
The Zodiac Policy Subsystem: a Policy-Based Management System for a
High-Security MANET

Yuu-Heng Cheng∗, Mariana Raykova†, Alex Poylisher∗, Scott Alexander∗, Martin Eiger∗ and Steve M. Bellovin†
∗
Telcordia Technologies

{yhcheng,sher,salex,mie}@research.telcordia.com
†
Columbia University

{mariana,smb}@cs.columbia.edu

Abstract—Zodiac (Zero Outage Dynamic Intrinsically As-
surable Communities) is an implementation of a high-security
MANET, resistant to multiple types of attacks, including
Byzantine faults. The Zodiac architecture poses a set of unique
system security, performance, and usability requirements to
its policy-based management system (PBMS). In this paper,
we identify theses requirements, and present the design and
implementation of the Zodiac Policy Subsystem (ZPS), which
allows administrators to securely specify, distribute and evalu-
ate network control and system security policies to customize
Zodiac behaviors. ZPS uses the Keynote language for specifying
all authorization policies with simple extension to support
obligation policies.

Keywords-policy-based management; MANET; computer
network security;

I. INTRODUCTION

With the development of increasingly complex systems,
policies are widely adopted to allow users to customize
and automate functional behaviors without the need for
rebuilding or restarting a system. Existing policy-based man-
agement systems (PBMS) define customization for access
control, obligated behavior for automation, etc., but do not
address architecture security. Some existing policy systems
are defined with centralized policy control where security
is provided by the network transport authentication process,
though some may utilize authentication information as part
of the policy condition.

In this paper, we describe the Zodiac Policy Subsystem
(ZPS) which supports the above policy types and operates
within a distributed environment designed to heighten secu-
rity in networks including MANETs.

In Section II, we describe the architecture of Zodiac
and the requirements of a policy-based management for
Zodiac. In Sections III, we describe the architecture and
ongoing implementation of the Zodiac Policy Subsystem
(ZPS). Section IV summarizes the problems addressed by
the current design and indicates the directions of future
work.

This material is based upon work supported by the Defense Advanced
Research Projects Agency and Space and Naval Warfare Center, San Diego,
under Contract No. N66001-08-C-2012.

The main contributions of this paper are:
• identification of the security, performance and usability

requirements of PBMS for high-security MANETs;
• description of major architectural and design solutions

to meet most requirements; and
• description of selected aspects of the implementation.
A full version of this paper is in [1].

II. THE ZODIAC HIGH-SECURITY MANET

The DARPA Intrinsically Assurable MANET (IA-
MANET) program aims to develop a “clean-slate” approach
to mobile ad hoc networking emphasizing security. The
approach must support network information integrity, avail-
ability, reliability, confidentiality, and safety. The network
should enforce authentication and authorization of all actions
with deny by default, resistance to Byzantine faults and
insider threats, and define a selected set of functionality
implemented in trusted hardware.

A. Zodiac

Zodiac (Zero Outage Dynamic Intrinsically Assurable
Communities) is our solution that addresses the IAMANET
requirements. Zodiac is based on a novel security and
communication building block, the Dynamic Community of
Interest (DCoI). A DCoI is a dynamic group of networked
nodes running an instance of a distributed application or a
supporting service. The Zodiac architecture is more fully
described in [2]. However, a few concepts are important to
understanding the relationship of ZPS to the rest of Zodiac.

DCoIs are implemented as virtual machine containers
within a node. This design limits the effect of a successful
attack within one DCoI as resources are allocated per con-
tainer and processes have no direct access to the processes
or files and data outside of their container.

The communication between Zodiac nodes within a DCoI
is protected by its encryption, authentication and authoriza-
tion mechanisms. A node ignores communications which it
is not a member of. The encryption and memebership is
managed by the Group and Cryptographic Services (GCS)
subsystem in each DCoI.

B. Zodiac Policy Requirements

The Zodiac requirements lead to a unique set of re-
quirements for ZPS. Computational (CPU, memory) and
communication resources in Zodiac can be very limited.
Thus, ZPS’s processing footprint must be small, and policies
themselves must be encodable in concise form. The ZPS user
interface (UI) needs to allow administrators to create/update
policies under stress. Apart from UI design, this necessitates
a highly usable policy language.

