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ABSTRACT
Encrypted search — performing queries on protected data — has
been explored in the past; however, its inherent inefficiency has
raised questions of practicality. Here, we focus on improving
the performance and extending its functionality enough to make
it practical. We do this by optimizing the system, and by stepping
back from the goal of achieving maximal privacy guarantees in an
encrypted search scenario and consider efficiency and functionality
as priorities.

We design and analyze the privacy implications of two prac-
tical extensions applicable to any keyword-based private search
system. We evaluate their efficiency by building them on top
of a private search system, called SADS. Additionally, we im-
prove SADS’ performance, privacy guaranties and functionality.
The extended SADS system offers improved efficiency parameters
that meet practical usability requirements in a relaxed adversarial
model. We present the experimental results and evaluate the per-
formance of the system. We also demonstrate analytically that our
scheme can meet the basic needs of a major hospital complex’s ad-
missions records. Overall, we achieve performance comparable to
a simply configured MySQL database system.

1. INTRODUCTION
Encrypted search — querying of protected data — has come into

the foreground with growing concerns about security and privacy.
There are many variants of the problem that protect different things:
the searchable data, queries, participant identities, etc. Existing
schemes also differ in their expected operational environment. The
majority of encrypted search mechanisms concern data outsourc-
ing [4–6,8,13,33,34] and to a lesser degree data sharing [9,17,30].
Data outsourcing concerns the case where one party wants to store
its encrypted data on an untrusted server and be able to search it
later. Data sharing involves one party who provides limited search
access to its database to another. These two settings require dif-
ferent privacy guarantees of an encrypted search system; data out-
sourcing is not concerned with protecting the data from the querier,
since he is the owner. Furthermore, specific implementations may
return different things (e.g., number of matches, document identi-
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fiers, related content, etc.) or may differ in number of participants,
trust assumptions, anonymity requirements, revocation of search
capability and other areas. All of these factors affect performance.
Choosing a different definition of “sufficient” privacy can greatly
affect inherent cost. Making the right choice, in accordance with
the actual, rather than theoretical, threat model can lead to a very
functional system, rather than one that is theoretically perfect but
unusably costly in practice.

In this paper we step back from absolute privacy guarantees in fa-
vor of efficiency and real-world requirements. These requirements
include not just what may leak, but to whom; depending on the
particular practical setting there may be parties who are at least
partially trusted. Our goal is to describe and build systems that
meet the privacy guarantees matching the actual goals for a given
scenario, so that we may improve efficiency. Towards this end,
we present a set of generic extensions, applicable to any keyword-
based private search system. We discuss the importance of each of
these, the challenges for their secure implementation and analyze
their privacy implications in terms of leakage. To evaluate their ef-
ficiency, we developed them on top of SADS [30], an efficient pri-
vate search system that uses Bloom filters. In addition, we describe
and implement a number of new features in SADS that improve its
performance, privacy guarantees and functionality. Finally, we de-
scribe and analyze the performance of the extended SADS system
in a real-world scenario, using health records.

Our implementation and the obtained empirical results are an
important contribution of this paper from the point of view of eval-
uating the real usability of the proposed system for practical pur-
poses. Although theoretical analysis asserts that a Bloom filter-
based search should be efficient, it is unwise to rely solely on the-
ory. If nothing else, complexity analysis says nothing about con-
stant factors, and says nothing about unexpected bottlenecks. It
matters little if an algorithm has n3 exponentiations if n is rea-
sonably small and the entire system is in fact I/O-bound rather
than CPU-bound [24]. Similarly, Kernighan and Pike noted that
“measurement is a crucial component of performance improvement
since reasoning and intuition are fallible guides and must be sup-
plemented with tools” [23]. Our work shows that — asymptotic
behavior aside — our scheme is practical across a wide range of
input sizes. Equally important, it shows the cost of different kinds
of privacy. Neither conclusion is amenable to a purely theoretical
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analysis.
The contributions of this work are:

• We present two practical extensions, namely Document Re-
trieval and Range Queries, that can be used on top of any
keyword-based private search system.

• We improve an existing private search system (SADS) to pro-
vide better privacy, support data updates and become more
robust.

• We implement all of the above and provide extensive evalu-
ation results and a case study. Code, datasets and data inputs
are available online at http://nsl.cs.columbia.
edu/projects/sads/ for similar systems to compare
with.

2. BACKGROUND

2.1 Secure Anonymous Database Search
The secure anonymous database search (SADS) scheme [30]

provides the following search capability: it allows a search client
(C) with a keyword to identify the documents of a database
owner/server (S) containing the keyword without learning anything
more or revealing his query. For this purpose the architecture of
the system involves two semi-trusted parties: index server (IS) and
query router (QR), which facilitate the search. In summary the
scheme works as follows: the database owner computes search
structures for his database — a Bloom filter (BF) per document
built from the encryptions of all words of the document. Each
authorized client receives keys that he uses to submit queries and
decrypt the results; the QR receives corresponding transformation
keys for the queries of that client. To submit a query, C com-
putes an encryption of his query and sends it to QR. QR verifies
that the client is authorized, re-encrypts the query with the corre-
sponding transformation key, computes and sends the BF indices
obtained from the encryption to IS. IS performs search across the
BFs it stores, encrypts the identifiers of the matching documents
and sends them to the QR; QR transforms the encryptions and de-
livers them to the client, who decrypts them to obtain his search
results (see Figure 1).

