
Modeling User Search Behavior for Masquerade
Detection

Malek Ben Salem and Salvatore J. Stolfo

Computer Science Department
Columbia University

New York, USA
{malek,sal}@cs.columbia.edu

Abstract. Masquerade attacks are a common security problem that is a
consequence of identity theft. This paper extends prior work by modeling
user search behavior to detect deviations indicating a masquerade attack.
We hypothesize that each individual user knows their own file system well
enough to search in a limited, targeted and unique fashion in order to
find information germane to their current task. Masqueraders, on the
other hand, will likely not know the file system and layout of another
user’s desktop, and would likely search more extensively and broadly
in a manner that is different than the victim user being impersonated.
We identify actions linked to search and information access activities,
and use them to build user models. The experimental results show that
modeling search behavior reliably detects all masqueraders with a very
low false positive rate of 1.1%, far better than prior published results.
The limited set of features used for search behavior modeling also results
in large performance gains over the same modeling techniques that use
larger sets of features. ∗

Keywords: masquerade detection, user profiling, search behavior, svm.

1 Introduction

The masquerade attack is a class of attacks, in which a user of a system ille-
gitimately poses as, or assumes the identity of another legitimate user. Identity
theft in financial transaction systems is perhaps the best known example of this
type of attack. Masquerade attacks are extremely serious, especially in the case
of an insider who can cause considerable damage to an organization. Their de-
tection remains one of the more important research areas requiring new insights
to mitigate against this threat.

A common approach to counter this type of attack, which has been the
subject of prior research, is to apply machine learning (ML) algorithms that
produce classifiers which can identify suspicious behaviors that may indicate

∗ Support for this work has been partially provided by a DARPA grant ADAMS No.
W911NF-11-1-0140.



malfeasance of an impostor. We do not focus on whether an access by some user
is authorized since we assume that the masquerader does not attempt to escalate
the privileges of the stolen identity, rather the masquerader simply accesses
whatever the victim can access. However, we conjecture that the masquerader
is unlikely to know the victim’s search behavior when using their own system
which complicates their task to mimic the user. It is this key assumption that
we rely upon in order to detect a masquerader. The conjecture is backed up
with real user studies. Eighteen users were monitored for four days on average
to produce more than 10 GBytes of data that we analyzed and modeled. The
results show that indeed normal users display different search behavior, and that
that behavior is an effective tool to detect masqueraders. After all, a user will
search within an environment they have created. For example, a user searches for
a file within a specific directory, or a programmer searches for a symbol within a
specific source code file. We assume the attacker has little to no knowledge of that
environment and that lack of knowledge will be revealed by the masquerader’s
abnormal search behavior. Thus, our focus in this paper is on monitoring a user’s
behavior in real time to determine whether current user actions are consistent
with the user’s historical behavior, primarily focused on their unique search
behavior. The far more challenging problems of thwarting mimicry attacks and
other obfuscation techniques are beyond the scope of this paper.

Masquerade attacks can occur in several different ways. In general terms,
a masquerader may get access to a legitimate user’s account either by stealing
a victim’s credentials, or through a break in and installation of a rootkit or
key logger. In either case, the user’s identity is illegitimately acquired. Another
perhaps more common case is laziness and misplaced trust by a user, such as the
case when a user leaves his or her terminal or client open and logged in allowing
any nearby coworker to pose as a masquerader.

In this paper we extend prior work on modeling user command sequences
for masquerade detection. Previous work has focused on auditing and modeling
sequences of user commands including work on enriching command sequences
with information about arguments of commands [15, 10, 18]. We propose an ap-
proach to profile a user’s search behavior by auditing search-related applications
and accesses to index files, such as the index file of the Google Desktop Search
application. We conjecture that a masquerader is unlikely to have the depth
of knowledge of the victim’s machine (files, locations of important directories,
available applications, etc.), and hence, a masquerader would likely first engage
in information gathering and search activities before initiating specific actions.
To this extent, we conduct a set of experiments using a home-gathered Windows
data. We model search behavior in Windows and test our modeling approach
using our own data, which we claim is more suitable for evaluating masquerade
attack detection methods.

The contributions of this work are:
– A small set of search-related features used for effective masquerade

attack detection: The limited number of features reduces the amount of
sampling required to collect training data. Reducing the high-dimensional
modeling space to a low-dimensional one allows for the improvement of



both accuracy and performance. We shall use standard machine learning
techniques to evaluate the system composed of these features. Other work
has evaluated alternative algorithms. Our focus in this work is on the fea-
tures that are modeled. The best masquerade attack detection accuracy was
achieved using a modern ML algorithm, Support Vector Machines (SVMs).
SVM models are easy to update, providing an efficient deployable host mon-
itoring system. We shall use one-class SVM (ocSVM) models in this work.

– A publicly available Windows data set [1] collected specifically to
study the masquerade attack detection problem as opposed to the
author identification problem: The data set consists of normal user data col-
lected from a homogeneous user group of 18 individuals as well as simulated
masquerader data from 40 different individuals. The data set is the first pub-
licly available data set for masquerade attack detection since the Schonlau
dataset [14].

In Section 2 of this paper, we briefly present the results of prior research work
on masquerade detection. Section 3 expands on the objective and the approach
taken in this work. In Section 4, we present our home-gathered dataset which we
call the RUU dataset. Section 5 shows how the malicious intent of a masquerader,
whose objective is to steal information, has a significant effect on their search
behavior. In section 6, we discuss experiments conducted by modeling search
behavior using the RUU dataset. In Section 7, we discuss potential limitations
of our approach and how they could be overcome. Finally Section 8 concludes the
paper by summarizing our results and contributions, and presenting directions
for our future work.