In addressing Byzantine attacks, it is very undesirable
to allow a management system on a compromised node to
execute operations on a remote node. Each node must have
the authority and responsibility to enforce policy to protect
itself and the network.

In a permit-all, explicit-deny authorization scheme, only
the known operations can be denied, so the set of permitted
operations is unknown, which opens attack possibilities.
Conversely, in a deny-all, explicit-permit scheme one can
permit the exact minimal set of operations necessary. Addi-
tionally, unanticipated actions are denied, thus avoiding the
issue that unanalyzed actions may result in security holes in
the system. This is basic rationale for a deny-all scheme in
a secure environment.

It is important to authenticate the author of a policy
because only an explicit set of users are trusted to create
policies. In policy distribution individual policies must not
be corrupted and be up-to-date. The set of policies enforced
in all containers of the same DCoI must be identical and self-
consistent. This comprises the policy integrity requirements.
Moreover, policy distribution should only occur within
DCoIs in order to minimize the opportunity for exfiltration
and must be timely to enable effective enforcement.

ZPS additionally relies upon other Zodiac subsystems
for its own operation. For example, ZPS relies on GCS to
provide keys for policy signing and verification.

III. ZPS DESIGN AND IMPLEMENTATION

We have designed ZPS to address the requirements above.
In this section, we describe the design decisions in de-
tail, including the types of policies supported, architec-
ture, components, mechanisms for policy integrity protection
and distribution, policy language modifications, and conflict
analysis.

A. ZPS Architecture

ZPS is a fully decentralized policy system. Each ZPS in-
stance evaluates its own set of policies and makes decisions
to control the managed components, within a container. The
only communication over the network is the policy contents.
An alternative solution is to dispatch policy decisions from
one or several locations over the network. For Zodiac, a fully
decentralized solution is preferred as:

• policy contents do not change nearly as frequently as
policy decision results,

• low network latency is far less critical for policy
contents as it is for policy decisions, and

• it is easier to support need-to-know policy evaluation
and Byzantine fault tolerance.

Policy content is, of course, sensitive on its own. Knowing
the access control policies, for example, may reveal the
usage of a DCoI. Because of this sensitivity, we not only
protect policies in transit, but also ensure that even if our
protections fail, the set of policies to which an attacker has
access is minimized.

As described above, each DCoI is instantiated inside of a
container. ZPS is duplicated in each container as in Figure 1.
This design reduces the ability of an attacker both to inspect
policies from other containers and to affect the behavior
of containers other than the one to which she has gained
control.

Zodiac Node

Infrastructure

Container B

Stack/

Service

ZPS

ZPS

…

Container A

Stack/

Service

ZPS

Shared

Policy Container

ZPS

Figure 1: Components within a Zodiac node

The ZPS instances that reside in a container, the shared
policy container, and Infrastructure evalutates policies for the
DCOI, shared DCOI resources, and the node respectively.

Communications between ZPS instances are constrained
to occur along the paths created and enforced by Infras-
tructure. This helps reduce the opportunity for unauthorized
access to policy information.

B. ZPS Components

Figure 2 shows the ZPS components and their relation-
ships with other Zodiac subsystems within a container. The
policy management components (collectively is the ZPS)
contain the logic to control the policy-managed compo-

nents (Zodiac stack and services). Each policy-managed
components implements the PEP (policy enforcement point)
that enforces the operations imparted by the ZPS. These
operations were carefully determined in the Countermeasure
Characterizations (CMC) analysis.

The PDP manages the Zodiac system by reacting to re-
quests and events from other subsystems, evaluating match-
ing policies and directly invoking PEP operations. The
requests include authorization and configuration requests.
Services that started later than the ZPS can acquire its
settings via a configuration request.