The original implementation of SADS also includes a couple of
optimizations/features enabled by the use of BFs. First, storing the
BFs in transposed order – called slicing optimization – minimizes
the number of bits that need to be read during search. That is be-
cause only bit slices corresponding to specific indices are read dur-
ing a query and not all the BFs. This approach has two main bene-
fits. First, it has better cache behavior because it fetches each slice
once and uses it for all the result vectors; second, in some cases
it avoids reading several slice portions if the corresponding bits of
all the result vectors have been zeroed out. In addition, SADS also
supports boolean queries. One naive way to do this is to search for
each term separately and union or intersect the results. However,
BFs can more efficiently handle ANDs by combining indices into
a superset, and ORs are handled in parallel by the slicing optimiza-
tion.

2.2 Security Definitions and Relaxed Privacy
Settings

The strongest security definition for a generic encrypted search
scheme in the setting of data sharing guarantees that the querier re-
ceives only the matching results, while none of the other parties in
the protocol learns anything. If we formalize this intuition by ap-
plying the standard simulation security notion of Canetti [7], what
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Figure 1: SADS overview.

the definition captures is that a protocol is secure if the views of
the participants in the real execution (namely their inputs, random
inputs, outputs, and messages they receive) are indistinguishable
from their views in an ideal execution where all parties send their
inputs to a trusted party who computes the results and sends them
back to the receivers.

Satisfying this level of privacy inevitably comes at efficiency
cost. In many scenarios, weaker privacy guarantees may be suffi-
cient. In particular, to achieve better performance, it is often accept-
able to leak some controlled amount of information. The next def-
inition gives the general security notion for encrypted search with
certain privacy leakage.

DEFINITION 1. A protocol π is a secure encrypted search pro-
tocol with privacy leakage L , if for every real world adversary,
there exists a simulator such that the view of the adversary in the
real world execution, where he interacts with the honest parties, is
indistinguishable from his view in an ideal world execution where
he interacts with a simulator that takes as input L (and simulates
the honest parties).

SADS has the following privacy leakage L with respect to the
parties that perform the search (i.e., the IS and the QR if they col-
lude):

• False Positive Database Leak: a fraction of records that do not
match the search criterion

• Search Pattern: the equality pattern of the submitted queries

• Results’ Pattern: the equality pattern among the results

• Similarity Database Leak: search structures leaking information
about similarity of data records.

In Section 5.1 we present a modification to the scheme that re-
moves the last type of leakage that comes just from the search struc-
tures on their own.

The above security guarantees apply to the search functionality
for exact match queries. The SADS search scheme further sup-
ports Boolean queries, which provide privacy guarantees for the
non-matching part of the database, i.e., the querier does not learn
anything about the non-matching records. With respect to the query
privacy from the search party the Boolean queries reveal the match-
ing pattern over the different terms in the search query in addition
to the results’ pattern. In Section 4 we introduce a scheme that re-
alizes range query functionality that is based on OR queries and
inherits the query leakage from the Boolean queries. The leakage
from the OR queries in the context of the range queries means that
given a range query the index server will be able to obtain iden-
tifiers for each logarithmic-sized sub-range that two records have
terms co-occuring in, starting from the unique value and ranging up
to the sub-range equal to half the size of the full range. It does not,
however, learn what ranges these are, or, their size. The identifiers
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Figure 2: SADS with Document Retrieval.

can only be useful to determine patterns across multiple queries.

3. DOCUMENT RETRIEVAL
There exist many systems for searching databases to privately

identify items of interest. An extension of obvious use is a system
to then retrieve those items privately. One way to do this is with
private information retrieval techniques, however these are very ex-
pensive, and can be even more expensive when fetching large num-
bers of records, or records of individually great size. We present a
system that is much more efficient, at the cost of requiring a trusted
third party, and can be modularly implemented to extend any pri-
vate search system that returns handles representing matches.

Systems both with and without document retrieval have practical
use. For example, a user may simply wish to establish that a server
does have documents of interest to him, or may wish to determine
how many are of interest, or learn about certain qualities concern-
ing the data held there (subject to the search permissions granted by
the server). Furthermore, even in systems that include document re-
trieval, separating this functionality from query is worthwhile. For
example, the server may be running a paid service, and allow the
user to operate in an initial stage wherein he determines what he
wants, and a bargaining stage wherein they negotiate pricing, be-
fore purchasing the actual content.

Document retrieval poses its own challenge, especially when the
data is not owned by the party retrieving it. In this scenario, re-
turning additional data is a privacy leak for the data owner; at the
same time, revealing the matching documents to the owner is a pri-
vacy leak for the retriever. Thus, the strongest security we would
want to aim for would require us to touch the contents of the entire
database [9]. This is a prohibitively expensive cost for applications
that aim to work in “real time” over a large data set. One way to
avoid this cost is to relax our security definition and allow leak-
age of the retrieval pattern (i.e. whether separate retrieval attempts
touched the same documents). In the case of data outsourcing, this
amount of privacy leakage easily suffices, since the untrusted server
just searches for and returns the encrypted files that he stores to the
owner who has the corresponding decryption keys [4, 8, 13]. This
approach, however, is not applicable to the case of data sharing,
where leaking the matching documents to the owner reveals more
than the result pattern: he also knows the content of the documents,
from which he can infer information about the query.

This problem is similar to that addressed by private information
retrieval protocols (PIR) [10, 16, 29], wherein a server holds a set
of items from which a user wishes to retrieve one without revealing
which item he is requesting. It differs slightly in that we wish to
retrieve multiple items (corresponding to the search results). It also
differs in that we require that the selected set be certified and that
the user does not learn content of documents outside of it. There are

PIR schemes that address this [16], but at additional cost. Thus, our
problem could be addressed by simply running an appropriate PIR
scheme once for each document result. However, PIR is already
quite expensive for a single document, and running them multiply
would only aggravate this.

