
Decoy Document Deployment for Effective
Masquerade Attack Detection

Malek Ben Salem and Salvatore J. Stolfo

Computer Science Department
Columbia University

New York, New York 10027, USA
{malek,sal}@cs.columbia.edu

Abstract. Masquerade attacks pose a grave security problem that is a
consequence of identity theft. Detecting masqueraders is very hard. Prior
work has focused on profiling legitimate user behavior and detecting devi-
ations from that normal behavior that could potentially signal an ongoing
masquerade attack. Such approaches suffer from high false positive rates.
Other work investigated the use of trap-based mechanisms as a means
for detecting insider attacks in general. In this paper, we investigate the
use of such trap-based mechanisms for the detection of masquerade at-
tacks. We evaluate the desirable properties of decoys deployed within a
user’s file space for detection. We investigate the trade-offs between these
properties through two user studies, and propose recommendations for
effective masquerade detection using decoy documents based on findings
from our user studies.

1 Introduction

The masquerade attack is a class of attacks, in which a user of a system ille-
gitimately poses as, or assumes the identity of another legitimate user. Identity
theft in financial transaction systems is perhaps the best known example of this
type of attack.

Masquerade attacks can occur in different ways. A masquerader may get ac-
cess to a legitimate user’s account either by stealing a victim’s credentials, or
through a break-in and installation of a rootkit or key logger. A masquerade at-
tack may also be caused by the laziness and misplaced trust of a user, such as the
case when a user leaves his or her terminal or client open and logged in, allowing
any nearby co-worker to pose as a masquerader. In most cases, the attacker’s
objective is to steal data that could be used for financial gains from home users
or enterprise users, such as financial credentials or intellectual property. Mas-
querade attacks have been widespread. A Forbes report estimated that fraud
incidents affected 11.2 million consumers in the United States in 2009, causing
$54 billion in ID fraud costs [6]. In 2009, researchers who have monitored the
Torpig botnet affirmed that, within the span of 10 days only, Torpig obtained the
credentials of 8,310 accounts at 410 different institutions [15]. Enterprise users
have also been targeted by different malware such as Confickr/Downadup [7].

The main approach for detecting masquerade attacks relies on computer
user profiling and the modeling of statistical features, such as the frequency of
certain events, such as issued user commands, the duration of certain events,
the co-occurrence of multiple events combined through logical operators, and
the sequence or transition of events. The focus of this line of work is primarily
on accurately detecting change or unusual user command sequences [12, 10, 16].
These approaches suffered, like most anomaly detection-based approaches, from
high false positive rates ranging between 1.3% and 7.7% [2].

Another approach for detecting masqueraders is the use of baits such as
honeynets and honeypots. Honeypots are information system resources designed
to attract malicious users. They have been widely deployed in De-Militarized
Zones (DMZ) to trap attempts by external attackers to penetrate an organi-
zation’s network. Some researchers proposed the use of honeyfiles, a type of
honeypot, to detect malicious insider activity [4]. They introduced the concept
of perfectly believable decoys and proposed several properties to guide the design
and deployment of decoys, namely:

1. Believability: The attacker would not use the bait information if it did not
appear authentic to the attacker.

2. Enticingness: No attack detection is possible if the attacker does not access
the bait information because it does not look attractive enough.

3. Conspicuousness: Decoys should be easily located or retrieved in order to
maximize the likelihood that an attacker takes the bait.

4. Detectability: If the access to the bait asset is not detectable than the de-
ployment of the decoys is useless.

5. Variability: Decoys should not be easily identifiable to an attacker due to
some shared invariant.

6. Non-interference: Decoys should not interfere with the legitimate user’s nor-
mal activity. Non-interference has been defined as the likelihood that legiti-
mate users access the real documents after decoys are introduced [4].

7. Differentiability: Legitimate users should be able to easily distinguish decoy
documents from authentic documents, which has a direct affect on non-
interference.

8. Shelf-life: Decoys may have a limited time period during which they are
effective.

While all of the above are important decoy properties, it can be difficult to
design and deploy decoy documents that would perfectly maximize the prop-
erties, which in turn would assure effective detection of a masquerade attack.
One has to find the right trade-off between these properties in order to use them
effectively. Such trade-offs may vary depending on the type of attack.

For example, while believability is a very important property of decoys when
used for detecting insider attacks that aim to ex-filtrate sensitive information, it
becomes of a lesser importance when the decoys are aimed at detecting masquer-
ade attacks. In the case of an insider attack, the attacker already has legitimate
access to the system where the sensitive information assets are located. Access

to such assets does not necessarily constitute evidence of malicious intent or ac-
tivity. However, subsequent ex-filtration and use of such information does. If the
attacker identifies the decoy document as bogus, then they would not use the
information contained in that document, which is why the believability of the de-
coy document is important. In the case of a masquerade attack, the mere access
to the decoy document does constitute evidence of an attack as the masquerader
is not a legitimate user of the system, and therefore should not be accessing any
assets residing on that system. Whether the masquerader finds the decoy docu-
ment believable or not, after having accessed it, is irrelevant to the detection of
the attack, as evidence of the malicious activity has been already established.

