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ABSTRACT
Linking accounts of the same user across datasets – even
when personally identifying information is removed or un-
available – is an important open problem studied in many
contexts. Beyond many practical applications, (such as cross
domain analysis, recommendation, and link prediction), un-
derstanding this problem more generally informs us on the
privacy implications of data disclosure. Previous work has
typically addressed this question using either different por-
tions of the same dataset or observing the same behavior
across thematically similar domains. In contrast, the general
cross-domain case where users have different profiles inde-
pendently generated from a common but unknown pattern
raises new challenges, including difficulties in validation, and
remains under-explored.

In this paper, we address the reconciliation problem for
location-based datasets and introduce a robust method for
this general setting. Location datasets are a particularly
fruitful domain to study: such records are frequently pro-
duced by users in an increasing number of applications and
are highly sensitive, especially when linked to other data-
sets. Our main contribution is a generic and self-tunable
algorithm that leverages any pair of sporadic location-based
datasets to determine the most likely matching between the
users it contains. While making very general assumptions
on the patterns of mobile users, we show that the maximum
weight matching we compute is provably correct. Although
true cross-domain datasets are a rarity, our experimental
evaluation uses two entirely new data collections, including
one we crawled, on an unprecedented scale. The method we
design outperforms naive rules and prior heuristics. As it
combines both sparse and dense properties of location-based
data and accounts for probabilistic dynamics of observation,
it can be shown to be robust even when data gets sparse.
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1. INTRODUCTION
Almost every interaction with technology creates digital

traces, from the cell tower used to route mobile calls to the
vendor recording a credit card transaction; from the pho-
tographs we take, to the “status updates” we post online.
The idea that these traces can all be merged and connected
is both fascinating and unsettling. The ability to merge dif-
ferent datasets across domains can provide individuals with
enormous benefits, as seen by increasingly widespread adop-
tion of apps that learn multi-domain user behavior and pro-
vide helpful recommendations and suggestions. However,
when done by third parties that a user may not interact
with directly, this raises fundamental questions about data
privacy. In this paper, we focus on location data and show
that this type of data is privacy sensitive. More formally,
we focus on the following technical question: Is it possible
to link accounts of the same user across datasets using just
location data? The answer to that question points both
to algorithmic feasibility but also our ability to maintain
seemingly distinct identities or personas until one chooses
to reveal they belong to the same user.

Increasingly often, as shown in recent studies, the loca-
tion of a smartphone owner is captured and recorded for a
majority of mobile apps even in the absence of geographi-
cal personalization. This considerably expands the number
of parties who can collect and exploit the knowledge of a
user’s whereabouts. Even when data is recorded sporadi-
cally, these datasets are very rich and intimately connected
to one’s everyday life; they may present or at least par-
tially reflect our most recognizable patterns. Recently, even
a small amount of location information was shown sufficient
to either render most users distinguishable [7, 25], or infer
multiple sociological traits such as race [18], friendship [4,
6], gender, or marital status when combined with domain
semantic information [27].

In spite of this work, determining when and how two ac-
counts belong to the same mobile user in different domains
remains an open problem, primarily for three reasons: First,
identity reconciliation is harder than both classifying and
distinguishing users. As an example of the former, one may
not be able to connect two profiles exactly, but can still be
quite certain that both belong to a high-income American,
for instance. For the latter, uniqueness of an individual in
one dataset does not imply that they will be easily recog-
nized in another one. For instance, in a simple case where
individuals produce location records randomly and indepen-
dently in two domains, users will likely be unique but it is



provably impossible to link them across datasets. Second, as
a consequence, many previous methods are domain specific
and typically focus on clean and dense parts of the data. In
contrast, most of our motivating examples above are sparse,
and we aim at leveraging locations in the general case with-
out additional information attached. Third, with almost no
exceptions, identity reconciliation was always considered for
different parts of the exact same data set, or at best do-
mains that are semantically similar. In contrast, our goal
is to address the most general case in which records across
domains are separately generated but share an underlying
pattern: The user’s physical location. Since one cannot oc-
cupy two locations at the same time, the common pattern of
our physical mobility creates fertile ground to notice events
that coincide, and those that are incompatible. The main
question is how to use those observations (ideally in a prov-
ably optimal manner), under which conditions they are suffi-
cient to link accounts, and how to collect data to empirically
validate any related claims.

Exploiting rare coincidences to de-anonymize users is now
a classic problem, with a sparsity based method available
for almost a decade [15]. While we defer a more detailed
comparison with our work to the next section, we would
like to point out the main ingredient of our algorithm: a
new use of misses and repetitions to interpret coinciden-
tal records that exploits the sparse property of coupling be-
tween Poisson processes. We note that sporadic collection
of records typically resembles such statistics for rare events.
This method, which is proved optimal and correct under
these simple assumptions, is hence particularly effective in
various datasets. Another advantage of our scheme is that it
relies on only three parameters1 that are initially unknown
but easy to approximate. We prove empirically that simple
methods to estimate these parameters are robust even when
starting from imperfect observations.

We now present the following contributions.

• A new generic and self-tunable algorithm which com-
bines positive and negative signals from co-incident
events to build a new type of maximum weight match-
ing. In practice this algorithm is compatible with a pa-
rameter tuning step exploiting a previously proposed
density-based method. In spite of no domain-specific
tuning, our algorithm outperforms the state of the art.

• A rigorous interpretation of our algorithm justifying its
correctness. In particular we provide a simple model
of mobility that encompasses various cases of location-
based data. This is, to the best of our knowledge, the
first mathematical model for observed location traces
across multiple domains. We prove the ideal correct
matching maximizes our algorithm’s score and con-
versely, that only correct matching achieves maximum
score in expectation.

• An empirical evaluation of this problem in three dis-
tinct scenarios that significantly extends beyond pre-
vious studies in both realism and scope. The first
dataset, already publicly available, allows immediate
comparison with prior results. For the second scenario
considered, we collected data from two current live ser-
vices, gathering considerably more locations, and prov-
ing that our method achieves near perfect accuracy.

1Two are related, so estimation has two degrees of freedom.

Finally, our method is shown superior in a commercial
scenario that is significantly more heterogeneous and
challenging2.

As we explained above, linking anonymous profiles across
domains is considerably more challenging than either estab-
lishing users’ distinguishability or classifying users into dif-
ferent groups. As such, it may have been considered imprac-
tical at scale. The fact that we can link users, sometimes
with high precision and recall, shines new light on the pro-
tection offered by even the most complete anonymity. Our
results are, to the best of our knowledge, the first example
of a cross domain analysis of this problem to prove an al-
gorithm’s correctness, together with the first validation at
scale of location based reconciliation in real cases. As more
data are available, and different patterns or domain specific
properties are discovered, we believe that more algorithms
could be designed and evaluated against the technique we
present as a benchmark for the most general case.

