The Subject of this Class

0
The Subjects of this Class

0 1
Engineering Works Because of Abstraction

Application Software
Operating Systems
Architecture
Micro-Architecture
Logic
Digital Circuits
Analog Circuits
Devices
Physics
Engineering Works Because of Abstraction

Application Software

COMS 3157, 4156, et al.

Operating Systems

COMS W4118

Architecture

Second Half of 3827

Micro-Architecture

Second Half of 3827

Logic

First Half of 3827

Digital Circuits

First Half of 3827

Analog Circuits

ELEN 3331

Devices

ELEN 3106

Physics

ELEN 3106 et al.
Simple information processing system

Discrete Inputs → Discrete Information Processing System → Discrete Outputs

System State

First half of the course
Simple information processing system

First quarter of the course
Administrative Items

Mailing list: csee3827-staff@lists.cs.columbia.edu
http://www.cs.columbia.edu/~martha/courses/3827/au13/

Prof. Martha A. Kim
martha@cs.columbia.edu
469 Computer Science Building

Lectures 10:10–11:25 AM Tue, Thur
209 Havemeyer
Sep 3–Dec 5
Holidays: Nov 5 (Election Day), Nov 28 (Thanksgiving)
Assignments and Grading

<table>
<thead>
<tr>
<th>Weight</th>
<th>What</th>
<th>When</th>
</tr>
</thead>
<tbody>
<tr>
<td>40%</td>
<td>Six homeworks</td>
<td>See Webpage</td>
</tr>
<tr>
<td>30%</td>
<td>Midterm exam</td>
<td>(Tentatively) October 15th</td>
</tr>
<tr>
<td>30%</td>
<td>Final exam</td>
<td>During Finals Week (Dec 13–20)</td>
</tr>
</tbody>
</table>

Homework is due at the beginning of lecture.

We will drop the lowest of your six homework scores; you can:

- skip
- omit
- forget
- ignore
- blow off
- screw up
- feed to dog
- flake out on
- sleep through

one with no penalty.
Rules and Regulations

You may collaborate with classmates on homework.

Each assignment turned in must be unique; work must ultimately be your own.

List your collaborators on your homework.

Do not cheat.

Tests will be closed-book with a one-page “cheat sheet” of your own devising.
The Text(s): Alternative #1

No required text. There are two recommended alternatives.

- David Harris and Sarah Harris. *Digital Design and Computer Architecture*.

Almost precisely right for the scope of this class: digital logic and computer architecture.
The Text(s): Alternative #2

Registration and Wait List

This class is currently full.

If we can secure a larger lecture hall, we will increase cap.

The course has a waitlist: https://docs.google.com/forms/d/1GygsbDZvP64hAi0nNWYqBqeXIbS70CxMgROe5-5Y3q8/viewform

It is offered every semester.
There are only 10 types of people in the world: Those who understand binary and those who don't.
Which Numbering System Should We Use?
Some Older Choices:

Roman: I II III IV V VI VII VIII IX X

Mayan: base 20, Shell = 0

Babylonian: base 60
The Decimal Positional Numbering System

Ten figures: 0 1 2 3 4 5 6 7 8 9

\[7 \times 10^2 + 3 \times 10^1 + 0 \times 10^0 = 730_{10}\]

\[9 \times 10^2 + 9 \times 10^1 + 0 \times 10^0 = 990_{10}\]

Why base ten?
Hexadecimal, Decimal, Octal, and Binary

<table>
<thead>
<tr>
<th>Hex</th>
<th>Dec</th>
<th>Oct</th>
<th>Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>111</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>10</td>
<td>1000</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>11</td>
<td>1001</td>
</tr>
<tr>
<td>A</td>
<td>10</td>
<td>12</td>
<td>1010</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>13</td>
<td>1011</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>14</td>
<td>1100</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>15</td>
<td>1101</td>
</tr>
<tr>
<td>E</td>
<td>14</td>
<td>16</td>
<td>1110</td>
</tr>
<tr>
<td>F</td>
<td>15</td>
<td>17</td>
<td>1111</td>
</tr>
</tbody>
</table>
Binary and Octal

<table>
<thead>
<tr>
<th>Oct</th>
<th>Bin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>101</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
</tr>
</tbody>
</table>

DEC PDP-8/I, c. 1968

PC = $0 \times 2^{11} + 1 \times 2^{10} + 0 \times 2^9 + 1 \times 2^8 + 1 \times 2^7 + 0 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 1 \times 2^3 + 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0$