2 Related Work

In the general case of computer user profiling, the entire audit source can in-
clude information from a variety of sources, such as user commands, system
calls, database/file accesses, and the organization policy management rules and
compliance logs. The type of analysis used is primarily the modeling of sta-
tistical features, such as the frequency of events, the duration of events, the
co-occurrence of multiple events, and the sequence or transition of events. How-
ever, most of this work failed to reveal or clarify the user’s intent when issuing
commands or running processes. The focus is primarily on accurately detecting
change or unusual command sequences. In this section, we review approaches
reported in the literature that profile users by the commands they issue.

Schonlau et al. [15] applied six masquerade detection methods to a data
set of ‘truncated’ UNIX commands for 70 users collected over a several month
period. Truncated commands are simple commands with no arguments. Each
user had 15,000 commands collected over a period of time ranging between a
few days and several months [14]. Fifty users were randomly chosen to serve as
intrusion targets. The other 20 users were used as masqueraders. The first 5000
commands for each of the 50 users were left intact or ‘clean’, while the next
10,000 commands were randomly injected with 100-command blocks issued by



the 20 masquerade users. The commands have been inserted at the beginning of
a block, so that if a block is contaminated, all of its 100 commands are inserted
from another user’s list of executed commands. The objective was to accurately
detect the ‘dirty’ blocks and classify them as masquerader blocks. It is important
to note that this dataset does not constitute ground truth masquerade data, but
rather simulates impersonation.

The first detection method applied by Schonlau et al. for this task, called
‘uniqueness’, relies on the fact that half of the commands in the training data
are unique and many more are unpopular amongst the users. Another method
investigated was the Bayes one-step Markov approach. It is based on one step
transitions from one command to the next. The approach, due to DuMouchel
(1999), uses a Bayes factor statistic to test the null hypothesis that the observed
one-step command transition probabilities are consistent with the historical tran-
sition matrix.

A hybrid multi-step Markov method has also been applied to this dataset.
When the test data contain many commands unobserved in the training data, a
Markov model is not usable. Here, a simple independence model with probabili-
ties estimated from a contingency table of users versus commands may be more
appropriate. The method used automatically toggles between a Markov model
and an independence model generated from a multinomial random distribution
as needed, depending on whether the test data are ‘usual’, i.e. the commands
have been previously seen, or ‘unusual’, i.e. Never-Before-Seen Commands (NB-
SCs).

IPAM (Incremental Probabilistic Action Modeling), another method applied
on the same dataset, and used by Davidson and Hirsch to build an adaptive com-
mand line interface, is also based on one-step command transition probabilities
estimated from the training data [6]. A compression method has also been tested
based on the premise that test data appended to historical training data com-
press more readily when the test data stems indeed from the same user rather
than from a masquerader. A sequence-match approach has been presented by
Lane and Brodley [8]. For each new command, a similarity measure between the
10 most recent commands and a user’s profile is computed.

A different approach, inspired by the Smith-Waterman local alignment algo-
rithm, and known as semi-global alignment, was presented by Coull et al. [4].
The authors enhanced it and presented a sequence alignment method using a bi-
nary scoring and a signature updating scheme to cope with concept drift [5]. Oka
et al. [12] noticed that the dynamic behavior of a user appearing in a sequence
can be captured by correlating not only connected events, but also events that
are not adjacent to each other while appearing within a certain distance (non-
connected events). To that extent, they have developed the layered networks
approach based on the Eigen Co-occurrence Matrix (ECM).

Maxion and Townsend [10] applied a näıve Bayes classifier and provided a
detailed investigation of classification errors [11] highlighting why some mas-
querade victims are more vulnerable or more successful than others. Wang and
Stolfo compared the performance of a näıve Bayes classifier and a SVM classifier



to detect masqueraders [18]. Their experiments confirmed, that for masquerade
detection, one-class training is as effective as two class training.

These specific algorithms and the results achieved for the Schonlau dataset
are summarized in Table 1 (with True Positive rates displayed rather than True
Negatives). Performance is shown to range from 1.3% - 7.7% False Positive rates,
with a False Negative rate ranging from 24.2% to 73.2% (alternatively, True
Positive rates from 26.8% to 75.8%). Clearly, these results are far from ideal.

Table 1. Summary of Accuracy Performance of Anomaly Detectors Using the Schonlau
Data Set

Method True Pos. (%) False Pos. (%)

Uniqueness [15] 39.4 1.4

Bayes one-step Markov [15] 69.3 6.7

Hybrid multi-step Markov [15] 49.3 3.2

Compression [15] 34.2 5.0

Sequence Match [8, 15] 26.8 3.7

IPAM [6, 15] 41.1 2.7

Näıve Bayes (w. Updating) [10] 61.5 1.3

Näıve Bayes (No Upd.) [10] 66.2 4.6

Semi-Global Alignment [4] 75.8 7.7

Sequence Alignment (w. Upd.) [5] 68.6 1.9

Eigen Co-occurrence Matrix [12] 72.3 2.5

Finally, Maloof and Stephens proposed a general system for detecting mali-
cious insider activities by specifically focusing on violations of ‘Need-to-Know’
policy [9]. Although the work is not aimed directly at masquerade detection, such
a system may reveal actions of a masquerader. They defined certain scenarios
of bad behavior and combined evidence from 76 sensors to identify whether a
user is malicious or not. Our approach is more generalizable and does not spec-
ify what bad behavior looks like. Instead, we only model normal behavior and
detect deviations from that behavior.