We address this by constructing a document retrieval scheme that
can be used on top of any other scheme that returns document IDs.
Our scheme maintains efficiency by introducing an intermediary
party who stores the encrypted files of the database and provides
the matching ones to the querying party. This party is given limited
trust to perform the search, but he should not be able to decrypt the
stored files. In this case we need to provide the querier with the
decryption keys for the result documents; these are known to the
data owner, who must be able to provide the correct keys oblivi-
ously without learning the search results. In Figure 3 we present a
protocol that realizes the document retrieval functionality between
a data owner (S) and a client (C) with the help of an intermediary
party (P). For the purposed of this protocol we assume that there is
a search functionality EncSearch that returns the IDs of the doc-
uments matching a query from the client. For a query Q we denote
EncSearch(Q) the returned set of document IDs. The database
of the server that is used for the protocol consists of documents
D1, . . . , Dn. Our protocol also uses 1-out-of-n oblivious transfer
(OT) functionality that allows two parties, one of which has input
an array and the other has input an index in the array, to execute
a protocol such that the latter party learns the array element at the
position of his index and the former learns nothing. There are many
existing instantiations of OT protocols, we use the protocol of [15],
which allows best efficiency. The last tool for our constructions is
an encryption scheme with the following property (defined in more
detail in [30], which also gives an instantiation for such a scheme):

DEFINITION 2 (ENCRYPTION GROUP PROPERTY).
Let Π = (GEN,ENC,DEC) be a private key encryp-
tion scheme. We say that Π has a group property if
ENCk1(ENCk2(m)) = ENCk1·k2(m) holds for any keys
k1, k2 and any message m.

Intuitively, the security of this protocol is based on the secrecy
of the permutation π, known only to P . Because it is not known
to S, S cannot correlate the keys k′πi that are requested by C with
the original indices of the matching documents. He learns only the
search pattern of the querying party. We can take two approaches to
mitigate this leakage. The querying party may aggregate requests
for decryption keys to the server for the search results of several
queries. Another solution is to extend the scheme to include addi-
tional keys pertaining to no real documents, which P can add to the
sets of requested keys so that S cannot tell how many of the keys he
returns correspond to query results. Step 2 of the re-encryption can
be implemented using protocols for oblivious transfer [1, 11, 27].

4. RANGE QUERIES
We now present an extension that enables multi-dimensional

range queries using any underlying private search system that,
preferably, supports boolean queries in conjunctive normal form
over exact string matches. We first describe our system as a gen-
eral construction then discuss how some of the costs interact with
the efficiency tradeoffs inherent in the SADS system due to the use
of BFs.

4.1 General construction
This generic extension introduces the following additional costs



Storage Reencryption (preprocessing phase)

Inputs:
S : D1, . . . , Dn, keys k1, . . . , kn and k′1, . . . , k′n;
P : permutation π of length n ;
S, P : (GEN,ENC,DEC) satisfying Definition 2
Outputs:
S : ⊥; P : ENCk′

π(i)
(Di) for 1 ≤ i ≤ n

Protocol:
1. S sends to P ci = ENCki(Di) for 1 ≤ i ≤ n.

2. For each 1 ≤ i ≤ n S and P execute 1-out-of-n OT protocol
that allows P to obtain k′′i = k−1

i · k
′
π(i).

3. For each 1 ≤ i ≤ n P computes ENCk′′i (ci) =

ENC
k−1
i ·k

′
π(i)

(ENCki(Di)) = ENCk′
π(i)

(Di).

Document Retrieval

Inputs:
S : keys k′1, . . . k′n;
P : permutation π of len n, ENCk′

π(i)
(Di), 1 ≤ i ≤ n;

C : query Q;
S, P,C : search scheme EncSearch that returns IDs of matched
documents to P,C.
Outputs:
S : cardinality of the output set EncSearch(Q);
P : IDs of docs matching query Q from EncSearch;
C : the content of the docs matching Q from EncSearch.
Protocol:

1. S, P,C run EncSearch for query Q. Let i1, . . . , iL be the IDs
of the matching documents.

2. P sends Sign(π(i1), . . . , π(iL)) to C together
with the encrypted documents ENCk′

π(i1)
(Di1),

. . . , ENCk′
π(iL)

(DiL).

3. C sends Sign(π(i1), . . . , π(iL)) to S.

4. S verifies Sign(π(i1), . . . , π(iL)) and returns
k′π(i1), . . . , k

′
π(iL).

5. C decrypts ENCk′
π(i1)

(Di1), . . . , ENCk′
π(iL)

(DiL) to
obtain the result documents.

Figure 3: Protocol for Document Retrieval

over its underlying search system:

• For each inserted point, we will need to insert into the underlying
search system d lg r terms, where d is the number of dimensions we
are supporting and r is the size of the range of values supported per
dimension.

• For each query, we will need to issue a boolean query using up
to 2d lg( q

2
) query terms to the underlying search system, where q

is the size of the range being queried.

• The system presents repeatable unique identifiers for logarithmi-
cally cut sub-regions across all documents in a single query, and
across multiple queries. If the underlying private search system
does not guarantee full privacy of its queries, this can increase the
information leakage over what would normally be incurred.

Our basic approach is to represent each ranged dimension as a
binary value. Then, for each one, we create a strata for each digit

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15
0-3 4-7 8-11 12-15
0-7 8-15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0-1 2-3 4-5 6-7 8-9 10-11 12-13 14-15
0-3 4-7 8-11 12-15
0-7 8-15

Binary groups in which value "11" belongs to: 1---, 10--, 101- and 1011

Binary representation of the range "7-14": 0111 v 10-- v 110- v 1110

Figure 4: Terms used for inserting the value “11” (top).
Boolean query for range “7-14” (bottom).

of the value, and for each strata, divide the range into binary pieces
according to the order of the digit, and assign each piece of each
strata of each dimension a globally unique identifier. To insert a
term to the search index, we insert the identifier of every piece that
contains it (thus one term is inserted per dimension per strata, with a
number of strata logarithmic in the size of the ranges). An example
of inserting the value “11” using 4-bit numbers is hown in Figure 4
(top).