Events are defined to provide situation awareness for the
Zodiac system. They serve as feedback information to the

Policy management components

Policy
User Interface

Conflict
Detection Point

Policy
Distribution
Interface

Policy

Respository

Policy
Decision

Point (PDP)

policy mgmt
ops remotely defined

policies
ops

policies

active
policies

d
is

trib
u

te
d

 e
v
e

n
t b

u
s

external
events

events

Transport

Infrastructure

Routing

QoS

Zodiac stack

Naming

Host
Services

Group
Services

Zodiac services

events

events

PEP
PEP

PEP

PEP

PEP

PEP

PEP

policy
requests

policy
actions/

responses

Policy-managed components

Figure 2: ZPS components within a container

PDP. The usage of the events needs to be carefully designed.
Carelessly designed events can cause system instability.
For example, if an event causes the system to publish the
same event, the system will be trapped in an endless loop.
Currently ZPS only recognizes the event that identifies the
current information operations conditions (INFOCON). We
specify obligation policies to apply different communication
mechanism for the DCoI based on different INFOCON level.

Policies can be input into ZPS from either the Policy User

Interface or Policy Distribution Interface. All policies are
stored in the Policy Repository after the Conflict Detection
Point ensures that the policies are conflict-free.

C. ZPS Policies

ZPS supports both authorization and obligation policies.
Because of the default deny-all authorization requirement,
only positive authorization is supported. Policies are further
categorized into DCoI policies, shared resource policies, and
node policies. The category is predetermined and orthogonal
to the authorization/obligation categorization. Besides the
information assurance benefits, the categorization also helps
us determine the conflict domains of the different policies.

All policies are signed directly or indirectly by a trusted
entity to ensure policy integrity and allow traceability. Only
the policies issued by a trusted entity are accepted by ZPS.
We assume that the trusted entity creates policies that follow
the operational intent. Some operator errors are prevented by
policy conflict detection. The validity of both the signature
and the signer’s privilege is verified upon each policy request
since trusted entities may change over time (due to change of
roles for adversary action, e.g., node capture). The former
check relies on the existing encoding algorithms, and the
latter check is implemented using a certificate revocation list.
ZPS relies on GCS to perform these operations as part of its
responsibility for all the cryptographic and key management
in Zodiac.

For a system with a significant number of policies, veri-
fying the policy signature for each policy upon each request
may not be efficient. The policy evaluation performance may
be optimized by removing policies with invalid signatures
before storing the policy or upon revoking a certificate.

D. Policy Distribution

After initial network deployment, administrators may need
to create a new policy or modify/remove an existing one. A
modified policy set then needs to be distributed to all nodes
belonging to the same DCoI. Since MANET connectivity
can be unstable, the distribution mechanism should be able
to handle intermittent connections.

When a node is temporarily out of reach, that node should
obtain the modified policy set when connectivity is resumed.
ZPS uses the reliable transport services provided by Zodiac
to ensure that a policy set is correctly delivered once it is
determined that distribution is required.

Since ZPS manages Zodiac based on the content of the
policies, the policy set for a DCoI needs to be consistently
duplicated among all DCoI members. Thus, policy distri-
bution needs to be integrated with the group membership
maintenance, i.e., GCS. When a node joins a DCoI, GCS
notifies ZPS to distribute the policy set to the new node after
a successful security protocol exchange. When a node leaves
the DCoI, the ZPS in that node will remove all policies as
the container is also destroyed.

During the lifetime of a DCoI, policy updates are dis-
tributed via multicast to all members with simple syn-
chronization mechanisms for tolerating unstable network
connectivity. In a future implementation, we also plan to
re-key when policy distribution occurs. In order to get the
new key, a node must have a copy of the current policy
set. Currently, Zodiac statically positions policies with the
correct signatures.

E. ZPS Policy Language

Three existing policy languages that we considered are
Keynote, Ponder1 and XACML. Although all provided the
basic functionality for the policy subsystem modulo some
extensions, we considered Keynote the best fit, based on
the consideration of readability, policy size, code size, and
security features.

Keynote offers an evaluation environment where the de-
fault state is denial and policies specify the authorizations
and actions allowed in the system. We extended Keynote
to allow specification of obligation policies. Based on the
occurrence of particular events, policy evaluation returns
corresponding multi-dimensional vectors containing speci-
fications for configuration parameter changes or actions that
need to be executed by PEPs.