= $2 \times 8^3 + 6 \times 8^2 + 7 \times 8^1 + 5 \times 8^0$

= 1469_{10}
Hexadecimal Numbers

Base 16: 0 1 2 3 4 5 6 7 8 9 A B C D E F
Instead of groups of 3 bits (octal), Hex uses groups of 4.

\[
\text{CAFEOF00D}_{16} = 12 \times 16^7 + 10 \times 16^6 + 15 \times 16^5 + 14 \times 16^4 + 15 \times 16^3 + 0 \times 16^2 + 0 \times 16^1 + 13 \times 16^0
\]
\[
= 3,405,705,229_{10}
\]

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>A</th>
<th>F</th>
<th>E</th>
<th>F</th>
<th>0</th>
<th>0</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11001010101111111110111110000000001101</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
</tbody>
</table>
Computers Rarely Manipulate True Numbers

Infinite memory still very expensive

Finite-precision numbers typical

32-bit processor: naturally manipulates 32-bit numbers

64-bit processor: naturally manipulates 64-bit numbers

How many different numbers can you represent with 5

- binary
- octal
- decimal
- hexadecimal
digits?
Jargon

Bit Binary digit: 0 or 1

Byte Eight bits

Word Natural number of bits for the processor, e.g., 16, 32, 64

LSB Least Significant Bit ("rightmost")

MSB Most Significant Bit ("leftmost")
Decimal Addition Algorithm

\[
\begin{array}{c}
434 \\
+ 628 \\
\hline
1062
\end{array}
\]

\[
4 + 8 = 12
\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>
Decimal Addition Algorithm

\[
\begin{array}{c}
1 \\
434 \\
+628 \\
\hline
2
\end{array}
\]

\[
\begin{array}{c}
4 + 8 = 12 \\
1 + 3 + 2 = 6
\end{array}
\]
Decimal Addition Algorithm

\[
\begin{array}{c}
1 \\
434 \\
+628 \\
\hline
62
\end{array} \\
\]

\[
\begin{array}{c}
4 + 8 = 12 \\
1 + 3 + 2 = 6 \\
4 + 6 = 10
\end{array} \\
\]

\[
\begin{array}{c|cccccccccc}
+ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
3 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
4 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
6 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
7 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
8 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
9 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
10 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 \\
\end{array}
\]
Decimal Addition Algorithm

\[
\begin{array}{c}
11 \\
434 \\
+628 \\
\hline \\
062
\end{array}
\]

\[
\begin{array}{c}
4 + 8 = 12 \\
1 + 3 + 2 = 6 \\
4 + 6 = 10
\end{array}
\]

\[
\begin{array}{c|cccccccccc}
+ & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
0 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
1 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
2 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
3 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
4 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
5 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
6 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 \\
7 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \\
8 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 \\
9 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 \\
10 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19
\end{array}
\]
Decimal Addition Algorithm

\[
\begin{array}{c}
\begin{array}{c}
1 \quad 1 \\
434 \\
+628 \\
\hline
1062 \\
\end{array}
\end{array}
\]

\[
\begin{array}{c}
4 + 8 = 12 \\
1 + 3 + 2 = 6 \\
4 + 6 = 10 \\
\end{array}
\]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
</tbody>
</table>
Binary Addition Algorithm

\[
\begin{array}{c}
10011 \\
+11001 \\
\hline
10110
\end{array}
\]

\[1 + 1 = 10\]

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\]
Binary Addition Algorithm

\[
\begin{array}{c}
1 \\
\hline
10011 \\
+11001 \\
\hline
0
\end{array}
\]

\[
\begin{array}{c}
1 + 1 = 10 \\
1 + 1 + 0 = 10
\end{array}
\]

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\]
Binary Addition Algorithm

\[
\begin{array}{c}
10011 \\
+11001 \\
\hline
00
\end{array}
\]

\[
\begin{array}{c}
1 + 1 = 10 \\
1 + 1 + 0 = 10 \\
1 + 0 + 0 = 01 \\
\end{array}
\]

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11 \\
\end{array}
\]
Binary Addition Algorithm

\[\begin{array}{c}
011 \\
10011 \\
+11001 \\
\hline
100
\end{array} \]

\[+ \quad 0 \quad 1 \]

\[\begin{array}{c|cc}
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11 \\
\end{array} \]

\[\begin{align*}
1 + 1 &= 10 \\
1 + 1 + 0 &= 10 \\
1 + 0 + 0 &= 01 \\
0 + 0 + 1 &= 01
\end{align*} \]
Binary Addition Algorithm

\[
\begin{array}{c}
0011 \\
10011 \\
+11001 \\
\hline
1100 \\
\end{array}
\]