3 Objective and Approach

When dealing with the masquerader attack detection problem, it is important to
remember that the attacker has already obtained credentials to access a system.
When presenting the stolen credentials, the attacker is then a legitimate user with
the same access rights as the victim user. Ideally, monitoring a user’s actions after
being granted access is required in order to detect such attacks. Furthermore, if
we can model the user’s intent, we may better determine if the actions of a user
are malicious or not. We have postulated that certain classes of user commands
reveal user intent. For instance, search should be an interesting behavior to
monitor since it indicates the user lacks information they are seeking. Although



user search behavior has been studied in the context of web usage mining, it has
not been used in the context of intrusion detection.

We audit and model the volume and frequency of user activities related to
search/information gathering and information access, assuming that the mas-
querader will exhibit different behavior from the legitimate user and this de-
viation will be easily noticed. Hence, this approach essentially tracks a user’s
behavior and measures any changes in that behavior. Any significant change
will raise an alarm. User behavior naturally varies for each user. We believe
there is no one model or one easily specified policy that can capture the inherent
vagaries of human behavior. Instead, we aim to automatically learn a distinct
user’s behavior, much like a credit card customer’s distinct buying patterns.

We use one-class support vector machines to develop user behavior models.
SVMs are linear classifiers used for classification and regression. They are known
as maximal margin classifiers rather than probabilistic classifiers. Schölkopf et
al. [13] proposed a way to adapt SVMs to the one-class classification task. The
one-class SVM algorithm uses examples from one class only for training. Just
like in multi-class classification tasks, it maps input data into a high-dimensional
feature space using a kernel function.

The origin is treated as the only example from other classes. The algorithm
then finds the hyper-plane that provides the maximum margin separating the
training data from the origin in an iterative manner. We note that SVMs are
suitable for block-by-block incremental learning. As user behavior changes and
new data is acquired, updating SVM models is straightforward and efficient.
Prior data may be expunged and the support vectors computed from that data
are retained and used to compute a new update model using the new data [17,
16]. Also the use of a one-class modeling approach means that we do not need to
define a priori what masquerader behavior looks like. We only model normal user
behavior. We can preserve the privacy of the user when building user models,
as we do not need to intermix data from multiple user for building models of
normal and attacker behavior.

4 Data Gathering and “Capture The Flag” Exercise

As we have noted, most prior masquerade attack detection techniques were tested
using the Schonlau data set, where ‘intrusions’ are not really intrusions, but
rather random excerpts from other users’ shell histories. Such simulation of in-
trusions does not allow us to test our conjecture that the intent of a malicious
attacker will be manifested in the attacker’s search behavior. For this reason,
we have collected our own dataset, which we will use for testing. However, for
completeness, we test our detection approach as a baseline against the Schonalu
dataset. The results will be reported in Section 6.3. In the following subsections,
we describe our home-gathered dataset and the host sensor used to collect it.



4.1 Host Sensor

We have developed a host sensor for Windows platforms. The sensor monitors
all registry-based activity, process creation and destruction, window GUI and
file accesses, as well as DLL libraries’ activity. The data gathered consisted of
the process name and ID, the process path, the parent of the process, the type of
process action (e.g., type of registry access, process creation, process destruction,
window title change, etc.), the process command arguments, action flags (success
or failure), and registry activity results. A time stamp was also recorded for
each audit record. The Windows sensor uses a low-level system driver, DLL
registration mechanisms, and a system table hook to monitor process activity.

4.2 RUU Dataset

In order to address one of the most significant shortcomings of the Schonlau
dataset, namely the lack of ‘real’ intrusions, we gathered user data and simulated
masquerader data by conducting a user study under IRB approval. † We refer
to this data as the RUU (Are You You?) dataset.

Collecting Normal User Data Eighteen computer science students installed
the Windows host sensor on their personal computers. The host sensor collected
the data described in the previous subsection and uploaded it to a server, after
the students had the chance to review the data and their upload. The students
signed an agreement for sharing their data with the research community. This
unique dataset with a size of more than 10 GBytes is available for download after
signing a usage license agreement. The data collected for each student spanned 4
days on average. An average of more than 500,000 records per user were collected
over this time.

Collecting Simulated Masquerader Data To obtain masquerader data, we
developed a “capture the flag” exercise in our lab with user volunteers acting as
masqueraders. In order to ensure the validity of the experiment and the resulting
data, we have decided to control the ‘user’s intent’. We hypothesize that user
search behavior is a behavioral feature that is impacted by the user’s intent. If
a masquerader is looking to steal information, their intent will be manifested
in their search behavior through the volume of the search activities performed
by the masquerader. To that extent, we have designed a user study experiment,
where the intent to steal information is the independent variable that we control.
A total of sixty computer science students were randomly selected to participate
in the exercise from a list of volunteers. The participants were randomly assigned
to one of three groups. Each group was given a different scenario to execute: a
‘malicious attacker’ scenario, a ‘benign masquerader’ scenario, or a ‘neutral’

† Human user studies of insider threat and masquerade detection are approved at
Columbia University under Human Subjects protocol IRB-AAAC4240.



scenario. Note that selecting users from a homogeneous group and using specific
and detailed scenarios are known techniques in behavioral sciences used to reduce
subject and experimental treatment variability [7].