Though the Keynote language supports any combination
of conditions, a potential security concern is using the negate
operation (syntactically, ’!’) in conditions. This is because

ZPS policies are permissive, i.e., specify only the outcome or
the operations permitted. Unexpected outcomes and declined
operations are simply not mentioned in the policies. For
example, the condition for track in the policy of Listing
1 is permitting “not purple” to join. In a system with
only “blue” and “purple” tracks, this makes no difference.
However, when a new track, say “red”, is introduced, the
policy implicitly permits both the “red” and “blue” tracks to
join the DCOI, which is potentially undesirable.

Listing 1: Example of negate condition
1. . .

C o n d i t i o n s : (t r a c k != ” p u r p l e ”) &&
3(r e q u e s t == ” j o i n ”) −> ” t r u e ” ;

. . .

Though we make negative conditions in Keynote a syntax
error, from a usability perspective, a better UI would not
allow this altogether.

F. Policy Conflicts

The first important point when considering policy conflicts
is that we are dealing only with positive authorization
policies. This alone eliminates the conflicts between negative
and positive authorization policies, but does not resolve all
possible conflicts.

The simplest conflict type is having different policy deci-
sions for the same attribute in different policies (syntax-level
conflict). This can result from policy definitions/updates
coming from different sources.

Another conflict type that goes beyond the syntax is
the use of overlapping attribute domains, especially for
authorization policies. For example, two policies are given
for a company which has two units and several departments
in each unit. The first policy states that unit A is allowed
to access only floors in building B, and the second states
that department Y is allowed to access floor 3 of any
building. Department Y is in unit A. This conflict type
can be detected when the PBMS has the knowledge of
the organizational structure and building/floor containment
(attribute relationships).

The policies in ZPS specify actions allowed in the man-
aged system under certain conditions or the configuration pa-
rameters. However, some combinations of conditions and/or
parameter values may not be allowed because they do not
conform to the desired behavior of Zodiac components. For
example, setting a flooding degree for routing to 7 for a
DCoI that has only 6 potential members. We call these in-
compatible combinations of policy interdependencies. They
represent a conflict both when they exist in the same policy
and when defined across policies with overlapping domains.

IV. CONCLUSION AND FUTURE WORK

A high-security MANET poses several new challenges for
the design of its PBMS, some of which have been addressed
in the presented ZPS design as summarized next. It is likely
that some solutions that fit the security-related requirements

of ZPS are applicable to other network environments, e.g.
wireline networks.

• Authentication and Authorization: ZPS uses node cer-
tificates to build a chain of trust to acquire credentials
and authorizations (e.g., DCoI membership) and to
provide an identity to its peers for policy enforcement.

• Integrity: Policy integrity in transit is enforced via sig-
natures from authorized entities. PDP decision integrity
is enforced by considering only authenticated policies
and by placement of PDPs locally rather than across
the network.

• Confidentiality: Confidentiality requires that policy con-
tent is known only by the creator and the intended
receiver(s). Besides traffic encryption for policy distri-
bution, each DCoI container has its own PBMS instance
to process policy information.

• Availability: MANET link layer communication can be
highly unreliable. As policies need to be distributed
to all nodes in a DCoI, ZPS uses appropriate reliable
protocols (unicast or multicast). Though ZPS denies all
operations by default, bootstrap processes are permitted
to ensure the ability to setup initial communication
between nodes.

Deconfliction for DCoI policies that concern shared re-
sources within in a node and the security requirements for
information exfiltration is an ongoing effort. Additional work
is planned on the automated suggestion of potential conflict
resolutions to policy creators, an intuitive UI, and further
updates to the Keynote language and its PDP.

In the near future, we plan to determine how to leverage
the Zodiac secure transport mechanisms to distribute poli-
cies without creating circular dependencies where transport
depends on a policy about what policies can be distributed.

REFERENCES

[1] Y.-H. Cheng, S. Alexander, A. Poylisher, M. Raykova, and
S. M. Bellovin, “The Zodiac Policy Subsystem: a Policy-Based
Management System for a High-Security MANET,” Columbia
University - Computer Science Department, Tech. Rep. cucs-
023-09, May 2009.

[2] S. Alexander, B. DeCleene, J. Rogers, and P. Sholander, “Re-
quirements and architectures for intrinsically assurable mobile
ad hoc networks,” in Military Communications Conference,

2008. MILCOM 2008. IEEE, 2008.