To issue a query, we create a boolean OR query. For each di-
mension, we start at the strata with the largest and least numerous
pieces, and add to the query the largest piece that fits entirely within
the query range. We iterate to lower strata, adding pieces that fit en-
tirely into the range without covering values that are already cov-
ered by existing pieces in the query, and continue, if necessary, to
the lowest strata which contains every individual value in the full
range. We then create an AND query across all of the dimensions,
resulting in a query in conjunctive normal form. An example query
on one dimension is shown in Figure 4 (bottom).

Since every single piece of every strata that contains the repre-
sentative value has been added to the index, this query will return
true if and only if the range query contains it. The worst case query,
is for the query range to straddle the midway point of the full range.
This results in taking 2 lg( q

2
) query terms per dimension.

THEOREM 1. A contiguous range query on a single dimension
cannot require more than 2 lg( q

2
) disjunctive terms.

PROOF. We begin with an initial lemma: a contiguous query
cannot require more than two terms in a single strata, one in its
lower half and one in its upper half. Let us assume to the contrary
that it did require two terms within a single bisection of its range.
Then, starting from the uppermost term, the range contains a sub-
range equal to at least four times the size of the elements of the
strata (two in each bisection). Since the strata above uses elements
of twice the size, and there is at least one term within the range that
is not one of the endpoints, that term is a subset of a range from the
upper strata that is contained entirely within this subrange. Thus,
the term representing that range could have been chosen instead to
replace two or more terms representing smaller ranges, a contradic-
tion.

Given that each strata uses ranges twice the size of the strata
beneath it, it is trivial to show via summing that a query cannot
require terms from more than lg(q)− 1 strata. In conjunction with
our lemma, we thus show that a contiguous range query cannot
require more than 2(lg(q)− 1) = 2 lg( q

2
) terms.

4.2 Bloom filter construction
If the underlying system is based on Bloom filters, like SADS,

we can describe the tradeoffs listed in the general construction in



terms of increased Bloom filter size. The standard Bloom filter
equation demands that in order to store n items with a false positive
rate of p, our filter needs to have sizem, show in formula (1). There
are two factors that increase the necessary size of Bloom filters we
must choose in order to maintain the same false positive rate. First,
for every value inserted, there are now d lg r terms added, giving an
increase in “effective” number of values for purposes of calculating
proper sizes. Second, for every query, there are 2d lg( q

2
) queries in

CNF, any of which could be a false positive. If we assume in the
worst case that a single false positive from a sub-query will cause
a complete false positive, then we can give an upper bound on the
multiplicative increase of false positive rate as 2d lg( q

2
). Thus, the

total size of the Bloom filter to ensure that the false positive rate
does not exceed p is given by formula (2).

m = −n ln p
(ln 2)2

(1) m = d lg r
−n ln p

2d lg(
q
2
)

(ln 2)2
(2)

For practical purposes, this is a very reasonable increase in
size, considering that most range query applications deal with or-
ders of magnitude fewer values per record than exact string match
queries, which may be used to index every single word in a tens-
of-thousands-of-words long document.

An issue of greater concern is the magnification of existing pri-
vacy concerns, especially if we are using a system like SADS,
which does not guarantee full protection of the result patterns. Be-
cause our construction will query the same sub-regions across mul-
tiple records in a query, and across multiple queries, if the result
privacy is not protected against the server, he may be able to learn
about the values stored within over time. For example, if a server
sees that during a range query, two records had the same posi-
tive result for the same sub-region, it knows that they at the very
least share a value in the same half-region (the largest possible sub-
region). If over the course of multiple queries it sees those two
documents match for a second sub-region, it then knows that they
at the very least share a value in the same quarter-region. Over time,
and seeing a sufficiently varied number of queries, it may learn ex-
actly which documents share specific values. To prevent this, the
ranged values could be re-indexed regularly based on the frequency
of range queries being issued.

This is partially mitigated in the multi-dimensional case, since
sub-regions of different dimensions cannot be differentiated, lend-
ing some additional obscurity. These are further obscured in sys-
tems like SADS where the ranged queries are interspersed with
other types of queries including straight string matches and boolean
queries. There is nothing to indicate to the holder of these identi-
fiers what ranges they correspond to, or even if they are ranges at
all. The quantitative evaluation of this reduction of information
would depend on the nature of the records and their searchable at-
tributes as well as the distribution of the queries that will be sub-
mitted. Therefore, the assessment of the significance of this leakage
has to be done with respect to the specific data that will be used in
the search scheme as well as the expected types of queries.

5. SADS SPECIFIC

5.1 Multiple Hash Functions
The BFs of different documents in the SADS scheme [30] share

the same hash functions, and thus, the same BF indices for identical
keywords. This is exploited by using a bit-slicing storage structure
to improve query time. However, this has clear consequences for
privacy:

• Due to commonality of indices for shared keywords, the search
structures leak information to the IS about the similarity of the cor-

responding documents.

• The false positive rate of a single Bloom filter — the probability
that a search query is matched incorrectly by it — with n bits, k
hash functions, and m entries is FPsingle = (1 − (1 − 1

n
)mk)k.

If the false positive probabilities across different Bloom filters are
independent, then the expected number of false positive results in a
database with N documents is FPsingle ·N . However, in the given
situation, the false positive rates are not independent if documents
share keywords. LetD1 andD2 be two documents where p fraction
of the words inD2 are also inD1 and the queryw is a false positive
for the Bloom filter for D1. The probability of a bit in BFD2 to
be set to 1 is p + (1 − p)(1 − (1 − 1

n
)mk)) and therefore the

probability D2 has a false positive (all k search bits of w are set to
1) is (p+ (1− p)(1− (1− 1

n
)mk)))k, which tends to 1 as p tends

to 1.
We can avoid these issues by using different hash functions for

the Bloom filters of each document. The BF indices for an entry
would not be derived from its PH-DSAEP+ encryption but instead
from keyed hashes of said encryption.