Malicious Scenario: The participants in this first scenario were asked to
perform a specific task, which consisted of finding any information that could
be used for financial gain from a coworker’s desktop computer. The participants
had access to a coworker’s computer for 15 minutes while he or she left out for
lunch. An attacker can gain access to the victim’s system in a different way, for
instance remotely if they know the access credentials. Regardless of the access
method, we are interested in the attacker’s behavior after they access the vic-
tim’s computer. Our scenario clearly described the financial difficulties that the
user was going through and the personal problems they were having with the
coworker. In particular, they believed that their coworker had been undeserv-
ingly promoted instead of them, making any PII information theft or the cause
of financial damage to their colleague, that they might engage into, justifiable to
them. The task was goal-specific in order to capture the intent of the users.
The participants in this scenario knew that all of their actions were being mon-
itored. While they were encouraged to find relevant information for their task,
they were also urged to hide their masquerade activity. It is also important to
mention that they were not specifically asked to search the file system in the
scenario, i.e. some users could decide to look into the computer owner’s e-mail,
which constitutes another approach for information gathering, instead of search-
ing files. After completing the task, the participants filled a questionnaire about
their experience and behavior during the task, and how different it was from
their own normal search behavior. Most participants indicated that they tried
to leave the desktop in the same state that they accessed it, including the same
list of recently opened documents. Many avoided using desktop search tools and
opted for manually exploring the contents of the file systems by traversing di-
rectories of interest. Some students also cleared the browser’s cache and history.
Others interleaved search and information gathering actions with user normal
actions that should not raise any suspicions, such as checking a news website.

Benign Scenario: Similar to the previous scenario, the participants in this
scenario acted as employees in a certain organization. While their coworker left
out for lunch and stayed logged in to their computer, their own computer ex-
perienced a hard drive failure. Because they had to finish working on an urgent
team project, which they had to provide an update on during a meeting occur-
ring later in the afternoon, they did not hesitate to use the coworker’s computer
to finish working on the project.

Neutral Scenario: The participants in this scenario too had a coworker
leave for lunch while staying logged in to their desktop computer. However, the
participants in this scenario had no compelling reason to access the coworker’s
computer. They were left to freely choose whether they wanted to access their
coworker’s desktop. We observed the behaviors of the participants, and whether
they decided to access the coworker’s desktop. In particular, we observed what



they did if they decided to access it. The participants had also to describe what
they did and explain their decision after completing the experiment.

The participants in the user study in all three groups had unlimited access
to the same file system for 15 minutes each. None of the users had access to
this file system before, which was designed to look very realistic and to include
potentially interesting patent applications, personally identifiable information, as
well as account credentials. The file system had more than 100,000 files indexed
by desktop search tools installed on the system, and totaling a size of more than
70 GBytes. The files were copied from a modern Windows XP machine routinely
used in a university research environment. They were created over a period of 5
years. The file system included at least 80 files containing personal information
that could be used for identity theft or financial gain. The contents of certain
personal files were sanitized, so that no personal information was leaked. We also
installed applications that typical computer science students would have on their
own machines, such as programming APIs, media players, etc together with code
projects, games, music, and video files. The goal was to make this machine look
similar to the ones that the normal users in our experiment were using. Special
care was taken to make sure that the desktop appeared in the same state to all
participants in the experiment. While simulating masquerader attacks in the lab
is not ideal, it was the best available option. None of the students who shared
their normal usage data were willing to lend their computers in order to conduct
masquerade attack experiments on them.

5 User Study Experiment

The objective of this experiment is to provide evidence for our conjecture that
the masquerader’s intent has a significant effect on their search behavior. We
extracted three features from the data collected in the user study after exper-
imenting with several features such as the frequencies of the different types of
user actions and application events: (1) the number of files touched during an
epoch of two minutes, (2) the number of automated search-related actions initi-
ated by the masquerader, and (3) the percentage of manual search actions during
the same epoch. Automated search actions are search actions launched using a
desktop search tool such as Google Desktop Search. Manual search actions are
file system navigation or exploration systems. We display the distribution of
these features for the malicious, benign and neutral scenario participants of the
user study in Figure 1. Our experiments show that the manipulation of the user
intent has demonstrated a significant effect on user search behavior.

Figures 1(a), 1(b), and 1(c) are box-and-whisker plots of the three user
search-related features. The horizontal line in the middle of each of the boxes in
these plots corresponds to the median value of the displayed feature. Fifty per
cent of the data falls within this box, while the top and bottom quartiles (25%
of the data) of the data are represented by the whisker lines above and below
this box. Data points whose value is above 1.5 times the upper quartile or lower
than 1.5 times the lower quartiles are considered outliers and are represented as



small crosses. The short horizontal lines above and below the box represent the
maximum and minimum data values exclusing outliers.

Figure 1(a) depicts the distribution of the number of accesses to all files
residing on the file system per a 2-minute epoch. It is clear that the average
number of file touches amongst the malicious scenario group is much higher
than in the other two groups.

Figure 1(b) shows the distribution of search-related queries to the registries
and accesses to search-related DLLs and applications for the different groups of
the user study. The average number of search-related records in the first group
is comparable to that in the other groups, which might be unexpected. However,
this could be explained by the fact that the participants in the first group were
penalized if their illegal masquerade activities were discovered, which is why
most of them decided to refrain from using desktop search tools to find relevant
information. This choice is reflected in Figure 1(b) and in Figure 1(c).