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11 \\
\end{array}
\]

\[
\begin{align*}
1 + 1 & = 10 \\
1 + 1 + 0 & = 10 \\
1 + 0 + 0 & = 01 \\
0 + 0 + 1 & = 01 \\
0 + 1 + 1 & = 10 \\
\end{align*}
\]
Binary Addition Algorithm

\[
\begin{array}{c}
10011 \\
+11001 \\
\hline
101100
\end{array}
\]

\[
\begin{array}{c|c}
+ & 0 & 1 \\
0 & 00 & 01 \\
1 & 01 & 10 \\
10 & 10 & 11
\end{array}
\]

- \(1 + 1 = 10\)
- \(1 + 1 + 0 = 10\)
- \(1 + 0 + 0 = 01\)
- \(0 + 0 + 1 = 01\)
- \(0 + 1 + 1 = 10\)
Signed Numbers: Dealing with Negativity

How should both positive and negative numbers be represented?
Signed Magnitude Numbers

You are most familiar with this: negative numbers have a leading −

In binary, a leading 1 means negative:

$0000_2 = 0$
$0010_2 = 2$
$1010_2 = -2$
$1111_2 = -7$
$1000_2 = -0?$

Can be made to work, but addition is annoying:

If the signs match, add the magnitudes and use the same sign.

If the signs differ, subtract the smaller number from the larger; return the sign of the larger.
One’s Complement Numbers

Like Signed Magnitude, a leading 1 indicates a negative One’s Complement number.

To negate a number, complement (flip) each bit.

\[
\begin{align*}
0000_2 &= 0 \\
0010_2 &= 2 \\
1101_2 &= -2 \\
1000_2 &= -7 \\
1111_2 &= -0?
\end{align*}
\]

Addition is nicer: just add the one’s complement numbers as if they were normal binary.

Really annoying having a -0: two numbers are equal if their bits are the same or if one is 0 and the other is -0.
NOT ALL ZEROS ARE CREATED EQUAL

ZERO CALORIES. MAXIMUM PEPSI TASTE.
Two’s Complement Numbers

Really neat trick: make the most significant bit represent a negative number instead of positive:

\[1101_2 = -8 + 4 + 1 = -3\]
\[1111_2 = -8 + 4 + 2 + 1 = -1\]
\[0111_2 = 4 + 2 + 1 = 7\]
\[1000_2 = -8\]

Easy addition: just add in binary and discard any carry.

Negation: complement each bit (as in one’s complement) then add 1.

Very good property: no \(-0\)

Two’s complement numbers are equal if all their bits are the same.
Number Representations Compared

<table>
<thead>
<tr>
<th>Bits</th>
<th>Binary</th>
<th>Signed Mag.</th>
<th>One’s Comp.</th>
<th>Two’s Comp.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0001</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0111</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>1000</td>
<td>8</td>
<td>–0</td>
<td>–7</td>
<td>–8</td>
</tr>
<tr>
<td>1001</td>
<td>9</td>
<td>–1</td>
<td>–6</td>
<td>–7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1110</td>
<td>14</td>
<td>–6</td>
<td>–1</td>
<td>–2</td>
</tr>
<tr>
<td>1111</td>
<td>15</td>
<td>–7</td>
<td>–0</td>
<td>–1</td>
</tr>
</tbody>
</table>

Smallest number

Largest number
How to represent fractional numbers? In decimal, we continue with negative powers of 10:

\[31.4159 = 3 \times 10^1 + 1 \times 10^0 + 4 \times 10^{-1} + 1 \times 10^{-2} + 5 \times 10^{-3} + 9 \times 10^{-4} \]

The same trick works in binary:

\[1011.0110_2 = 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3} + 0 \times 2^{-4} = 8 + 2 + 1 + 0.25 + 0.125 = 11.375 \]
Need a bigger range? Try Floating Point Representation.

Floating point can represent very large numbers in a compact way.

A lot like scientific notation, -7.776×10^3, where you have the mantissa (-7.776) and exponent (3).

But for this course, think in binary: $-1.10x2^{0111}$

The bits of a 32-bit word are separated into fields. The IEEE 754 standard specifies

- which bits represent which fields (bit 31 is sign, bits 30-23 are 8-bit exponent, bits 22-00 are 23-bit fraction)
- how to interpret each field