIFHTIV V VIVIEVIIFIX X
-— g’- E seae é
= &= @ == == Mayan: base 20, Shell = 0
$ Gk > S
twenty-one twenty-three twenty-five forty one hundred

: &7 ,
piid piidipiid g id ~«% Babylonian: base 60

S L L EE-EEER
Sﬁa:é O
4
A
E |
&

2

12/1

The Decimal Positional Numbering System

Ten figures: 0123456789
7x10%2+3x 101 +0x10°=73019

9x102+9x%x101+0x10°=990;9

Why base ten?

13/1

Hexadecimal, Decimal, Octal, and Binary

Hex Dec Oct Bin
0 0 0 0
1 1 1 1
2 2 2 10
3 3 3 11
4 4 4 100
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
A 10 12 1010
B 11 13 1011
C 12 14 1100
D 13 15 1101
E 14 16 1110
F 15 17 1111

14/1

Binary and Octal

DEC PDP-8/1, c. 1968

Oct

NOoOuUuphWNRO

100
101
110
111

Ox211 4+ 1x210 1 0x29+1x28 +1x27 +0x2°+
1x2°+1x2%+1x23+1x22+0x21+1x2°

2x831+6%x82+7x814+5x%x8°

14691

15/1

Hexadecimal Numbers

Base16:0123456789ABCDEF

Instead of groups of 3 bits (octal), Hex uses groups of 4.

CAFEFOOD1g = 12x167 +10x16%°+15x16° +14 x 16% +
15%x 163+ 0x162+0x 161 +13 x 16°
= 3,405, 705,229

| C|A|F|E|F]|]O] O] D | Hex

11001010111111101111000000001101 Binary
3|1|2|7]7[5]7]0]0|1|5]| Octal

16/1

Computers Rarely Manipulate True Numbers

Infinite memory still very expensive
Finite-precision numbers typical
32-bit processor: naturally manipulates 32-bit numbers
64-bit processor: naturally manipulates 64-bit numbers
How many different numbers can you

binary

octal

decimal
hexadecimal

represent with 5 digits?

17/1

SRR

Word

LSB

Binary digit: O or 1

Eight bits

Natural number of bits for the pro-
cessor, e.qg., 16, 32, 64

Least Significant Bit (“rightmost”)

Most Significant Bit (“leftmost”)

18/1

Decimal Addition Algorithm

012 3 456 789

41516 17

O~NOOOOAMNM
L B N B N |

1516 17 18
16 17 18 19

MO~ OAANM
Ll N N |

NN INON~NOOO AN
-

AFANNTINONO0O O
— —

0123456_/89w

+

O NMSINONOOO
—

12

434
1628
4+8

19/1

Decimal Addition Algorithm

012 3 456 7809

41516 17

O~NOOOOAMNM
L B N B N |

1516 17 18
1617 18 19

MO~ OAANM
Ll N N |

NN INONOOO AN
-

FANNTINONO0O O
—

0123456_/89w

+

O NMSINONOOO
—

12
6

434

+628
4+8
14+3+2

19/1

Decimal Addition Algorithm

012 3 456 7809

41516 17
1516 17 18

O~NOOOOAMNM
Ll B B N |

16 17 18 19

MO~ OAANM
e

NN INON~NOOO AN
-

AFANNTNONO0O O
— —

0123456_/89w

+

434
1628

O NMSINONOOO
—

12
6
10

62
448

1+3+2
416

19/1

Decimal Addition Algorithm

012 3 456 7809

41516 17
1516 17 18

O~NOOOOAMNM
L B N B N |

16 17 18 19

MO~ OAANM
e

NN INON~NOOO AN
-

AFANNTNONO0O O
— —

0123456_/89w

+

11

434
1628

O NMSINONOOO
—

12
6
10

062
448

1+3+2
416

19/1

Decimal Addition Algorithm

012 3 456 7809

41516 17

O~NOOOOAMNM
L B N B N |

1516 17 18
16 17 18 19

MO~ OAANM
e

NN INON~NOOO AN
-

AFANNTNONO0O O
— —

0123456_/89w

+

O NMSINONOOO
—

12
6
10

1
448

1+3+2
416

19/1

Binary Addition Algorithm

10011
+11001

20/1

Binary Addition Algorithm

20/1

Binary Addition Algorithm

11
10011

+11001

00

20/1

Binary Addition Algorithm

011
10011

+11001

100

1+1 =
1+1+0 =
1+0+0 =
0+0+1 =

10
10
01
01

20/1

Binary Addition Algorithm

0011
10011
+11001

1100

1+1
1+1+0
1+0+0
0+0+1
0+1+1

10
10
01
01
10

20/1

Binary Addition Algorithm

10011
10011
+11001

101100

1+1
1+1+0
1+0+0
0+0+1
0+1+1

10
10
01
01
10

20/1

Signed Numbers: Dealing with Negativity

/{/ﬁfﬂlﬂ/f

How should both positive and negative numbers be
represented?

21/1

Signed Magnitude Numbers

You are most familiar with this:
negative numbers have a leading —

In binary, a
leading 1 means Can be made to work, but addition is
negative: annoying:
0000, = 0 If the signs match, add the magnitudes
and use the same sign.
0010, =2 _ _
If the signs differ, subtract the smaller
1010, = -2

number from the larger; return the
1111, = -7 sign of the larger.

1000, = -07?

22/1

One’s Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative
One’s Complement number.

To negate a number, complement (flip) each bit.

00002, =0
00102 =2
1101, =-2
1000, = -7

1111, =-07?

Addition is nicer: just add the one’s
complement numbers as if they were
normal binary.

Really annoying having a —0: two
numbers are equal if their bits are the

same or if one is 0 and the other is —0.

23/1

M"‘i NOTALL
ZEROS

- ARE CREATED

24/1

Two’s Complement Numbers

Really neat trick: make the most
significant bit represent a negative
number instead of positive:

1101, =-8+44+1=-3
1111, =-8+4+2+1=-1
0111, =4+2+1=7
1000, = -8

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one’s
complement) then add 1.

Very good property: no —0

Two’s complement numbers are equal if all their bits
are the same.

25/1

Number Representations Compared

Bits Binary Signed One’'s Two’s
Mag. Comp. Comp.

0000 0 0 0 0
0001 1 1 1 1
0111 7 7 7 7
1000 8 -0 -7 -8
1001 9 -1 -6 -7
1110 14 -6 -1 -2
1111 15 -7 -0 -1

Smallest number
Largest number

26/1

Fixed-point Numbers

How to represent fractional
numbers? In decimal, we continue
with negative powers of 10:

31.4159 = 3x10'+1x10°+
4x1071+1x107%2+5%x103+9x107*

The same trick works in binary:

1011.0110; = 1x234+40x22+1x2'+1x2%+
O0x214+1x22+1x234+0x27%
= 8+2+1+0.25+0.125
= 11.375

27/1

Need a bigger range? Try Floating Point
Representation.

Floating point can represent very large numbers in a
compact way.

A lot like scientific notation, —7.776 x 103, where you
have the mantissa (—7.776) and exponent (3).

But for this course, think in binary: —1.10x20111

The bits of a 32-bit word are separated into fields. The
IEEE 754 standard specifies

» which bits represent which fields (bit 31 is sign, bits
30-23 are 8-bit exponent, bits 22-00 are 23-bit
fraction)

» how to interpret each field

28/1