2. RELATED WORK
It has been shown that most users in location based da-

tasets are unique, either through a few of their most visited
places [25] or based on a few timed visits chosen at ran-
dom [7, 8]. This property follows a tradition of work spec-
ifying the risk of releasing even anonymized datasets [21].
What this shows is that users can be re-identified in theory,
for instance in one of the following two cases: if an adversary
has access to auxiliary information (e.g., the real identity of
all users who visited a place at a given time, or an orig-
inal set of seed nodes which are already re-identified) [7],
or alternatively if a public data set is known to intersect
the anonymized one [21]. What those works do not show,
however, is how to exploit this uniqueness in the common
case we consider: two distinct datasets with no auxiliary
information that is known a priori.

Identity reconciliation so far has leveraged three princi-
ples: Ad-hoc identifying features such as matching username,
email addresses, or unique tags. Those are ignored here;
as recently measured in [10] they are rarely available and
accurate. Information propagation, where starting from a
seed set of identified nodes, a graphical structure such as
a social network is exploited to expand the set of matched
nodes in static [12, 13, 16, 17, 24] or mobile [20, 11] data-
sets. Again, those techniques cannot be applied in the gen-
eral case where no preexisting graph and seeds are known3.
Finally, identification of nearest neighbors using similarity
metrics [15, 9] generalizes the first method to leverage non-
identifying features and imperfect matches. Data sparsity
plays an important role, which is typically included in the
design of the similarity metric. This approach suffers from
the opposite problem: it applies so broadly that it is very

2This dataset was not released in raw form to any researcher
in the team; the evaluation was run on a remote server with
a non-exclusive agreement that other academic researchers
can replicate in the spirit of reproducing and improving fu-
ture reconciliation methods. Note that the authors from
Google did not have even remote access to this data.
3In the most ambitious information propagation where seeds
may be noisy and structures, initially unknown, are inferred,
the differences between this approach and one based on sim-
ilarity starts to fade. We experimented with it but found no
improvement from information propagation to report.



loosely defined. Indeed, most successful reconciliations us-
ing this technique report on the art of deciding upon in-
formative similarity features – or often the subtlety of their
combined effects [9] – without necessarily providing a unified
justification. Moreover, a closer look showed that the accu-
racy of similarity methods for static features (e.g., name,
home location, friends) are typically overestimated in prac-
tice [10]. Our work addresses this important need: Our
inference method interprets location datasets, however dif-
ferent in their domains, as sporadic observations of the same
hidden mobility processes. We generalize data sparsity from
a static viewpoint to a dynamic viewpoint, leveraging nat-
urally misses and repetitions in the observed processes. In
spite of a considerable amount of prior work on Entity Res-
olution [5], we did not find similar analysis and algorithms,
probably because mobile datasets are relatively new and ex-
hibit specific dynamics. Similarly, the related literature on
network alignment [1] rarely considers the bipartite case [14]
and it centers on static graphs. We empirically found that
our method yields superior accuracy to those previously pro-
posed, while being more robust and easy to use.

Other attempts at re-identifying users using mobility data
only have typically expressed similarity between users with
density based methods [23, 9]. Those rely on a user having
a discriminative pattern in the frequency she visits various
places. In [23] author aims at reconciling users in the same
domain but at different periods, hence ignoring the time of
the visits themselves. In situations where datasets overlap
in time, those techniques leave much information unused.4

Another technique, somewhat diametrically opposed, uses
specific visit times [19]. Prior to this paper, this was only
validated in a single domain (by randomly extracting a sub-
set of each user’s profile to recognize). We empirically show
that none of those methods extend to the more demanding
cross domain case without incurring large inaccuracy. This
confirms previous observations that density and time based
similarities can reduce the scope of re-identification attacks
by removing a lot of dissimilar accounts [9], but cannot be
used as is for reconciliation as they lead to low accuracy
in practice [10]. Finally, we should mention a statistical
learning approach based on Dirichlet distribution used to
relate anonymous CDR data with publicly available social
network data [2, 3]. It remains, however, difficult to judge
its effectiveness as it is used without further theoretical jus-
tification and validated without ground truth in the data.
Our method, in contrast, is tailored from scratch to location
based datasets, its correctness is proved under simple as-
sumption on nodes’ visits, and it has been evaluated on three
data-sets with ground truth, among the largest available to
date, including two that have never appeared in this con-
text. Whether more generic statistical learning reproduces
some of the strength of our method remains an interesting
question to explore beyond the scope of this paper.

3. LOCATION-BASED RECONCILIATION

3.1 Problem Formulation and Model
We use U and V to denote the set of n user accounts in

the two domains, with accounts to be linked using location-

4It is, for instance, entirely ineffective in a homogeneous
population where each user follows the same location distri-
bution for her visits. Our method, in contrast, is proved to
correctly handle that case.

based data. Let σI denote the true (“identity”) mapping
that correctly links the two accounts of the each user. The
users may visit locations at various times and perform an
action (such as a checkin), which results in the creation of a
record in one of the datasets. Each such record is associated
with the location and time-stamp, and possibly additional
semantic information that is relevant to this dataset, but
may not make sense in a different domain. Therefore, in
our algorithm, we only use the time-stamped location data.
Note that locations and times may be recorded at a differ-
ent granularity and levels of precision in the two different
datasets to be reconciled (for instance, one may only record
the nearest cell tower, the other has GPS coordinates). To
account for this, we divide locations and times into bins,
corresponding to a geographical region or interval of time;
For a fixed bin corresponding to location region ` and time
interval t, any action recorded in region ` during time inter-
val t is associated with bin (`, t). We use L to denote the
set of all location regions and T the set of time intervals in
the union of our datasets.

As shown in Figure 1, although each user u or v physically
follows a continuous time trajectory Mt (shown on the left),
her mobility record r(u) in each domain is defined as the
multi-set of (location, time) bins in which she took an ac-
tion: r(u) = {(`1, t1), (`2, t2), . . . }. Note that it is important
that this is a multiset: if a user records 2 actions in the same
bin, this bin is present twice in the mobility record. Given a
specific (location, time) pair (`, t) we denote the number of
actions in domain 1 that user u took by a1(u, `, t) (i.e., the
number of occurrences of (`, t) in the multiset r1(u)). We
define a2(u, `, t) similarly for domain 2. For ease of nota-
tion, we use a1 (respectively a2) to denote a1(u, `, t) (resp.
a2(u, `, t)) when u, `, t are clear from the context.

In this paper, we focus on reconciling users across two
domains based only on their mobility records, which we
refer to as r1(u) and r2(u) respectively. In other words,
given a collection of mobility records

{
r1(u)

∣∣ u ∈ U }
and{

r2(u)
∣∣ u ∈ V }

for the same population but with no iden-
tity attached, our goal is to return the true mapping σI
which maps the record belonging to one user to the record
of the same user in the other collection.

3.2 Mobility Model and Assumptions
In order to formally analyze algorithms applying to the

cross-domain reconciliation problem defined above, it is nec-
essary to work under a given mobility model which governs
how users produce records. Without such assumption, only
worst-case performance can be measured, which is arbitrar-
ily bad for any algorithm since one can devise instances
where the set of locations with actions in domain 1 is com-
pletely disjoint from the set of locations with actions in do-
main 2. Providing the first such model and proving it leads
to a practical method is one of our key contributions.