We implemented the multiple hash functions feature by gen-
erating a group of hash functions using a family of 2-universal
hash functions [26]. In our implementation, we used HMAC over
MD5 and SHA1 (using the document’s ID as key) to generate
BF hash functions, where the i-th hash function was Hi(w) =
H1(w) + (i − 1)H2(w) mod P , where P is a prime, H1(w) is
HMAC(SHA1, ID, w), H2(w) is HMAC(MD5, ID, w) and w is
the encrypted keyword.

5.2 Database Updates
So far we have assumed that the server’s database does not

change. It is preprocessed once in the beginning and from that
point on the same data is used to answer all queries from the
clients. However, in many practical situations the data of the server
changes dynamically, which should be reflected correspondingly
in the query results returned. The naive solution to run the pre-
processing preparation of the database each time it changes, brings
prohibitive efficiency cost. We would like to avoid processing each
record in the database for updates that affect a small fraction of it.
From a different point of view, though, the updates of the database
can be considered private information of the server and thus the in-
formation about what records have been changed is a privacy leak-
age to any other party (in our case to the IS who holds the Bloom
filter search structures ). This type of leakage comes inherent with
the efficiency requirement we posed above — if the update pro-
cessing does not touch a record, clearly it has not been modified.
Therefore, we accept the update pattern leakage as a necessary pri-
vacy trade-off for usable cost of the updates.

Now we look at the specific information that changes at the IS in
the SADS scheme, and consider whether it has leakage beyond the
update pattern of the documents:

• Bloom filters: As we discussed before, if we use the same hash
function for the Bloom filters of all documents, then the search
structures reveal the similarities between documents. In the case of
an update this would be indicative to what fraction of the content
of the document has been changed. If, however, each BF has a
different set if hash functions, the update of a document would also
include a selection of a new set of hash functions for its BF as well.
The only information that the IS could derive from the update will
be the change of the length of the document based on the number of
1’s in the BF. However, this information can be obtained also from
the length of the encrypted document that the IS is storing. In both



cases, we can eliminate this leakage by padding the documents.

• Encrypted documents — Each encrypted document stored at
the IS index is re-encrypted with a key that the IS obtains in an
oblivious transfer execution with the data owner. If an existing
document is modified, and the server encrypts it with the same key,
then the IS can also use the same re-encryption key. If the server is
adding a new document to his database, though, he should generate
a new key of type k” (i.e., the encryption keys that the documents
are encrypted with after the re-encryption of the IS). The guaran-
tee that we want to provide is that the server does not know the
permutation image of the key k′′ that is used in the re-encryption
of the document. We also want to avoid executing oblivious trans-
fer for each document, which results in a complexity greater than
the database size. Each permutation over n + 1 elements can be
presented as the product of a permutation over the first n of the
elements and a transposition of one of the n elements and the last
unused element. Thus, it is sufficient to execute a protocol where
the IS obtains re-encryption keys for the new document and for a
random document from the rest. Intuitively this guarantees that the
new re-encryption key could be assigned to any of the old docu-
ments or the new one, and if it was used for a previously existing
document, then the new one receives the re-encryption key that was
released from that document.

5.3 Optimizations
During the preprocessing stage, for each database document a

Bloom filter containing its keywords is generated. In the SADS
scheme, adding a keyword to the BF of a document involves en-
crypting the keyword under the server’s key. Thus, preprocessing
documents containing the same keyword incurs repeated effort. In
order to avoid this unnecessary preprocessing cost, we can cache
the BF indices for keywords. This avoids some recomputation, but
requires additional storage space. Whether to do this, and how
much to cache, depends on the nature of the documents and re-
peat frequency. This is also applicable in the case when multiple
hash functions are used where the preprocessing of a keyword is
not identical but shares a common and expensive intermediary re-
sult that can be reused. The caching capability we implement uses
LRU removal policy.

In addition, SADS preprocesses each item of the dataset inde-
pendently (i.e., computes the BF search structure for it), and fur-
thermore, it handles the elements of each item separately (each
word/value is inserted into the Bloom filer after a cryptographic
transformation). This computational independence makes for sim-
ple and robust parallelization. The search phase, especially when
using multiple hash functions, also permits parallelization of the
computation of the search indices for a query. We used the open
source Threading Building Blocks library [21] to implement the
parallelization optimization. It is easy to use and well-integrated
with C++. After analyzing the source code we found out that there
is just one integer counter that we need to synchronize among the
different threads: the Bloom filters counter. It took roughly 10 lines
of code to parallelize the entire preprocessing phase – similar for
the search phase too.

6. EVALUATION
To evaluate the practicality of our proposed extensions we imple-

mented them in SADS (roughly 4 Klocs of C++ code in total) and
we performed a number of measurements using realistic datasets:
(i) the email dataset that was made public after the Enron scan-
dal [31] and (ii) a synthetic dataset with personal information for
100K persons. The Enron dataset consists of about half a million

emails with an average size of 900 bytes after stemming . During
the preprocessing phase of SADS, a distinct Bloom filter for each
email was created. Then, each of the email files was tokenized and
the tokens where stored in the corresponding Bloom filter, after
they were properly encrypted. The format of the second dataset is
more close to a database than a collection of documents. Its schema
consists of a single table with 51 attributes of three types: strings
(first name, last name, etc.), numbers (height, SSN, etc.) and file
links (fingerprint, private key, security image, etc.) and it is stored
in a flat CSV (Comma Separated Value) file. The total size of that
dataset, along with the files pointed in the records, is 51GB and the
average size for a record is 512KB. During the preprocessing phase
we created a distinct Bloom filter for each record and each of the at-
tribute values where inserted after it was prefixed with the attribute
name (“name_value”) and properly encrypted. In both cases, we
configured the BF parameters so as the false positive rate would be
less than 10−6.