In the latter figure, one can clearly notice that the percentage of user actions
related to navigating through the file system in order to explore its contents is
much more significant in the first group. The participants in the second group
did not have the intention to steal any information, which is why they did not
engage in file system exploration activities. While most of the participants in
the third scenario decided not to access the coworker’s computer, some of them
did urged by their curiosity, as indicated in the participants’ answers to our
post-experiment questionnaire. Figure 1(c) shows that for this group, the users
explored the directories in the file system in order to satisfy their curiosity.

Finally, Figure 2 shows how the number of personal files accessed by mas-
queraders varies by user study scenario. The results of this user study provide
evidence that search behavior is significantly affected by a masquerader’s intent.
The question that we attempt to answer next is: Can we model normal user
search behavior and use it to detect malicious masqueraders?

6 RUU Experiment

In order to evaluate our conjecture that search behavior modeling can provide
a means for detecting malicious masqueraders, we use the normal user data to
build user search behavior models. We then use the simulated masquerader data
gathered for the participants in the ‘malicious’ scenario of our user study to test
these user models. Here we describe our modeling approach, the experimental
methodology, and the results achieved in this experiment.

6.1 Modeling

We devised a taxonomy of Windows applications and DLLs in order to identify
and capture search and information gathering applications, as well as file system
navigation user actions. The taxonomy can be used to identify other user be-
haviors that are interesting to monitor, such as networking-, communications-,
or printing-related user activities. However, in the context of this paper, we only



(a) Distribution of File Touches across the
three User Study Groups

(b) Distribution of Search-related Actions
across the three User Study Groups

(c) Distribution of the Percentage of File Sys-
tem Navigation User Actions across the three
User Study Groups

Fig. 1. Distribution of Search-related Features across the three User Study Groups



Fig. 2. The personal files accessed by masqueraders

use it to identify search- and file system navigation-related activities. Monitoring
other user behaviors will be the subject of future work. The use of the taxonomy
abstracts the user actions and helps reveal the user’s intent.

We grouped the data into 2-minute quanta of user activity, and we counted all
events corresponding to each type of activity within each of the 2 minute epochs.
Eventually a total of three features were selected for each of those epochs. Each
of the features is related to some aspect of the user’s search or information
gathering and information access behavior. These three features provided the
best accuracy results in our experiments:

1. Number of automated search-related actions: Specific sections of the Win-
dows registry, specific DLL’s, access to specific index files, and specific pro-
grams, particularly desktop search tools, are correlated with system search-
ing. For the 2 minute epoch, we model all search-related activity.

2. Number of file touches: Any file fetch, read, write, or copy action results into
loading the file into memory. We count the number of times files are touched
and loaded into memory by any process within each 2-minute epoch.

3. Percentage of file system navigation user actions: Not all search is performed
using a desktop search tool. Navigating through the file system to explore
its contents is also a form of user search. We model all manual search or
file system navigation user activity occurring during the 2-minute epoch.

To identify the automated and manual search applications and user activities,
we referred to our Windows applications taxonomy. The chosen features are
simple search features that characterize search volume and velocity to test our
hypothesis. While none of the features could be used to achieve high detection
rates alone, the combination of the three features could be very effective. More
complex search features that describe user search patterns could be extracted.
Such features include, but are not limited to search terms and specific directory
traversals. Evaluation of these features is the subject of our future work. for



more personalized and diversified user models that accurately model individual
and unique user behavior.

6.2 Experimental Methodology

For each of the 18 normal users, the first 80% of their data were used for training
a one-class SVM model. The user’s test data and the masquerader data were kept
separate. After the baseline models were computed, the same features used in
the model were extracted for the test data after dividing them into 2-minute
quanta of user activity. The models were tested against these features, and an
empirically identified threshold was used to determine whether the user activity
during the 2 minute-period was normal or abnormal. If the user activity was
performed by the normal user, but was classified as abnormal by the ocSVM
model, a false positive was recorded.

6.3 Detection Accuracy Evaluation

For evaluation purposes, we conducted two experiments. In the first one, we
used one-class SVM models using the three features listed in Section 6.1. In the
second experiment, we used the frequency of applications and processes within
the 2 minute epoch as features for the ocSVM models. This is the modeling
approach that achieved results comparable to those achieved by the näıve Bayes
approach when applied to the Schonlau dataset [18], even though it is a one-class
modeling approach, i.e. it uses less data for training the user models.

Accuracy Results Using the search-behavior modeling approach, 100% of the
2-minute quanta that included masquerader activity were detected as abnormal,
while 1.1% of the ones with legitimate user activity were flagged as not confirm-
ing to the user’s normal behavior. The results achieved are displayed in Table 2.
The false positives (FP) rate is significantly reduced compared to the application
frequency-based modeling approach, while a perfect detection rate is achieved.
These results substantially outperform the results reported in the literature.

Table 2. Experimental results of ocSVM modeling approaches using search-behavior
related features and application frequency features

Method True Pos. (%) False Pos. (%)

Search-behavior ocSVM 100 1.1

App.-freq. ocSVM 90.2 42.1

Monitoring file access and fetching patterns proved to be the most effective
feature in these models. Consider the case where a user types ‘Notepad’ in the
search field in order to launch that application. Such frequent user searches
are typically cached and do not require accessing many files on the system.