We assume the mobility records follow a simple generation
process: First, for each (location, time) pair, the number of
visits of each user to this location during this time period
follows a Poisson distribution, with rate parameter λ`,t and
this choice is independent of the visits produced for any
other pair. It is a rather crude but effective assumption,
as it combines mathematical simplicity (critical later to jus-
tify our method), and a form of robustness. Indeed, Poisson
distributions are known to be good approximations of rare
event processes and to combine gracefully when summed, al-
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Figure 1: Two space-time trajectories with associated footprints in two domains.

lowing multiple granularity levels to be combined. They are
quite commonly used to handle robust parameter estima-
tion, which is important as the parameter λ`,t is unknown
to the algorithm.

The characterization above describes how visits are pro-
duced, but does not specify how users perform actions that
are observed. We assume that each time the user visits a
location, an action in domain 1 and domain 2 occurs, in-
dependently of each other, with probabilities p1 and p2 re-
spectively. Thus, the mobility records are random variables,
which we denote by R1(u) and R2(u) respectively, with the
number of actions in a given bin (`, t) being random vari-
ables denoted by A1(u, `, t) and A2(u, `, t) respectively. The
process of visits and action in each domain is also assumed
to be independent among users.

Possible extensions: While we keep the model to its
simplest form for the sake of a clear exposition, the argu-
ments we provide in this paper generalize to multiple other
cases. First among them, all results apply as well when the
probability p1 and p2 could depend on l and t as well. One
could also analyze our algorithms when those parameters
are not constant among users. After experimenting with
those more general models, we found that they do not yield
significant practical improvement in the scenarios we evalu-
ated. We also note that one can adopt different generative
models, but many of these do not change the problem signif-
icantly, or the analysis of our algorithm. For instance, the
number of visits to a particular location may be generated
by a binomial distribution, instead of Poisson.

Other extensions are interesting topics for further study:
For example, our model does not currently account for ge-
ographical proximity between different locations; in reality,
users who visit a location ` are also likely to visit a nearby
location `′. One advantage is that this keeps our model
general and robust to variations in formats and resolution
across datasets that are quite common in space-time data.
For instance, actions 1km apart may be considered close in
a rural setting but far in an urban area. Our method is ag-
nostic to such relative change of distance. We also note that
our model ignore dependencies between users. For instance,
members of a family may travel together and the presence
of friends in a location may render a visit by a given person
more likely. On the other hand, our model can accommo-

date frequency of visits that vary between users and hence
create communities that on average visit frequently similar
places. With larger and richer data, it is likely that more
realistic models than ours may give additional insights and
better exploit users’ true mobility patterns. However, the
simple case we define above leads to a simple algorithm that
captures mobility of users sufficiently well to beat the state
of the art and present a reasonable benchmark for future
use.

4. ALGORITHM AND ANALYSIS
In this Section, we present an algorithm tailored to the

location record model introduced above. Our main contri-
bution is a proof that under these assumptions, there is a
tight correspondence between the maximum weight match-
ing that we define and the ‘true’ matching between users,
even exhibiting a positive gap. Later, Section 5 will demon-
strate that this correspondence generalizes in practice to
make this algorithm a superior alternative to multiple known
approaches.

4.1 Algorithm
Our algorithm works in two phases: The first phase is to

compute a score for every candidate pair of users (u, v) ∈
U × V (see below for more details). In a second phase,
we first define a complete bipartite graph on (U, V ) where
the weight of the edge (u, v) is given by the score for (u, v)
aforementioned. We then compute the matching in this bi-
partite graph that has maximum weight5. The algorithm
then claims that records that are connected by an edge be-
long to the same user. Under the assumptions introduced
above, we can prove that this procedure is always correct.

In the rest of this section, we provide more details on
how the scores of a pair (u, v) are determined: For each
(location, time) bin (`, t), we compute Score(u, v, `, t) =
ln (φ`,t(a1, a2)), where the term φ`,t in the logarithm is:

P [A1(u, `, t) = a1 ∧A2(v, `, t) = a2 | σI(u) = v]

P [A1(u, `, t) = a1] · P [A2(v, `, t) = a2]
.

5If some edges have negative weight it is possible in the-
ory for a maximum weight matching not to match all users.
However, under our assumptions it does not happen.



The numerator of φ measures the probability that the same
user performs a1 actions in domain 1 and a2 actions in do-
main 2 in the bin (`, t). The two terms in the denominator
are the probability that an arbitrary user performs a1 ac-
tions in domain 1 in bin (`, t), and another user performs
a2 actions in domain 2 in this bin. Since we assume that
user performs actions independently, φ`,t(a1, a2) measures
how much more likely it is to observe a1 actions in domain
1 by account u and a2 actions in domain 2 by account v if
these accounts belong to the same user than if these are two
different users.

Note that, in the above definition of φ`,t, the probability
is taken in the model we introduce (i.e., that of independent
actions taken conditioned on Poisson visits). This yields
multiple equivalent formulas to compute the ratio φ`,t:

Lemma 1. The value of φ`,t(a1, a2) in the model we in-
troduce is equal to any of the following expressions (where
λ`,t is denoted by λ for ease of notation):

(i)
P [A1(u, `, t) = a1 ∧A2(v, `, t) = a2 | σI(u) = v]

P [A1(u, `, t) = a1] · P [A2(v, `, t) = a2]
.

(ii)
e−λ

∑
k≥max(a1,a2)

λk( ka1)(1−p1)k−a1( ka2)(1−p2)k−a2
k!∑

k≥a1

λk( ka1)(1−p1)k−a1
k!

·
∑
k≥a2

λk( ka2)(1−p2)k−a2
k!

.

(iii) e−λ(1−p1−p2)

(λ(1−p1))a1 (λ(1−p2))a2
∑
k≥max(a1,a2)

(λ(1−p1)(1−p2))kk!
(k−a1)!(k−a2)!

.

(iv) e−(λp1p2)(1−p1)a2 (1−p2)a1
(λ(1−p1)(1−p2))min(a1,a2) E

[
(X+max(a1,a2))!
(X+|a1−a2|)!

]
,

for expectation taken over X a Poisson variable with
parameter r = λ(1− p1)(1− p2).

Proof. (i) becomes (ii) once we develop each probability
by conditioning on the number of visits k that u and/or v
make to the bin (`, t), and we observe that a few terms sim-
plify. To obtain (iii) one should observe by the Poisson sam-
pling property that A1(u, `, t) is also distributed according
to a Poisson variable, with parameter (λp1). This simplifies
the denominator which then yields this expression. Finally,
to obtain (iv), it suffices to introduce the change of variables
k′ = k−max(a1, a2) and notice that the series becomes this
expectation taken over all possible values taken by X.

