CSEE W3827 Fundamentals of Computer Systems Homework Assignment 2

Prof. Martha A. Kim

Columbia University

Due October 1, 2013 at 10:10 AM

Write your name and UNI on your solutions

Show your work for each problem; we are more interested in how you get the answer than whether you get the right answer.

1.	(10 pts.) Show OR4 gate.	how to build a	ı 2:1 MUX usinç	g just a 3:8 DEC	and an
2.	(10 pts.) Show	how to build a	n AND2 using	a single 2:1 MU	X.

- 3. (20 pts.) Build an INTERLACER module that takes two 4-bit data inputs $(A_3...A_0$ and $B_3...B_0)$ and a select input (S). This module should produce a single 8-bit data output $(C_7...C_0)$ that interleaves the bits of A and B as follows:
 - If S = 0, $C_7...C_0 = A_3B_3...A_0B_0$
 - If S = 1, $C_7...C_0 = B_3A_3...B_0A_0$

4. (20 pts.) Complete the priority encoder below by giving expressions for EN_3 , EN_2 , EN_1 and EN_0 .

5. (40 pts.) For this problem you will build and compare four different circuits to implement *F* using the components listed.

Α	В	С	D	F
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	0
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	0

(b) Draw a schematic for F using only an 4:1 MUX, 2 INV, and 1 AND2.

(c) Draw a schematic for F using only: 1 2:1 MUX, 3 INV, 1 AND3, 2 AND2, and 2 OR2.

(d) Draw a schematic for F using only: 4 INV, 1 AND4, 1 AND3, 1 AND2, 1 OR3.

(e) Compare the area and delay of the designs from parts (a) - (d) by populating the table below:

Design	Area	Crit. Path
(a)		
(b)		
(c)		
(d)		