Note that if the attacker follows a different strategy to steal information, and
decides to copy whole directories in the file system to a USB drive for later
investigation, instead of identifying files of interest during one user session, then
the ‘file touches’ feature will reflect that behavior.

Since each user has their own model with their own detection threshold, we
cannot build a single Receiver Operating Curve (ROC) curve for each modeling
approach. However we can compare the ROC curves for individual user mod-
els using the two modeling approaches investigated. One way to compare the
ROC curves is to compare the Area Under Curve (AUC) scores. The higher the
AUC score, the better the accuracy of the model. Figure 3 displays the AUC
scores for all user models. The search-behavior modeling approach outperforms
the application frequency based modeling approach for each user model. The
average AUC score achieved for all ROC curves when modeling search behav-
ior is 0.98, whereas the average AUC score for the application frequency-based
models is 0.63. The bad performance of the application-frequency-based model-
ing approach can be explained by the high-dimensional feature vectors used in
this modeling approach, which suggest that a lot more data may be needed for
training.

Fig. 3. AUC Scores By User for the Search Behavior and Application Frequency-Based
Modeling Approaches using one-Class Support Vector Machines

Figure 4 depicts the number of ROC curves having AUC scores higher than a
certain value for both modeling approaches. Note that for 12 user search behavior
models, the AUC score is equal to 1 indicating the absence of any false positives.

The RUU data set consists of user data with varying amounts of data for
different users. The amount of search behavior information varied from user to
user. False positives were higher for users who contributed less data in general
and less search-related data in particular than for those for whom we collected a
large amounts of such data, such as users 11 and 14. For a 100% detection rate,
the FP rate scored by these user models ranged between 11% and 15%, which



Fig. 4. The number of user models with AUC values greater than the value displayed on
the x-axis for the search behavior and the application frequency modeling approaches
using one-class SVMs. (The upper-left point shows 18 user models with AUC scores
greater than 0.5)

proves the need for more training data for such users in order to improve the
performance of the user models.

In summary, the significant accuracy improvement achieved can be explained
by the fact that features used for modelign are good discriminators between nor-
mal user behavior and legitimate behavior. Despite the simplicity of the search
features used, which only characterize search volume and velocity, we were able
to reliably detect malicious masqueraders trying to steal information. We note
that most masqueraders indicated in the post-experiment questionnaires that
their strategy for finding relevant information started by quickly scanning the
most recently opened documents, or the list of bookmarks. However, they still
engaged in a wider search activity eventually when these sources proved fruitless.

Accuracy Results Discussion The results achieved using search behavior
profiles require careful thought when considering the prior results using com-
mand sequences from the Schonlau dataset. Recall that the Schonlau dataset is
not a ‘true’ masquerader dataset, since its ‘intrusions’ or ‘masquerade’ command
blocks are just sequences of commands generated by randomly selected normal
users. Search activities of the users may not be significant in this dataset. Fur-
thermore, the Schonlau dataset does not include any timestamps, so temporal
statistics cannot be extracted.

We introduce an alternative modeling technique focusing the analysis on spe-
cific types of user commands, namely information gathering or search commands.
to accomplish the goal of accurately modeling user behavior we developed a tax-
onomy of Linux commands similar to the one we created for Windows applica-
tions and DLLs. We conducted an experiment where we followed the methodol-
ogy described in prior work of Schonlau et al. [15] and Wang&Stolfo [18]. In this
experiment, we measured the performance of one-class SVM models using fre-



quencies of simple commands per command block as features, and we compared
the performance of ocSVM models using frequencies of command categories or
specific behaviors (per the command taxonomy) as features. Table 3 shows the
results achieved by the one-class SVM classifiers. The results confirm that the
information that is lost by compressing the different user shell commands into
a few categories does not affect the masquerader detection ability significantly.
In section 6.4, we show how modeling search behavior by using the taxonomy of
commands and applications reduces computational complexity, both for train-
ing and testing the classifier. This is possible thanks to the smaller number of
features used for modeling, which reduces the amount of sampled data required
for training, as the data becomes less sparse in the new feature space.

Table 3. ocSVM Schonlau Experimental Results

Method True Pos. (%) False Pos. (%)

ocSVM w/ simple cmds 98.7 66.47

ocSVM w/ taxonomy 94.8 60.68

In an operational monitoring system, one would be concerned with the error
rate of a detector. The downside of a false positive is essentially annoyance by
a legitimate user who may be alerted too frequently. An interesting problem to
study is how to calibrate the modeling and detection frequency to balance the
detector’s false positive rate while ensuring its false negative rate is minimized.
False negatives in this context, i.e. an undetected masquerader, are far more
dangerous than an annoying false positive. A thorough evaluation of the right
model checking and alerting frequency in light of average search times on a file
system inter alia is the subject of ongoing research. Another focus of ongoing
research is the correlation of search behavior anomaly detection with trap-based
decoy files such as [2]. This should provide stronger evidence of malfeasance,
and therefore improve the detector’s accuracy. Not only would a masquerader
not know the file system, they would also not know the detailed contents of
that file system especially if there are well placed traps that they cannot avoid.
We conjecture that detecting abnormal search operations performed prior to an
unsuspecting user opening a decoy file will corroborate our suspicion that the
user is indeed impersonating another victim user. Furthermore, an accidental
opening of a decoy file by a legitimate user might be recognized as an accident if
the search behavior is not deemed abnormal. In other words, detecting abnormal
search and decoy traps together may make a very effective masquerade detection
system. Ongoing work should establish evidence to corroborate this conjecture.