Our algorithm, formalized immediately below, can lever-
age any of the above formulas to approximate φ. Expression
(i) is the most general (and holds even for non-Poisson vis-
its). Using (iv) with p1 = p2 and a1 = a2 = a we see that
the score is especially large when λ is small (as this visit is
rare) and a is large (the common observations occurs more
than once). For each pair of records, the algorithm com-
putes all the scores associated with the (location,time) bins.
It sums them across all bins to compute the weight of the
edge between this pair.

While the algorithm is conceptually well defined, there
are two things to note about its implementation. First, the
input includes the set of parameters of the Poisson distri-
bution, {λ`,t}; these are not known, but can be estimated
(see discussion in Section 5). Second, the definition of φ in-
volves infinite sums over all values of k ≥ a1, a2. We prove
below that this can be approximated to arbitrary precision
by taking the sum over a limited number of terms.

We now justify our algorithmic approach, and prove that
the expected score is highest for the true matching.

Algorithm 1: Our reconciliation algorithm

Require: ∀u ∈ U : r1(u), ∀v ∈ V : r2(v), {λ`,t}
for (u, v) ∈ (U × V ) do
w(u, v) =

∑
t∈T

∑
`∈L lnφ`,t (a1(u, `, t), a2(v, `, t))

end for
Let E = {w(u, v) : (u, v) ∈ (U × V )}
Compute the maximum weighted matching on the bipar-
tite graph B(U, V,E)
return the function that maps matched vertices.

4.2 Relation to Maximum Likelihood
We explain our choice of the function φ (and hence our

specific weight function w(u, v)) by showing that the weight
of a matching is proportional to its log likelihood, and the
matching with maximum expected weight (i.e. maximum
expected likelihood) is indeed the true matching σI .

The observed inputs to the algorithm are the mobility
records r1, r2. Taking a maximum likelihood estimation
(MLE) approach, our goal is to find the matching or per-
mutation σ that maximizes the likelihood P [σ | r1, r2]. As
is standard, we have:

P [σ | r1, r2] =
P [R1 = r1, R2 = r2 | σ] · P [σ]

P [R1 = r1, R2 = r2]

Assuming a uniform prior over all permutations σ, it is
easy to see that we are trying to find the permutation σ
maximizing P [R1 = r1, R2 = r2 | σ].

Assuming σ is the true permutation / mapping, since mo-
bility of different users is independent, the probability of
observing various actions for u depends only on the actions
of σ(u) = v. Therefore, we have: P [R1 = r1, R2 = r2 | σ]

=
∏

u,v:σ(u)=v

∏
`∈L

∏
t∈T

P [a1(u, `, t), a2(v, `, t) | σI(u) = v] (1)

To normalize this probability, we divide by the overall
probability of observing r1 and r2 in the two domains. Since
P [R1 = r1] =

∏
u

∏
(`,t)∈L×TP [A1(u, `, t) = a1(u, `, t)] and

P [R2 = r2] =
∏
v

∏
(`,t)∈L×T P [A2(v, `, t) = a2(v, `, t)]

we note in particular that P [R1 = r1] · P [R2 = r2] does not
depend on σ. Hence dividing Eq.(1) by it does not change
which σ maximizes the likelihood.

Combining these, it is easy to observe that the likelihood
of σ is proportional to:

P [R1 = r1, R2 = r2 | σ]

P [R1 = r1] · P [R2 = r2]
=∏

u,v:σ(u)=v

∏
(`,t)∈L×T

φ`,t(a1(u, `, t), a2(v, `, t)

Taking the logarithm of both sides, we see that the log
likelihood is proportional to:∑
u,v:σ(u)=v

∑
(`,t)∈L×T

lnφ`,t(a1(u, `, t), a2(v, `, t)) =
∑

u,v:σ(u)=v

w(u, v)

To put it differently, this proves that the log likelihood of σ is
exactly the weight of the matching it defines in the bipartite
graphs that our algorithms constructs. Hence, constructing
a maximum-weight matching as our algorithm does is equiv-
alent to computing the maximum-likelihood permutation σ
given our observations.



What remains to be shown is that maximum likelihood
exhibits a gap, i.e., the correct permutation σI reconciling
identity of all users has an expected weight that is higher
than any other permutation by a positive margin. Note
that, since φ involves infinite sums, we need to prove this
result for the approximated expected weight that we obtain
after truncating each sum in the definition of φ.

4.3 Proof of Correctness
Recall that for each location ` and time t, we compute a

score for a pair of users u and v based on the number of
observed actions a1(u, `, t) and a2(v, `, t) as the logarithm
of the function φ`,t. Fixing `, t, we drop the subscripts and
simply write λ = λ`,t and φ = φ`,t. We defined φ(a1, a2) as:

eλ
∑
k≥max{a1,a2}

λk

k!

(
k
a1

)
(1− p1)k−a1

(
k
a2

)
(1− p2)k−a2∑

k≥a1
λk

k!

(
k
a1

)
(1− p1)k−a1 ·

∑
k≥a2

λk

k!

(
k
a2

)
(1− p2)k−a2

Note that this requires taking three infinite sums, but to
define a practical algorithm, we cannot sum over an infinite
number of terms. We now argue that for any C, we can
efficiently approximate φ to within ±1/C. More formally

Theorem 1. Let C ≥ e7 and φ′(a1, a2) be defined using
the above definition of φ(a1, a2) by truncating the numerator
after max{lnC, 2 max{a1, a2}} terms, and each factor in the
denominator after lnC terms. We then have

1− 1
C
≤ φ′(a1,a2)

φ(a1,a2)
≤ 1 + 1

C
.

We now show that the expected weight of the true / iden-
tity permutation is larger than the expected likelihood of
any other permutation by a constant, even after truncating
the calculation of φ(a1, a2).

Lemma 2. For any bin (`, t) and any pair of users (u, v),
then v 6= σI(u) implies E[Score(u, v, `, t)] ≤ 0. On the other
hand, v = σI(u) implies E[Score(u, v, `, t)] > λ`,tp

2
1p

2
2K,

where K = 1
2
λ(p1 + p2 − p1p2)2.

Proof. Since we have a fixed `, t, we use φ to denote
φ`,t, λ to denote λ`,t, and A1(u), A2(v) to denote A1(u, `, t)
and A2(v, `, t) respectively. First, consider the case v 6=
σI(u). The expected value of φ, i.e., E[φ(A1(u), A2(v))] can
be rewritten:∑

a1,a2

P [A1(u) = a1]P [A2(v) = a2] · φ(a1, a2)

=
∑
a1,a2

P [A1(u) = a1]P [A2(v) = a2]

×
(
P [A1(u) = a1 ∧A2(v) = a2 | v = σI(u)]

P [A1(u) = a1] · P [A2(v) = a2]

)
=

∑
a1,a2

P [A1(u) = a1 ∧A2(v) = a2 | v = σI(u)] = 1

where the final equality comes from summing probabilities
over the entire domain of the joint distribution. By Jensen’s
inequality:

E[Score(u, v, `, t)] = E[lnφ(A1(u), A2(v))]

≤ lnE[φ(A1(u), A2(v))] = ln 1 = 0

We now consider the harder case, when v = σI(u).