The experimental evaluation setup was comprised by two servers
and a client laptop. The servers had two four-quad Intel Xeon
2.5GHz CPUs, 16 GB of RAM, two 500 GB hard disk drives, and
a 1 Gbit ethernet interface. The laptop was equipped with an In-
tel Core2 Duo 2.20GHz CPU, 4 GB of RAM, a 220 GB hard disk
drive, and a 100 Mbit ethernet interface. All of them were con-
nected through a Gigabit switch; they all ran a 64-bit flavor of the
Ubuntu operating system. QR and IS were running on each of the
servers, the queries were performed from the laptop. When Doc-
ument Retrieval was enabled, the File Server was running on the
same host with the IS.

6.1 Memory Consumption
Along with the timing measurements, we also monitored the

memory consumption of the extended SADS system to determine
scaling limits. We found out that the only significant factor was
the type of Bloom filter storage. Bloom filters are stored either
sequentially in a flat file or transposed using the slicing optimiza-
tion. In the sequential storage case memory usage was constant; it
grew consistently with the dataset size in the slicing case, because
the structures are kept in memory and written to files at the end.
During the search phase, both the client and the QR used a small,
constant amount of memory (∼2MB). On the other hand, the IS’s
memory usage grew with the dataset size. In the sequential stor-
age case, the file was mmap’ed; the amount of memory used was
the Bloom filter size in bytes times the number of BFs (e.g. 1KB
* 50K = 50MB). When the slicing optimization was enabled, we
saw higher memory usage, ∼109MB for the same dataset. That
was most likely due to the extensive use of C++ vectors, which we
can further optimize in the case of much larger databases where the
available RAM may become an issue.

6.2 Implementation Optimizations
We performed experiments using variable-sized subsets of both

datasets while changing the size of the cache. As for the Enron
dataset, we show that a good cache size is 5K keywords. This gives
us a∼90% hit ratio, while reducing the preprocessing time for 50K
emails from 2h to 10m. Performing the same experiments for the
synthetic dataset yielded slightly worse results, as some attribute
values are unique. However, using a 10K keywords cache the hit
ratio was 50% on the full dataset, which still is a significant gain.

We measured the speedup of the preprocessing phase on the full
datasets, while increasing the number of threads. As we expected,
the speedup grew linearly until the number of threads reached the
number of cores in our servers – that is eight. When the number
of threads was more than the CPU cores, the speedup slightly de-
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clined, most probably due to thread scheduling overhead. Perfor-
mance results for the parallelized search phase are presented in the
next section.

6.3 Search Performance
The introduction of the multiple hash functions feature in SADS

poses a trade-off between efficiency and privacy. Not only because
of the higher computation overhead it adds but also because it is in-
compatible with the slicing optimization. In this section we explore
in detail the effects of the multiple hash function scheme and also
how parallel search could help amortize some of the performance
penalty.

Figure 5 shows the comparison for four different configurations
of SADS: (i) original, (ii) original with the slicing optimization en-
abled, (iii) using multiple hash functions and (iv) using multiple
hash functions and parallel searching together. The search time re-
ported in this figure is the total time elapsed from the point when
the client issues the query to the QR until it receives the set of
matching document IDs if any — no document retrieval. As ex-
pected, the average query time grows linearly using the original
SADS configuration, as the actual search is done linearly over all
the Bloom filters. Next, we can see that the slicing optimization
greatly reduces search time to a point that it seems almost constant
across different dataset sizes. Using the multiple hash functions
feature we do get better privacy guarantees, but at the cost of in-
creased search time by another factor that is proportional to the

Statistics Query Time # of Ranges
Column min/ avg/ max msec (stdev) # (stdev)

Age 2/ 38/ 95 1,529 (244) 4.3 (0.6)
Height 58/ 67/ 78 959 (123) 2.8 (0.4)
Weight 90/ 175/ 280 1,979 (345) 5.8 (0.9)
SSN 1M/3.9G/6.5G 12,783 (805) 38.0 (2.4)

* the time for a single keyword query is ~400 msec

Table 1: Range queries timing on integer attributes of the syn-
thetic dataset (100K records – 51GB).

dataset size. That is because for each document we have to recal-
culate the hash functions and recompute the Bloom filter indices.
Finally, we see that taking advantage of the commonly used mul-
ticore architectures does increase the performance of the search in
the multiple hashing scheme. More precisely, the speedup when
we used 8 threads on our 8-core servers was from 1.3 to almost
4 for the dataset sizes shown in the Figure 5. Thus, although the
multiple hash functions feature increases the computation factor,
we can amortize a great part of it by executing it in parallel. It
is also worth noting that the multiple hash functions plus parallel
searching configuration provides better performance that the orig-
inal configuration, while on the same time it improves the privacy
guarantees.

Next, we evaluate the performance overhead of the multiple hash
functions in boolean queries, and more precisely OR queries. To
optimize the normal case – i.e., when the slicing optimization is
not enabled – we skip BFs that already contain one of the search
terms. That way we avoid searching over and over on Bloom Filters
that already match the OR query thus reducing the overall search-
ing time, especially when the search terms are frequent. Figure 6
shows the search time for OR queries under different SADS con-
figurations. Each cluster of bars is for a different dataset size; each
bar is for a different term count in the boolean OR query. The first
bar is for two terms, the second for three, and the last two for four
and five, respectively. The fact that the search time in each cluster
grows sub-linearly to the number of terms clearly shows the perfor-
mance gain.