6.4 Performance Evaluation

Computational Complexity: Our experiment can be divided into four main
steps: (1) identifying the features to be used for modeling, (2) extracting the



features to build the training and testing files, (3) building a ocSVM model for
each normal user, and (4) testing each user model against the test data. We
discuss the computational complexity of each of these steps for one user model.

Let o be the total number of raw observations in the input data. We use this
data to compute and output the training vectors xi ∈ Rn, i = 1, ..., l and testing
vectors xj ∈ Rn, j = 1, ...,m for each user u, where n is the number of features.

When using the application frequency features, this step requires reading all
training data (about 0.8 of all observations o) in order to get the list of unique
applications in the dataset. This step can be merged with the feature extraction
step, but it would require more resources, as the feature vectors would have to
remain in memory for updates and additions of more features. We chose to run
this step in advance in order to simplify our program. This step is not required
for the search behavior profiling approach, as all features are known in advance.

In the feature extraction step, we go through all input data once, grouping the
observations that fall within the same epoch, and calculate and output n features
for that epoch. This operation has a time complexity of O(o+ n× (l +m)).

Chang and Lin [3] show that the computational complexity of the train-
ing step for one user model is O(n × l)×#Iterations if most columns of Q
are cached during the iterations required; Q is an l × l semi-definite matrix,
Qij ≡ yiyjK(xi, xj); K(xi, xj) ≡ φ(xi)

Tφ(xj) is the kernel; each kernel evalua-
tion is O(n); and the iterations referred to here are the iterations needed by the
ocSVM algorithm to determine the optimal supporting vectors.

The computational complexity of the testing step is O(n×m) as the kernel
evaluation for each testing vector yj is O(n). We experimentally validate the
complexity analysis in the next section to determine whether we have improved
performance both in terms of accuracy and speed of detection.

Performance Results: We ran our experiments on a regular desktop with a
2.66GHz Intel Xeon Dual Core processor and 24GB of memory in a Windows 7
environment. We measure the average running time of each step of the exper-
iment over ten runs. The results are recorded in table 4. As we pointed out in
the previous subsection, the very first step is not executed in the our proposed
search behavior modeling approach, but it takes more than 8 minutes when using
the application frequency modeling approach. The running time of the feature
extraction step shows that the number of raw observations in the raw data dom-
inates the time complexity for this step. We point out that the RUU data set
contains more than 10 million records of data.

The training and testing vectors are sparse, since only a limited number of
the 1169 different applications could conceivably run simultaneously within a
2-minute epoch. This explains why the 389.7 ratio of features does not apply to
the running time of the training and testing steps, even though these running
times depend on the number of features n. While one might argue that, in
an operational system, testing time is more important than training time, we
remind the reader that a model update has the same computational complexity



as model training. For the latter, the use of a very small number of features as
in our proposed approach clearly provides significant advantages.

All of these differences in running times culminate in a total performance gain
of 74% when using the search behavior model versus the application frequency
model typical of prior work. This computational performance gain coupled with
improved accuracy could prove to be a critical advantage when deploying the
sensor in an operational environment if a system design includes automated
responses to limit damage caused by an insider attack.

Table 4. Performance comparison of ocSVM modeling approaches using search
behavior-related features and application frequency features

Step ocSVM app. freq. ocSVM search-beh.

Identifying Features (min) 8.5 0

Extracting Features (min) 48.2 17.2

Training (min) 9.5 0.5

Testing (min) 3.1 0.5

Total (min) (Rounded) 69 18

7 Future Research

While the list of search applications and commands may have to be updated
occasionally (just like an Anti-Virus needs periodic signature updates) for best
detection results, most of the search-related activity would be manifested in
accesses to search index files and regular user files on the system. An attacker
could try to evade the monitoring system by renaming DLLs and applications
so that they are assigned to a different category per our applications taxonomy,
other than the search or information gathering category. Although we have not
implemented a monitoring strategy to counter this evasive tactic, it is clear that
a simple extension to the monitoring infrastructure can account for this case.

We assume that the attacker does not have knowledge about the victim’s
behavior. However, if the attacker has such prior knowledge, we propose com-
bining user behavior profiling with monitoring access to well-placed decoys in
the file system (as noted in Section 6.3) in order to limit the success of evasion.
This should also help reduce false positives and present additional evidence od
a masquerade attack, thus guiding the appropriate mitigation strategy.

A masquerader could choose to copy data to a USB drive for later exam-
ination. They may even choose to access the victim computer remotely and
ex-filtrate data over the network. We could easily use the application taxonomy
to monitor these specific behavior in case the attacker resorts to such strategies.
As noted in section 6.3, the ‘file touches’ feature already captures some aspect of
this behavior. The applications taxonomy could be used to extract ‘Networking’-
, ‘Communications’- and I/O-related features to be included in the user model,
so that such masquerader behavior gets detected easily.



8 Concluding Remarks

Masquerade attacks resulting in identity theft are a serious computer security
problem. We conjecture that individual users have unique computer search be-
havior which can be profiled and used to detect masquerade attacks. The be-
havior captures the types of activities that a user performs on a computer and
when they perform them.