E[Score(u, v, `, t)] = E[lnφ(A1(u), A2(v))]

=
∑
a1,a2

P [A1(u) = a1 ∧A2(v) = a2 | v = σI(u)] · lnφ(a1, a2).

To simplify notation below, we use X(a1, a2) to denote
P [A1(u) = a1 ∧ A2(v) = a2 | v = σI(u)], and Y (a1, a2) to
denote P [A1(u) = a1] · P [A2(v) = a2]. The distributions X
and Y give the probabilities of observing a1 and a2 actions
in the two domains assuming the users are the same, and
are not the same respectively. Using this notation, we have:

E[Score(u, v, `, t)] =
∑
a1,a2

X(a1, a2) ln
X(a1, a2)

Y (a1, a2)
= I(A1;A2)

where I(A1;A2) denotes the mutual information between A1

and A2, which is also equal to DKL(X ‖ Y ), the Kullback-
Leibler (KL) divergence of Y from X; this quantity is always
non-negative.

We have already shown that for v 6= σ(u), the expected
score is at most 0. On the other hand, for v = σ(u), we
have the expected score being non-negative. However, we
wish to go further and prove that E[Score(u, v, `, t)] is lower
bounded by a positive constant in the latter case.

To do this, we apply the following lower bound:

I(A1;A2)=X(0, 0) ln
X(0, 0)

Y (0, 0)
+
∑

a1,a2 6=(0,0)

X(a1, a2) ln
X(a1, a2)

Y (a1, a2)

≥ X(0, 0) ln
X(0, 0)

Y (0, 0)
+ (1−X(0, 0)) ln

(1−X(0, 0))

(1− Y (0, 0))
.

We now evaluate X(0, 0) and Y (0, 0) respectively.

X(0, 0) =
∑
k≥0

e−λ
λk

k!
(1− p1)k(1− p2)k

= e−λ(p1+p2−p1p2)
∑
k≥0

e−λ(1−p1)(1−p2)
(λ(1− p1)(1− p2))k

k!

= e−λ(p1+p2−p1p2) ≥ 1− λ(p1 + p2 − p1p2) ,

where the last equality is because the preceding sum con-
tains all probabilities from a Poisson distribution with rate
parameter λ(1− p1)(1− p2), and the final inequality comes
from the Taylor series expansion of e−x. Similarly, we have:

Y (0, 0) =

∑
k≥0

e−λ
λk

k!
(1− p1)k

 ·
∑
k≥0

e−λ
λk

k!
(1− p2)k


= e−λp1e−λp2 = e−λ(p1+p2) ,

This yield a lower bound on the mutual information above:

First, X(0, 0) ln
X(0, 0)

Y (0, 0)

≥ (1− λ(p1 + p2 − p1p2)) ln
e−λ(p1+p2−p1p2)

e−λ(p1+p2)
= (1− λ(p1 + p2 − p1p2))λp1p2 .

Then (1−X(0, 0)) ln
(1−X(0, 0))

(1− Y (0, 0))

≥ λ(p1 + p2 − p1p2) ln
(1− e−λ(p1+p2−p1p2))

(1− e−λ(p1+p2))

Combining these terms and applying considerable alge-
braic manipulation yields the desired result with the appro-
priate value of K. Please refer to the appendix for this final
step.

5. COMPARISON AND CASE STUDIES
Having established the theoretical guarantees for our al-

gorithm, we now compare its performance to alternative rec-
onciliation algorithms, inspired by the state of the art. We



Dataset Domain Users Checkins Median Checkins Locations Date Range

FSQ-TWT Foursquare 862 13,177 8 11,265 2006-10 – 2012-11
Twitter 862 174,618 60.5 75,005 2008-10 – 2012-11

IG-TWT Instagram 1717 337,934 93 177,430 2010-10 – 2013-09
Twitter 1717 447,366 89 182,409 2010-09 – 2015-04

Call-Bank Phone Calls 452 ∼200k ∼550 ∼3500 2013-04 – 2013-07
Card Transactions 452 ∼40k ∼60 ∼3500 2013-04 – 2013-07

Table 1: Overview of datasets used in study. For FSQ-TWT and IG-TWT, number of locations refers to
locations at a 4 decimal GPS granularity (position within roughly 10m).

describe our datasets, the baselines we compared against,
some of our real-world implementation, and our results.

5.1 Datasets
Studying the cross domain problem is challenging due to

the difficulty in obtaining ground truth. We used a total of
three datasets (each from different pairs of spatio-temporal
domains) to evaluate the performance of Algorithm 1.

Foursquare–Twitter.
Our first dataset, labeled FSQ-TWT, links checkins on

the location-based social network, Foursquare, to geolocated
tweets. This dataset was collected previously in [26]. After
selecting users with locations present in both dataset, we ob-
tain 862 users with 13,177 Foursquare checkins and 174,618
Twitter checkins.

This dataset presents an interesting challenge. There is
a large imbalance in data, with many more tweets than
Foursquare checkins.

Additionally, the domains are somewhat different– whereas
Foursquare checkins are typically associated with a user show-
ing what they are currently doing (in particular, eating at
a restaurant), tweets are more general and associated with
more behaviors. To verify that tweets and checkins were
usually not one event forwarded by software across both
services, which could make this dataset artificially easy, we
looked at if checkins matched exactly on time place. Only
260 pairs of checkins (less than 0.3%) had exactly matching
GPS coordinates, and of those, none were within 10 seconds
of each other. Beyond this, we reduced all coordinates to
4 digits of accuracy (around 10m), removing low level GPS
digits that could be used as a “signature”.

Instagram–Twitter.
Our second dataset, referred to as IG-TWT, links users

on the photo-sharing site, Instagram, to the microblogging
service, Twitter. We obtained this data in the following
manner: First, we download publicly available location data
from Instagram, saving user metadata if he or she had at
least 5 geotagged photos in their 100 most recently uploaded
photos. For each photo, we did not download or save any
images, instead only using latitude-longitude pairs, times,
and a user identifier. To find more profile IDs to crawl, we
used the profile IDs of anyone who commented or “liked”
a crawled user’s photos. We started this process with the
founder of Instagram, a central node whose photos are com-
mented on or receive “like” from a diverse set of users. This
process yielded 120K users with 35M checkins (i.e. time,
latitude-longitude pairs from a geolocated photo).

On Instagram, a user can associate a single URL with
their profile. We analyzed these URLs, looking for URLs
which matched Twitter accounts. Of these, we manually
examined 50, finding that all profiles were correct matches
based on profile name, profile picture, and/or posted pho-
tos, when available. Then, using Twitter’s API, we crawled
all publicly available tweets for those users, again saving
latitude-longitude pairs, time, and user identifier for geolo-
cated tweets. This process left us with 1717 matched users,
with a total of 337,934 Instagram checkins and 447,366 Twit-
ter checkins.