6.4 Range Queries
The implementation of the range queries extension on top of

SADS translates a range to a variable-sized OR query. In the av-
erage case, the number of the terms in the OR query depends on
the size of the numbers in the range and the size of the range it-
self. To evaluate the practicality of that approach, we measured the
time for performing range queries over the numeric attributes of
the synthetic dataset. These are age, height, weight and SSN. The
range of the values of these attributes relative small, except for the
SSN which spans from one million to a few billions (first column
of Table 1). For each of the attributes, we calculated ten ranges
that each match about 1/10 of the dataset. SADS was configured
to use multiple hash functions and the parallel search optimization
was enabled. Table 1 shows the average query time over the ten
queries for each attribute, along with the average number of bi-
nary ranges that each query was translated to. In most of the cases,
where the ranges are translated to a few binary ranges, the average
range query time is low enough to be considered practical. On the
other hand, the SSN attribute demonstrates the disadvantage of our
range queries extension when dealing with big values. Still, the
performance is not prohibitive, but, clearly, our range query exten-
sion yields better results for values that range from a few tens to a
few thousands.
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6.5 Document Retrieval
We implemented document retrieval using PH-SAEP and stan-

dard RSA signatures to sign query results. Using PH-SAEP puts a
(likely over-restrictive) limit on the length of plaintext values. To
handle this, we encrypt larger files using AES private key encryp-
tion, and store the key encrypted with PH-SAEP as a header in the
encrypted file. The files can thus be read by decrypting the header
with the appropriate PH-SAEP key and using the result to decrypt
the content of the file. We preprocess the files in a way that provides
an intermediate party with AES encrypted files under different AES
keys and encryptions of these AES keys under some permutation of
the keys k1”, . . . kn”. The client will receive as results from the in-
termediary party the encrypted files, the encrypted AES keys, and
the indices of the keys k” used for their encryptions. When he re-
ceives the decryption keys k” from the server, the client will first
decrypt the AES keys and then use them to decrypt the remainder
of the files.

Figure 7 shows the average time to retrieve documents using our
scheme versus the number of documents being retrieved. This is
shown in comparison to a non-privacy-preserving SSH-based file
transfer. As we can see, our scheme adds very little overhead com-
pared to the minimum baseline for encrypted transfer. The time
also shows linear growth, suggesting that it is dominated by file en-
cryption and transfer, rather than for the encryption and verification
of the results vector itself.

As a point of comparison, Olumofin and Goldberg [29] present
some of the best implementation performance results currently
published for multi-selection single-server PIR. In their perfor-
mance results, we see response times per retrieval ranging from 100
to 1000 seconds for retrievals of 5-10 documents on database sizes
ranging from 1 to 28 GB. Our scheme scales strictly with number
and size of documents retrieved, and not with the total database
size. They do not state the sizes of the blocks retrieved in their
scenario, but if we were to give a very high estimate of 1 MB per
block, and assume they fetched 10 blocks every time, one could
expect in our system that each query would take .7 seconds, still
orders of magnitude short of the 100s fastest time they report for a
1GB database, and it would not scale up with increasing database
size as theirs does, thus significantly beating the 1000s time they
report for a 28GB database. Note that their system is not designed
to protect privacy of the database, only of the request. The work
of [14] presents a protocol for privacy-preserving policy-based in-
formation transfer, which achieves privacy guarantees weaker than
SPIR and similar to ours. Direct comparison between our and their

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  5000  10000  15000  20000  25000

T
im

e
 (

s
e

c
s
)

Number of Records Retrieved

MySQL
Extended SADS

Figure 8: Comparison between the extended SADS and
MySQL.

performance results is hard — they present timings only for the
computation time without communication, which grows linearly
with the size of their database. The maximum size of their database
is 900 records with 2000 ms computation per record retrieval, while
for our scheme the entire record retrieval time (computation plus
communication) for a database with 25000 records is about 40ms
(Figure 8, described in the next section).

6.6 Overall Performance
Finally, we compare the performance of the extended SADS sys-

tem with a real world DBMS, MySQL. In order to do that, we
implemented a SQL front-end for SADS that could parse simple
conjunctive and disjunctive queries. Then, we loaded the synthetic
dataset to both systems and we executed a number of queries of
variable result set size. SADS was configured to use multiple hash
functions and document retrieval was enabled. Parallel searching
was also disabled, which means that we compared using the less
efficient version of the extended SADS. Figure 8 shows the total
duration of both the query and the retrieval of the data for our sys-
tem and MySQL. Our scheme performs just 30% slower on average
than MySQL, which is the price for the privacy guarantees it pro-
vides.

6.7 Case Study: Sharing of Health Records
We next examine, from a very high level, the suitability of our

scheme for a hospital’s admissions records database. (A database
for full medical record storage is vastly more complex and is not
addressed here.) A patient’s health record is very sensitive infor-
mation, usually kept by the patient’s medical institution. There are
cases, though, where such information needs to be shared among
different institutions. For example, a patient may need to visit a dif-
ferent institution due to an emergency, or to get a second opinion.
This sharing may need to be done privately for several reasons. In
an emergency, a doctor may need to query all the institutions that
share records with his without revealing the patient’s identity, es-
pecially to the institutes that do not have information about him.
If the querying is not private in that case, some institutions would
learn information about a patient that has never visited them. Or,
a patient may not want his institution to know which institution he
visits for specialized needs, such as drug rehabilitation, so again
the query for his record has to be performed privately.

A database of health records is similar to the synthetic dataset we
used in our evaluation. It contains some searchable fields like name,
date of birth, height, etc.; each record may be linked with several
medical exam results like x-rays, electrocardiographs, magnetic to-



mographies, etc. In 1988, there were about ten routine tests during
the hospital’s admission process alone [20]; today, about thirty in-
dividual tests are done.1 Taking into account that some of the re-
sults can be a few tens of Mbs — for example, a head CAT scan is
about 32 MB — each health record could be a couple of hundred
megabytes. One major hospital complex admits about 117K inpa-
tients per year2; to a first approximation, their database would thus
have several hundred thousands rows and 30–40 columns.