The use of search behavior profiling for masquerade attack detection permits
limiting the range and scope of the profiles we compute about a user, thus
limiting potentially large sources of error in predicting user behavior that would
be likely in a far more general setting. Prior work modeling user commands
shows very high false positive rates with moderate true positive rates. User
search behavior modeling produces far better accuracy.

We presented a modeling approach that aims to capture the intent of a user
more accurately based on the insight that a masquerader is likely to perform
untargeted and widespread search. Recall that we conjecture that user search
behavior is a strong indicator of a user’s true identity. We modeled search be-
havior of the legitimate user using three simple features, and detected anomalies
that deviate from that normal search behavior. With the use of the RUU dataset,
a more suitable dataset for the masquerade detection problem, we achieved the
best results reported in literature to date: 100% masquerade detection rate with
only 1.1% of false positives. Other researchers are encouraged to use the data
set which is available for download after signing a data usage agreement [1].

In an operational monitoring system, the use of a small set of features limits
the system resources needed by the detector, and allows for real-time masquerade
attack detection. We note that the average model size is about 8 KB when the
search-behavior modeling approach is used. That model size grows to more than
3 MB if an application and command frequency modeling approach is used.
Furthermore, it can be easily deployed as profiling in a low-dimensional space
reduces the amount of sampling required: An average of 4 days of training data
was enough to train the models and build effective detectors.

In our ongoing work, we are exploring other features for modeling that could
improve our results and extend them to other masquerade attack scenarios.
The models can be refined by adding more features related to search, includ-
ing search query contents, parameters used, directory traversals, etc. Other fea-
tures to model include the use of bookmarks and recently opened documents
which could also be used by masquerade attackers as a starting point for their
search. The models reported here are primarily volumetric statistics character-
izing search volume and velocity. We can also update the models in order to
compensate for any user behavior changes. We will explore ways of improving
the models so that they reflect a user’s unique behavior that should be distin-
guishable from other legitimate users’ behaviors, and not just from the behavior
of masqueraders.



References

1. Ben-Salem, M. RUU dataset: http://www1.cs.columbia.edu/ids/RUU/data/.
2. Bowen, B. M., Hershkop, S., Keromytis, A. D., and Stolfo, S. J. Baiting

inside attackers using decoy documents. In SecureComm’09: Proceedings of the
5th International ICST Conference on Security and Privacy in Communication
Networks (2009).

3. Chang, C.-C., and Lin, C.-J. Libsvm: a library for support vector machines.
http://www.csie.ntu.edu.tw/ cjlin/papers/libsvm.pdf, 2001.

4. Coull, S. E., Branch, J., Szymanski, B., and Breimer, E. Intrusion detection:
A bioinformatics approach. In Proceedings of the 19th Annual Computer Security
Applications Conference (2001), pp. 24–33.

5. Coull, S. E., and Szymanski, B. K. Sequence alignment for masquerade detec-
tion. Computational Statistics and Data Analysis 52, 8 (2008), 4116–4131.

6. Davison, B. D., and Hirsh, H. Predicting sequences of user actions. In Working
Notes of the Joint Workshop on Predicting the Future: AI Approaches to Time
Series Analysis, 15th National Conference on Artificial Intelligence/15th Interna-
tional Conference on Machine Learning (1998), AAAI Press, pp. 5–12.

7. Keppel, G. Design and analysis : a researcher’s handbook. Pearson Prentice Hall,
2004.

8. Lane, T., and Brodley, C. E. Sequence matching and learning in anomaly
detection for computer security. In In AAAI Workshop: AI Approaches to Fraud
Detection and Risk Management (1997), AAAI Press, pp. 43–49.

9. Maloof, M. A., and Stephens, G. D. elicit: A system for detecting insiders
who violate need-to-know. In RAID (2007), pp. 146–166.

10. Maxion, R. A., and Townsend, T. N. Masquerade detection using truncated
command lines. In DSN ’02: Proceedings of the 2002 International Conference on
Dependable Systems and Networks (2002), IEEE Computer Society, pp. 219–228.

11. Maxion, R. A., and Townsend, T. N. Masquerade detection augmented with
error analysis. IEEE Transactions on Reliability 53, 1 (2004), 124–147.

12. Oka, M., Oyama, Y., Abe, H., and Kato, K. Anomaly detection using layered
networks based on eigen co-occurrence matrix. In Proceedings of the 7th Interna-
tional Symposium on Recent Advances in Intrusion Detection (2004).

13. Schölkopf, B., Platt, J. C., Shawe-taylor, J., Smola, A. J., and
Williamson, R. C. Estimating the support of a high-dimensional distribution.
Neural Computation 13, 7 (July 2001), 1443–1471.

14. Schonlau, M. Schonlau dataset: http://www.schonlau.net.
15. Schonlau, M., Dumouchel, W., Ju, W., Karr, A. F., Theus, M., and Vardi,

Y. Computer intrusion: Detecting masquerades. Statistical Science 16 (2001), 58–
74.

16. Syed, N. A., Liu, H., Huan, S., Kah, L., and Sung, K. Handling concept
drifts in incremental learning with support vector machines. In In Proceedings of
the ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-99 (New York, 1999), ACM Press, pp. 317–321.

17. Vapnik, V. N. The Nature of Statistical Learning Theory (Information Science
and Statistics). Springer, 1999.

18. Wang, K., and Stolfo, S. J. One-class training for masquerade detection. In
Proceedings of the 3rd IEEE Workshop on Data Mining for Computer Security
(2003).