This dataset promises to be the “easiest”, due to the large
number of photos and tweets per user (median 93 and 89, re-
spectively). Picture-taking and tweeting appear to be some-
what different behaviors, but related in the sense that both
are actions whereby a user communicates an action or mes-
sage to a larger, public audience. To again verify that tweets
and Instagram posts were not one event forwarded to both
services via software, we again looked at exact matches in
low-level GPS coordinates and time. Only 2415 pairs of
checkins (around 0.6% of all checkins) had exactly matching
GPS coordinates, and of those, only 2 were within 10 sec-
onds of each other. Again, all coordinates were then reduced
to 4 digits.

Cell Phone – Credit Card Record.
Our third and final dataset contains a log of phone calls

(referred to as call detail records or “CDR”) linked to credit
card transactions (referred to as “bank” data) made by 452
users from a G20 country over 4 months from April 1st
through July 31st, 2013. We will refer to this dataset as
Call-Bank. The linking was made by two companies who
originated the data, a telecommunications and credit card
company, respectively. Each record of a phone call in the
CDR data consisted of a phone number, time, and cell tower
ID with its latitude-longitude coordinates. Each record of
a credit card transaction in the bank data consisted of the
latitude and longitude of the geolocated business at which
the transaction was made, along with the time and phone
number of the credit card owner. These transactions only
included in-person visits, as opposed to online or over-the-
phone transactions. The two companies hashed the phone
number using the same hash function, and associated this
hash with the information for that user. This information
was then passed to a third party. The researchers from
Columbia University accessed this information on a secure,
remote server.6 At no time were the real phone numbers or
credit card numbers available or utilized.

6The researchers from Google never had access to this data.



The two datasets log location in different ways. For the
CDR data, a user could have been anywhere within range
of the associated cell tower. The bank data, however, have
a more precise localization. To link the two, we compute
the Voronoi diagram generated by cells’ locations. We then
say that a business location is the same as a cell tower if it
is contained in this tower’s Voronoi cell. Note that this is
a clear demonstration of the need for location bins (in this
case, the Voronoi cells), as introduced in our model.

The original data is extremely sparse, and contains above
70k users common to the two datasets. However, many users
have no calls or bank transactions in the same location, be-
cause about 80% of users have fewer than 10 transactions,
meaning they use their credit card on average roughly once
every two weeks. To make the problem more tractable, we
used a smaller subset of active users, by discarding those
that made fewer than 50 bank transactions throughout the
entire span (i.e., keeping those making a transaction on av-
erage every 2-3 days). It amounts to a total of 452 users,
whose transactions and calls are dispersed throughout a to-
tal of over 3500 cell towers.

This dataset promises to be extremely challenging. Phone
calls and credit card transactions are very different activi-
ties, and it is not expected that they occur for a user in the
same place at the same time. Indeed, only 294 of our 452
active users had even at least one location in common across
domains.

Summary.
We summarize the statistics on the datasets in Table 1.

Note that although our datasets have the same set of users in
both domains, our algorithm can run without this requirement–
our algorithm will simply leave some users unmatched. Al-
though by some standards these datasets are small, their
size is comparable to previous studies [26, 19] and it is dif-
ficult to obtain cross-domain datasets of greater magnitude
while still maintaining high levels of accuracy.

5.2 Prior Algorithms
We compare our algorithm with three state of the art rec-

onciliation techniques, which we briefly describe in the rest
of this subsection.

Exploiting Sparsity: The “Netflix Attack”.
The first reconciliation technique that we consider is a

variation of the algorithm used to de-anonymize the Netflix
prize dataset [15]. The Netflix algorithm cannot be applied
directly to our setting, but is not hard to adapt. The algo-
rithm first defines a score between users u and v as follows:

S(r1(u), r2(v)) =
∑

(l,t)∈r1(u)∩r2(v)

wlfl(r
1(u), r2(v)) ,

where wl = 1

ln(
∑
v,t a2(v,l,t))

and fl(r
1, r2) is given by

e

∑
t a1(u,l,t)

n0 + e
− 1∑

t a1(u,l,t)

∑
t:(l,t)∈r1 min

t′:(l,t′)∈r2
|t−t′|
τ0 .

Note that n0 and τ0 are unspecified parameters of the al-
gorithms. This score function considers the visits of u to the
locations near v’s trajectories. In resemblance to the score
function in [15], it favors locations that are visited less often,
as they are considered more discriminative just like in [9],
frequent visits to the same location, and visits that occur

shortly before or after v’s traces. The algorithm declares a
user u with the best score to be a match for a user v if the
score of the best candidate and the score of the second best
candidate differ by no less than ε standard deviations of all
candidate scores - otherwise the user is unmatched. Intu-
itively, this algorithm is designed to exploit sparsity, using
unique, rare occurrences in two datasets to link users. For
future use, we refer to this algorithm as NFLX.

Exploiting Density: Histogram Matching.
In [23] the authors leverage frequency of visits to location

as a fingerprint of individuals across datasets. Let Γ1
l (u)

be the fraction of time that user u is in location l in the
first dataset and Γ1(u) be the distribution across different
locations. For each pair of user u and v the weight w(u, v)
between them is defined using the Kullback-Leibler diver-
gence:

D

(
Γ1(u)

∥∥∥∥Γ1(u) + Γ2(v)

2

)
+D

(
Γ2(v)

∥∥∥∥Γ2(v) + Γ1(u)

2

)
.

Each edge weight reflects the degree of disparity between two
users. This algorithm computes a minimum weight match-
ing for the complete bipartite graph drawn between indi-
viduals, as a way to minimize that disparity. In contrast to
NFLX, this algorithm relies on the density of data, assuming
that over time even in different periods a unique histogram
of user visits will emerge from a user’s behavior. In the re-
maining we refer to this technique as HIST. Note that other
methods use frequency of visits to define similarity, such as
[9]. It can be shown under similar assumptions to our model
that within the categories of algorithms that only leverag-
ing density, HIST provably provides the minimum error and
that it decreases fast as more data are available [22].

Alternative: Frequency-Based Likelihood.
As a third comparison we consider the reconciliation tech-

nique introduced in [19], which approximates the likelihood
of a visit made in one domain by the frequency of visits for
that user in the other domain, hence assuming:

P
(
l | r1(u)

)
=

∑
t a1(u, l, t) + α∑

l′,t a1(u, l′, t) + α|L| ,

where α > 0 is a parameter. This regularization, sometimes
referred to as Laplacian smoothing, prevents null empirical
frequencies from leading to an infinite score. The mapping
(that we denote by WYCI after the title of the paper) is
then computed as σ(u) = arg maxv

∏
(l,t)∈r2(v) P

(
l | r1(u)

)
.

The paper introduces another distance parameter, but later
claims it has negligible impact, as we also observe ourselves.

5.3 Implementing Algorithm 1 in Practice

Parameter Estimation.
In our experiments we partition the time interval into

1024, 2048, 3072 and 4096 time bins. In each time bin we
de-duplicate visits to the same locations. In the rest of the
paper we describe the results for 4096 time bins, although
as we show, similar results hold for different binning.