We have already seen, though, that the extended SADS scheme
we propose can successfully handle a database of this size. Our
evaluation demonstrated that document retrieval adds only a small
overhead compared to simple transfer, thus easily scaling with the
size of the document retrieved. Also, searching over 100K records
with 51 searchable attributes each takes less than half a second,
thus meeting real-world requirements. Finally, the support for up-
dates in health records is a requirement covered by our extended
SADS scheme. We conclude that our scheme is able to handle the
requirements of this hospital, while preserving patient privacy.

7. RELATED WORK
Most of the existing constructions providing encrypted search

capabilities aim to solve the case of database outsourcing [4–6, 8,
13,33]. In this setting a party outsources the storage of his database
to an untrusted server and wants to enable the server to execute
searches on his behalf without learning information about either the
data or the query. Unlike the data sharing scenario that we consider,
this setting does not impose privacy requirements for the data with
respect to the querier. A common technique in encrypted search
schemes [4, 33] is to use trapdoors derived from query terms that
enable the server to determine if a ciphertext matches the specific
term. This implies the search complexity will be at best linear in
the number of searchable tokens. A different approach in the set-
ting of database outsourcing is to use inverted indices, where the
search structures directly map all possible search terms to matches
[8, 13]. Search then consists of finding the appropriate entry in
the search structure for a given query’s trapdoor. Such solutions
leak the search pattern across a sequence of queries and are not
easily extendable to allow more complicated queries beyond exact
match when we need to preserve the privacy of the database from
the querier.

Protecting the search pattern imposes efficiency costs. Bellare et
al. [25] showed that in order to achieve sublinearity of the search
complexity over encrypted ciphertexts, deterministic encryption
is required, which leaks the search pattern. The works of [30]
and [17] combine the idea of using deterministic encryption with
Bloom filters [3] as search structures. However, the Bloom fil-
ter search structures constructed in these works leak the similar-
ity of the underlying documents to the party who uses them for
search. The work of [12] offers a scheme that exchanges search
pattern leakage for efficiency improvement. While the suggested
approach achieves sublinearity of the search complexity in terms
of the number of searchable records, using preprocessing that trans-
forms searchable tokens occurring in multiple records with unique
tokens per record, it still requires time linear in the number of all
searchable tokens contained in the matching records. Thus this so-
lution is appropriate for scenarios with small numbers of searchable
tokens per record, its efficiency improvements do not suffice in the
case of long documents that contain many searchable keywords.

Search capability beyond simple exact matches has been
achieved through constructions for attribute-based encryption [2,

1Private communication with a physician.
2http://nyp.org/about/facts-statistics.html

19] and predicate encryption [22]. These approaches have a sim-
ilar flavor to some of the searchable encryption schemes in the
sense that they allow decryption only if the encrypted message sat-
isfied a certain condition, which can be expressed, for example,
as a dot product, Boolean formula or polynomial evaluation. But
this also brings the related efficiency overhead that requires linear-
ity in the size of all searchable tokens. Range queries are another
type of queries with important practical applications. The work of
[6] presents a protocol for range queries that comes with overhead
O(
√
n) where n is the size of the domain of the searchable values.

Shi et al. [32] incur O((logn)D) computation overhead for D di-
mensional queries. Both of these schemes require that the token for
the searchable interval is issued by the owner of the secret encryp-
tion key, which suffices for data outsourcing solutions but does not
address the case of the data sharing.

If we consider the document retrieval functionality when the
querier is the data owner, the search party can return the encrypted
matching documents for which the querier has decryption keys.
However, this approach is not applicable when the data owner and
the querier are different parties and we want to hide from the data
owner which documents were returned as results to the query. If the
querier already knows the IDs of the documents of interest for his
query the functionality of a symmetric private information retrieval
(SPIR) scheme [16] when instantiated with the whole content of
the database would theoretically allow the querier to retrieve the
desired documents without the owner finding out what documents
were retrieved. However, the efficiency cost is quite high. The PIR
schemes that guarantee privacy for the query but do not provide
privacy for the database already incur substantial efficiency over-
head. Implementations of PIR were presented in [18, 29], and the
work of [28] uses PIR techniques to provide partial privacy for SQL
queries.

8. CONCLUSIONS
When we consider the question of secure search in practical set-

tings, the privacy guarantees of a scheme are no longer the only rel-
evant issue: a perfectly secure scheme that no one can use provides
no actual privacy. The efficiency of an approach becomes a major
factor in determining its usability given the available resources.

We adopted the relaxed security model of the SADS scheme; we
extended its functionality by constructing a document retrieval pro-
tocol that runs in time proportional to the size of the returned set
of documents and by providing range queries over integer data at
a cost comparable to simple keyword queries in the average case.
Both extensions take no advantage of any specific feature of SADS,
making them applicable to any keyword-based private search sys-
tem. Additionally, we improved SADS by: (i) providing a protocol
that facilitates database updates without requiring processing of the
whole database, (ii) using different hash functions for different BFs
which provides better privacy guarantees and (iii) developing two
implementation level optimizations, parallelization and caching.

The experimental results for the extended SADS system demon-
strate its practicality: we achieve search and document retrieval
time which is on the order of the time of ssh transfer and much
better than the results from the most recent PIR implementation
presented in [29] (note that the PIR protocol actually has weaker
privacy guarantees than what we need since it does not provide
database privacy), while we provide better privacy guarantees than
the original SADS. In other words, we have provided strong-
enough security and privacy, and at an acceptable cost.

http://nyp.org/about/facts-statistics.html
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