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Abstract

We present a general-purpose protocol that enables a client to delegate the computation of any
function to a cluster of n machines in such a way that no adversary that corrupts at most n − 1
machines can recover any information about the client’s input or output. The protocol makes black-box
use of multi-party computation (MPC) and secret sharing and inherits the security properties of the
underlying MPC protocol (i.e., passive vs. adaptive security and security in the presence of a semi-honest
vs. malicious adversary).

Using this protocol, a client can securely delegate any computation to a multi-tenant cloud so long as
the adversary is not co-located on at least one machine in the cloud. Alternatively, a client can use our
protocol to securely delegate its computation to multiple multi-tenant clouds so long as the adversary
is not co-located on at least one machine in one of the clouds.

1 Introduction

Cloud infrastructures can be roughly categorized as either public or private. In a public cloud, the in-
frastructure is owned and managed by a cloud provider and made available “as a service” to clients. The
benefits of using a public cloud infrastructure include reliability, elasticity (i.e., computational resources
can be increased quickly) and cost-savings. There are several reasons public clouds are so cost-effective
but the most important one is the use of multi-tenancy, i.e., multi-plexing the virtual machines (VM) of
several clients on the same physical machine.

Multi-tenancy, however, introduces a number security concerns since a client cannot control which
virtual machines are co-located on the same physical machine. The security concerns over multi-tenancy
are often cited as the main hurdle to the adoption of cloud computing and, in fact, recent work has shown
that it is possible for an adversary to map the infrastructure of a cloud co-locate an adversarial VM on the
same physical machine [?]. So far, the approaches considered to alleviate these concerns include improving
the isolation of VMs through the hypervisor and, as proposed in [?], offering clients (at extra cost) the
option of running their VMs on a single-tenant machine.

In this work, we propose a cryptographic approach to the problem. We present a protocol for delegated
computation that executes a client’s computation on several physical machines and guarantees the confi-
dentiality of the client’s input and output as long as at least one of the physical machines is not running
an adversarial VM. If the physical machines used are in different clouds, then the protocols will provide
security as long as one machine in one of the clouds is not running an adversarial VM.

∗Work done while interning at Microsoft Research.
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2 Definitions

Notation. We write x← χ to represent an element x being sampled from a distribution χ, and x
$← X

to represent an element x being sampled uniformly from a set X. The output x of an algorithm A is
denoted by x← A. We refer to the ith element of a vector v as either vi or v[i]. Throughout k will refer
to the security parameter. A function ν : N→ N is negligible in k if for every positive polynomial p(·) and
sufficiently large k, ν(k) < 1/p(k). Let poly(k) and negl(k) denote unspecified polynomial and negligible
functions in k, respectively. We write f(k) = poly(k) to mean that there exists a polynomial p(·) such that
for all sufficiently large k, f(k) ≤ p(k), and f(k) = negl(k) to mean that there exists a negligible function
ν(·) such that for all sufficiently large k, f(k) ≤ ν(k).

Multi-party functionalities. An n-party randomized functionality is a function f : N × ({0, 1}∗)n ×
{0, 1}∗ → {0, 1}∗, where the first input is the security parameter k, the second input is a vector of strings
x, the third input is a set of random coins and the output is a vector of strings. In the context of MPC,

each party Pi holds an input xi and wants to receive output yi, where y ← f(k,x; r) for r
$← {0, 1}poly(k).

Throughout this work, we will omit the security parameter and the coins and simply write y ← f(x). A
functionality is deterministic if it only takes the security parameter and the strings x as inputs and it is
symmetric if all parties receive the same output. It is known that any protocol for securely computing
deterministic functionalities can be used to securely compute randomized functionalities (cf. [?] Section
7.3) so in this work we focus on the former.