Our algorithm requires knowing the three main param-
eters p1, p2 and λl,t for each bin (l, t). Unfortunately, us-
ing single domain observations separately, the problem is ill
posed. For instance parameters (p1, p2, λ) and ( p1

2
, p2

2
, 2λ)
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Figure 2: Precision and Recall plots for each dataset.

are simply indistinguishable from a marginal standpoint. On
the other hand, by conditioning on bins (l, t) where an action
in domain 1 is observed, we have

p2 ≈
∑
u

∑
t

∑
l min(a1(u, l, t), a2(σI(u), l, t))∑
u

∑
t

∑
l a1(u, l, t)

,

at least in expectation. But this formula requires knowing
σI , which is precisely the unknown we aim to find. A critical
observation we make is that approximating p1 and p2 is good
enough. All we need is a candidate permutation σ to match
user across different domains only for the sake of parameter
estimation. In our experiment we use the output of the
HIST as our candidate permutation σ. While it is possible
to iterate once a new permutation is found to refine even
further, we observe in practice that it is not necessary.

Finally, we have to estimate λl,t. Unfortunately most
datasets are sparse and do not allow separate estimation
of λl,t accurately at each time and location. However, we
found that assuming that λl,t is constant across time allows
a first estimate of a location-normalized popularity given by

ρl ≈
∑
u

∑
t ai(u,l,t)∑

u

∑
t

∑
l ai(u,l,t)

. The parameter λ can then be com-

puted by aggregating observations on all locations together
with normalizing factors removed:

λ ≈ 1

(|U |+ |V |)|T |
∑
l

(∑
u,t a1(u, l, t)

p1ρl
+

∑
v,t a2(v, l, t)

p2ρl

)
.

Later, we show that estimated parameters are quite robust
and resemble ground truth estimated from the true match-
ing.

Additional Feature.
Finally, we introduce for practical settings an “eccentric-

ity” factor ε, which works as follows. After a matching is
computed, we only output this edge if the matched can-
didate’s score differs from the second-best by more than ε
times the standard deviation of all candidates.

5.4 Comparison on Real Cases
We now turn our attention to experimental performances

of our algorithm. In Figure 2, we show the precision recall
plots for our algorithm (for different eccentricity values) and
for the other three reconciliation techniques: HIST, NFLX
and WYCI. For our algorithm, we used estimated parame-

ters and for the other techniques, we used optimal parame-
ters (found via exhaustive search).

There are several interesting observations that we can
make on Figure 2. First, on the public dataset FQ-TWT
our algorithm outperforms all prior methods (especially in
precision). Nevertheless it is interesting to note that the pre-
cision of all methods is not ideal, probably due to sparsity
of the data.

A second interesting observation is that our algorithm
achieves very high precision when the dataset is more rich.
In fact when we then turn our attention to our second dataset,
the live service (IG-TWT) that we crawled, we obtain almost
perfect precision. Note that not all the other techniques,
for example NFLX, are able to leverage the denser data, as
much.

Finally we test our method on a much more heteroge-
neous dataset (Call-Bank) that is also more realistic and
sensitive. In this setting our algorithm outperforms previ-
ous techniques, with none of the previous algorithms able to
achieve good precision and recall at the same time.

Figure 3: Best precision and recall performance for
each technique in various datasets.

In Figure 3 we present the best performances of the four
techniques in the three dataset. It is interesting to notice
that our algorithm gives the best trade-off between precision
and recall. In particular, even if other techniques achieve
sometimes better precision or recall our algorithm is not
dominated by other algorithms. In fact it is always Pareto
optimal in respect of the precision recall curve, and the only
algorithm for which this is true.

We now investigate the impact of the number of user
checkins on accuracy. In Figure 4, by binning users into
quartiles based on number of checkins, and observing the
accuracy, we can see that that our algorithm is able to lever-
age both the amount of the data and its uniqueness. In fact
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Figure 4: Number of checkins vs. our algorithm’s
accuracy.

the performance of our algorithm are positively correlated
both with the number of checkins and with the entropy of
the visited location.
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Figure 5: Effect of parameter estimation and time
binning on algorithm performance.

We next turn our attention to the impact of our estimated
parameters. As mentioned in Sec. 5.3, we cannot know the
exact values of p1, p2, and λl,t. When running our algo-
rithm, we first found a guess at a permutation, and used
that matching to estimate the parameters. Comparing this
with using the true permutation, we can see how far off
our guess was and the impact on the algorithm. Fig. 5
shows two lines, one using parameters derived from the real
permutation and one using an estimate. Clearly, using the
estimate is as good as using the real permutation, and is in
fact better at certain time levels. Additionally, this figure
shows that there is only a small boost in performance when
using differently sized time bins. This is helpful in that it
seems the algorithms performance is largely unaffected by
choice of parameters.

Figure 6: Precision and recall for the FSQ-TWT
datasets for different values of the eccentricity and
varying numbers of terms of the infinite sum.

Finally we show in Figure 6 the effect of eccentricity and
number of terms (of the infinite sum) on performances of

our algorithm. The eccentricity is a term that rejects links
if other candidates are also very likely. A higher eccentricity
should thus correspond with greater precision at the cost of
lower recall. In these figures, we can see that this relation-
ship indeed holds, allowing users to potentially find only the
strongest matches, perhaps as “seed” links for other algo-
rithms. The number of terms appears to have little effect
on algorithm performance, empirically validating our proof
that our approximation appears to have little impact on the
final result.

6. CONCLUSION
User data is constantly multiplying across an increasing

array of websites, apps and services, as they are eager to
share part of their behavior with service providers to re-
ceive personalized (and free) services. Users may attempt to
deal with the privacy implications through partially or in-
accurately filled profile information (such as entering a fake
name, age, etc.), or using the privacy settings to“lock down”
access. However, such methods are of limited use, because
commonly collected fields (such as location) that are inte-
gral to the service provided may in themselves be sufficient
to link this account with other accounts of the same user.

In this paper, we present a new approach to character-
ize when and how such linking is possible. We theoretically
justify our algorithm and empirically validate it on real da-
tasets. The results we present, most of them shown for the
first time in a cross-domain setting, demonstrate that sim-
ple conditions may be sufficient for correct reconciliation
and highlight the sensitivity of location data. Several av-
enues for further research are suggested by these results:
Our model assumes very simple behavior by users, model-
ing them as generating location records independently, and
is already quite effective. Can one further exploit patterns
inherent to human mobility, such as sleep schedule, com-
mute patterns, working days, and other time dependencies?
Is location special, or are there other universal characteris-
tics that are equally meaningful?
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9. APPENDIX

9.1 Proof of Theorem 1
We first show that each of the 2 factors in the denominator

of φ(a1, a2) can be replaced by the corresponding truncated
sum while affecting its value by at most 1 + 1/C2. Since
the numerator is decreased by truncation, this establishes
the upper bound on φ′(a1, a2). We then show that for the
numerator of φ(a1, a2), the difference between the infinite
sum and its truncated version is at most 1/C times the first
term in this sum. Since the denominator is decreased by
truncation, this establishes the lower bound on φ′.

To obtain the upper bound, we first consider the factor∑∞
k=a1

λk

k!

(
k
a1

)
(1 − p1)k−a1 in the denominator. Expanding

the binomial coefficient and pulling common terms outside
the summation, this factor can be written as:

λa1

a1!

∑
k≥a1

λk−a1(1− p1)k−a1

(k − a1)!
=
λa1

a1!

∑
k≥0

λk(1− p1)k

k!

Note that first term in this revised sum evaluates to 1, the
term of index lnC evaluates to λlnC(1 − p1)lnC/(lnC)! �
1
C2 , and the sum of all terms from lnC onward are at most
λlnC(1−p1)lnC/(lnC)!

(1−λ) (upper bounding the infinite sum with

a geometric series). Since λ < 1/2, we conclude that the
sum of all terms from index lnC onward are less than 1/C2

times the first term.
The truncated sum for the second factor in the denomina-

tor can be bounded identically, giving us the desired upper
bound on φ′(a1, a2).

It remains only to establish the lower bound by bounding
the truncated numerator. We assume without loss of gen-
erality that a1 ≥ a2. Expanding the binomial coefficients
in the definition of the numerator of φ(a1, a2) and pulling
common terms outside the summation, we can rewrite the
numerator as:

λa1(1− p2)(a1−a2)

a1! a2!

∑
k≥a1

λk−a1 ((1− p1)(1− p2))k−a1 · k!

(k − a1)!(k − a2)!

The first term inside the revised sum is simply a1!/(a1 −
a2)! > 1. Let i denote the final index in the truncated
sum, a1 + max{lnC, 2a1}. The ith term is upper bounded
by λi−a1 · i!

(i−a1)!(i−a2)!
. If a1 ≥ 4, then since i ≥ 3a1, it

is easy to see that i!
(i−a1)!2

< 1/2. If a1 ≤ 4, then since

i − a1 ≥ lnC ≥ 7 , we can note that i!
(i−a1)!2

< 1/2. As

λ < 1/2 and i > a1+lnC, the ith term is less than 1/C ·1/2.
Again upper bounding the infinite sum with a geometric
series, the sum of all terms from index i onward is less than
the ith term divided by (1−λ), and hence < 1/C. Therefore,
the sum of all terms from the ith term onward is less than
1/C times the first term, completing the proof.

9.2 Proof of Lemma 2
Recall that in Lemma 2, we proved that E[Score(u, v, `, t] ≤

0 for any pair of users u, v such that v 6= σI(u). For v =
σI(u), we showed that the expected score is lower bounded
by:

X(0, 0) ln
X(0, 0)

Y (0, 0)
+ (1−X(0, 0)) ln

(1−X(0, 0))

(1− Y (0, 0))

= X(0, 0) ln
X(0, 0)

Y (0, 0)
− (1−X(0, 0)) ln

(1− Y (0, 0))

(1−X(0, 0))

≥ (1− λ(p1 + p2 − p1p2))λp1p2 −

λ(p1 + p2 − p1p2) ln
(1− e−λ(p1+p2))

(1− e−λ(p1+p2−p1p2))

To prove that this expression is lower bounded by (λp1p2)2K,
it suffices to prove that:

(1− λ(p1 + p2 − p1p2))λp1p2 −

λ(p1 + p2 − p1p2) ln
(1− e−λ(p1+p2))

1− e−λ(p1+p2−p1p2))
≥ (λp1p2)2K

or equivalently:

(1− λ(p1 + p2 − p1p2))p1p2 − λ(p1p2)2K

− (p1 + p2 − p1p2) ln
(1− e−λ(p1+p2))

(1− e−λ(p1+p2−p1p2))
≥ 0 (2)

We can simplify the final factor in this inequality as follows:

ln
(1− e−λ(p1+p2))

(1− e−λ(p1+p2−p1p2))
= ln e−λ(p1p2)

(eλ(p1+p2) − 1)

(eλ(p1+p2−p1p2) − 1)

=

(
ln

(eλ(p1+p2) − 1)

(eλ(p1+p2−p1p2) − 1)

)
− λp1p2

where the first equality came from multiplying the numera-
tor and denominator by eλ(p1+p2−p1p2).
Substituting into Inequality (2), our lemma reduces to:

(1− λ(p1 + p2 − p1p2))p1p2 − λ(p1p2)2K

(p1 + p2 − p1p2)

(
ln

(eλ(p1+p2) − 1)

(eλ(p1+p2−p1p2) − 1
)− λp1p2

)
≥ 0

or, equivalently:

p1p2(1− λ(p1p2)K)−

(p1 + p2 − p1p2) ln
(eλ(p1+p2) − 1)

(eλ(p1+p2−p1p2) − 1)
≥ 0 (3)

This is hard to simplify directly, so we introduce the fol-
lowing upper bound:

λp1p2 = ln
1

e−λp1p2
= ln

eλ(p1+p2)

eλ(p1+p2−p1p2)
≤ ln

eλ(p1+p2) − 1

eλ(p1+p2−p1p2) − 1

Using Z to represent the quantity ln eλ(p1+p2)−1

eλ(p1+p2−p1p2)−1
and

substituting the new inequality in Inequality (3), we are try-



ing to prove:

p1p2(1− ZK)− (p1 + p2 − p1p2)Z ≥ 0

⇔ p1p2 ≥ (p1 + p2 − p1p2(1−K))Z

⇔ p1p2
p1 + p2 − p1p2(1−K)

≥ Z

⇔ e
p1p2

p1+p2−p1p2(1−K) ≥ eλ(p1+p2) − 1

eλ(p1+p2−p1p2) − 1

Now to conclude the proof we use two inequalities that
follows from the Taylor expansions. In particular we have:

ex ≥ 1 + x+
1

2
x2

and for x ∈ o(1):

ex ≤ 1 + x+ x2

Now by assuming that λ ∈ o(1) and by fixingK = 1
2
λ(p1+

p2 − p1p2)2 we get:

e
p1p2

p1+p2−p1p2(1−K) ≥ eλ(p1+p2) − 1

eλ(p1+p2−p1p2) − 1

⇔ 1 +
p1p2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

+

p21p
2
2

2(p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2)2

≥

λ(p1 + p2) + λ2(p1 + p2)2

λ(p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2)

⇔ 1 +
p1p2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

+

p21p
2
2

2(p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2)2

≥

1 +
p1p2 + λ(p1 + p2)2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

⇔
1
2
p21p

2
2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

≥ λ(p1 + p2)2

Now by fixing λ < 1
8

p21p
2
2

(p1+p2)2
we get:

1
2
p21p

2
2

p1 + p2 − p1p2 + 1
2
λ(p1 + p2 − p1p2)2

≥ λ(p1 + p2)2

⇔
1
2
p21p

2
2

p1 + p2 − p1p2 + 1
16
p21p

2
2

≥ 1

8
p21p

2
2

⇔ 1

4
p21p

2
2 ≥

1

8
p21p

2
2

So the claim follows.