Secret sharing. A threshold secret sharing scheme consists of two polynomial-time algorithms Σ =
(Share,Recover) such that Share takes as input a secret x from some input space, a number of shares n ∈ N
and a threshold t < n and outputs n shares (x1, . . . , xn); and Recover takes as input a set of t shares and
outputs a secret x. Σ is correct if Recover returns x when it is given any subset of t shares of x. It is hiding
if, given any q < t shares, no adversary can learn any partial information about the secret x. The hiding
property is formalized by requiring that there exist a simulator S such that for all secrets x in the input
space, for all n = poly(k) and all t ≤ n, S can generate n shares that are indistinguishable from “real”
shares, i.e., generated using Share.

2.1 Secure Multi-Party Computation

In this section we present the standard ideal/real-world security definition for MPC [?], which compares
the real-world execution of a protocol for computing an n-party function f to the ideal-world evaluation
of f by a trusted party.

In MPC dishonest players are modeled by a single adversary that is allowed to corrupt a subset of the
parties. This “monolithic” adversary captures the possibility of collusion between the cheating parties.
One typically distinguishes between passive corruptions, where the adversary only learns the state of
the corrupted parties; and active corruptions where the adversary completely controls the party and, in
particular, is not assumed to follow the protocol. Another distinction can be made as to how the adversary
chooses which parties to corrupt. If the adversary must decide this before the execution of the protocol then
we say that the adversary is static. On the other hand, if the adversary can decide during the execution
of the protocol then we say that the adversary is adaptive.

In the setting of MPC with dishonest majorities and a malicious adversary, certain adversarial behavior
cannot be prevented. In particular, dishonest workers can choose not to participate in the computation,
can compute on arbitrary inputs, or abort the computation prematurely. As such we only consider security
with abort.
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Real-world. At the beginning of the real-world execution each player Pi receives its input xi, while the
adversary A receives a set I ⊂ [n] of corrupted parties if he is static and receives the security parameter
if he is dynamic. The real execution of Π between the players P = (P1, . . . , Pn) and the adversary A,
denoted realmpc

Π,A,I(k,x), consists of the outputs of the honest players and the outputs of A (which can be
arbitrary functions of their views).

Ideal-world. In the ideal execution the parties interact with a trusted third party that evaluates f . As
in the real-world execution, the ideal-world execution begins with each player receiving its input xi and
the adversary receiving the set of corrupted parties I. The honest parties send their input xi to the trusted
party while the corrupted parties send values xi if A is semi-honest and arbitrary values x′i if A is malicious.

Output delivery works as follows. If any party sends ⊥, the trusted party aborts the execution and
returns ⊥ to all parties. Otherwise, it computes y ← f(x) and sends {yi}i∈I to the adversary. The
adversary can then decide to abort or continue the execution. If A chooses to abort, the trusted party
sends ⊥ to all the honest parties. If the adversary chooses to continue, the trusted party sends yi to honest
party Pi.

The ideal evaluation of f between players P = (P1, . . . , Pn) and adversary A, denoted idealmpc
f,A,I(k,x),

consists of the outputs of the honest players and the outputs of A (which can be arbitrary functions of
their views).

Security. Roughly speaking, a protocol Π that implements a function f is considered secure if it emulates,
in the real-world, an evaluation of f in the ideal-world. This is formalized by requiring that any real-world
adversary A can be simulated in the ideal-world evaluation.

Definition 2.1 (Security). Let f be an n-party functionality and Π be a protocol. We say that Π t-securely
computes f if for all ppt adversaries A, there exists a ppt simulator S such that for all I ⊂ [n] such that
|I| ≤ t, {

realmpc
Π,A,I

(
k,x

)}
k∈N,x∈{0,1}∗

c
≈

{
idealmpc

f,S,I,L(k,x
)}

k∈N,x∈{0,1}∗
.

If A is dynamic then it receives 1k as input and chooses I during the execution.

2.2 Secure Delegated Computation

Secure delegation of computation allows a client to securely outsource the evaluation of a function f on a
private input x to an untrusted cluster of workers. Roughly speaking, a secure delegation scheme should
guarantee that (1) the workers will not learn any partial information about the client’s input and output;
and (2) that the function is computed correctly.

We formally capture these requirements in the ideal/real-world paradigm. Our definition is similar to
the model for MPC with the exception that only one party (i.e., the client) provides inputs and receives
outputs from the computation and that the adversary cannot corrupt the client. For completeness, we
formally describe the model here.

Real-world. At the beginning of the real-world execution the client receives its input x while the workers
have no input. If the adversary is static, it receives a set I ⊂ [n] (where |I| ≤ t) that designates the
corrupted workers. If, on the other hand, A is dynamic then it will choose which workers to corrupt during
the execution of the protocol. The real execution of Π between the client, the workers and the adversary
A is denoted realdelΠ,A,I(k, x) and consists of the output of the client, the honest workers and A (which can
be an arbitrary function of its view).
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Ideal-world. In the ideal execution the parties interact with a trusted third party that evaluates the
function f . As in the real-world execution, the ideal-world execution begins with the client receiving its
input x. Again the workers receive no input. If the adversary is static, it receives a set I ⊂ [n] (where
|I| ≤ t) that designates the corrupted machines, whereas if it is dynamic it chooses its corruptions during
the execution.

The client sends its input x to the trusted party. If the adversary is malicious, the trusted party also
asks A if it wishes to abort the computation. If so, the trusted party returns ⊥ to the client and halts. If
not, it computes and returns y ← f(x) to the client.

The ideal evaluation of f between the client, the workers and the adversary, denoted idealdelf,A,I(k,x),
consists of the outputs of the client, the honest workers and A (which can be arbitrary functions of their
views).

Security. Roughly speaking, a delegation protocol Ω for a function f is considered secure if it emulates,
in the real-world, an evaluation of f in the ideal-world. This is formalized by requiring that any real-world
adversary A can be simulated in the ideal-world evaluation.

Definition 2.2 (Secure delegation). Let f be a function and Ω be a delegation protocol. We say that Ω
t-securely computes f if for all ppt adversaries A, there exists a ppt simulator S such that for all I ⊆ [n]
such that |I| ≤ t, {

realdelΩ,A,I
(
k, x

)}
k∈N,x∈{0,1}∗

c
≈

{
idealdelf,S,I

(
k, x

)}
k∈N,x∈{0,1}∗

.

3 A General-Purpose Protocol

We now present a protocol Ω for secure delegation to a multi-tenant cloud. The protocol makes use of
a MPC protocol Π and a secret sharing scheme Σ = (Share,Recover) and works as follows. The input x
is first split into shares (x1, . . . , xn) and each share is sent to a worker. The workers then execute Π to
securely evaluate a functionality f ′ defined as follows:

f ′
(
(x1, r1), . . . , (xn, rn)

)
= Share

(
f
(
Recover(x1, . . . , xn)

)
, n; r1 ⊕ · · · ⊕ rn

)
.

The execution of Π will result with the workers each receiving a share of the output y = f(x). After
receiving these shares, the workers send them to the client who proceeds to recover the output y.

Intuitively, as long as at least one worker is honest, the adversary will not learn any information about
either the input or the output of the client. The confidentiality of the input follows from the security of Π
which guarantee that the corrupted workers will not learn any information about the honest workers’ first
inputs (i.e., their share of x) and from the security of Σ which guarantees that as long as at least one share
is unknown to the adversary no information can be recovered about the secret (i.e., x). The confidentiality
of the output follows from the security of Σ which guarantees that if at least one share remains unknown
to the adversary then no information can be recovered about the output. This last property, however, only
holds if the randomness used to generate the shares is uniform but this is guaranteed to hold if at least
one worker is honest since r1 ⊕ · · · ⊕ rn is uniformly distributed as long as at least one ri is.

We formalize this intuition in the following theorem whose proof will appear in the full version. Note
that Ω inherits the security properties of the underlying MPC protocol but we only show it for security
against adaptive and malicious adversaries.

Theorem 3.1. If Π is t-secure against an adaptive and malicious adversary and Σ is a secure secret
sharing scheme, then Ω, as described above, is secure against an adaptive and malicious adversary that
corrupts at most t workers.
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