In this paper, we attempt to investigate these trade-offs between decoy prop-
erties when applied to the masquerade detection problem through two user stud-
ies. The contributions of this work include:

– A host-sensor that detects access to decoy documents when loaded in mem-
ory using stealthy HMACs embedded in the decoy documents

– An investigation of the trade-offs between deployment properties of de-
coy documents when applied to the masquerade attack detection problem
through two user studies

– A set of recommendations for the effective use of decoy documents for mas-
querade attack detection

The rest of this paper is organized as follows. In section 2, we briefly present
the results of prior research work on masquerade detection. Section 3 expands on
the threat model and presents the baiting technique used to detect masquerade
attacks. In Sections 4 and 5, we describe two user studies to evaluate the differ-
ent properties of the decoy documents and present the findings of these studies.
Section 6 presents some recommendations for the effective use of decoy docu-
ments in masquerade attack detection in light of our findings. Finally, Section 7
concludes the paper by discussing directions for future work.

2 Related Work

Honeypots have been widely used in De-Militarized Zones (DMZ) to detect exter-
nal attackers when attempting to penetrate an organization’s network. Spitzner
presented several ways to adapt the use of honeypots to the detection of insider
attacks [13]. He introduced the notion of honeytokens, defined as ‘information
that the user is not authorized to have or information that is inappropriate’ [13].
This information could then direct the attacker to the more advanced honeypot
that could be used to discern whether the attacker’s intention was malicious or
not, a decision that may be determined by inspecting the attacker’s interaction
with the honeypot.

‘Honeyfiles’, or decoy files, were introduced by Yuill et al. [17].The authors
proposed a system that allows users to turn files within the user space on a
network file server into decoy files. A record that associates the filename with
the userid is used to identify the honeyfiles.

Bowen et al. extended the notion of a decoy document system, and developed
an automated system for generating decoy files [4, 3]. They also proposed several
decoy properties as general guidelines for the design and deployment of decoys.

Honeyfiles suffer from some shortcomings. First, the attacker may not ever
use or interact with the decoy file, especially if their identity is known to, or
discovered by the attacker. Moreover, if an attacker discovers a honeyfile, they
can potentially inject bogus or false information to complicate detection. In
this paper, we investigate decoy deployment properties that should increase the
likelihood of detecting a masquerade attacker.

3 Trap-based Masquerader Detection Approach

3.1 Threat Model

Masqueraders impersonate legitimate users after stealing their credentials when
they access a system. When presenting the stolen credentials, the masquerader
is then a legitimate user with the same access rights as the victim user. To
that extent, masquerade attacks represent one type of insider attacks. However,
masquerade attacks can be characterized by the low amount of knowledge the
attacker has about the system and policies in place. In this work, we focus
on masqueraders and assume that the attacker has little knowledge about the
system under attack. In particular, we assume that the attacker does not know
whether the system is baited or not.

We have architected a Decoy Documents Access (DDA) sensor and designed
decoy documents in such a way that a sophisticated attacker with more knowl-
edge and higher capabilities, in particular an inside attacker, would not be able
to escape detection if they touched a decoy document. Decoy documents have
a HMAC tag computed over the document’s contents as described in subsec-
tion 3.2. A sophisticated attacker with wide resources would not be able to
distinguish the HMAC tags of decoy documents from random functions. More-
over, a highly privileged attacker would not be able to turn off the DDA sensor
without getting detected. This is ensured through a self-monitoring mechanism
as described in subsection 3.3. Both types of attackers would have to know that
the system under attack is baited, and the detection of this class of attack is
beyond the scope of this paper. Here, we devise user studies for attackers, who
have no knowledge that the system is baited, with the objective of investigating
the decoy deployment properties. The study of attacker behavior and their per-
ception of risk and expected gain based on their knowledge of the existence of
decoys on the system is beyond the scope of this paper, and will be the subject
of a future user study.

3.2 Trap-based Decoys

The trap-based technique used by our sensor relies on trap-based decoys [4] that
contain ‘bait information’ such as online banking logins, social security numbers,

and web-based email account credentials. Users of the DDA sensor can download
such decoy files from the Decoy Document Distributor (D3) [3], an automated
service that offers several types of decoy documents such as tax return forms,
medical records, credit card statements, e-bay receipts, etc..

The decoy documents carry a keyed-Hash Message Authentication Code
(HMAC) [9] embedded in the header section of the document, and visible only if
the document is opened using a hex editor. The HMAC is computed over a file’s
contents using a key unique to the user, and is hidden in the header section of the
file. For instance, the use of the full version of the SHA1 cryptographic function
in combination with a secret key to tag the decoy documents with an HMAC
tag prevents the attacker from distinguishing the embedded HMAC from a ran-
dom function [8]. An example of a decoy document with an embedded HMAC is
shown in Figure 1. It is this marker or HMAC tag that our sensor uses to detect
access to a decoy document. In the next section, we describe how our sensor
makes use of this marker.

Fig. 1. HMAC in the OCP Properties Section of a PDF Document

3.3 Decoy Documents Access Sensor

The DDA sensor detects malicious activity by monitoring user actions directed
at HMAC-embedded decoy documents, as any action directed toward a decoy
document is suggestive of malicious activity [1]. When a decoy document is
accessed by any application or process, the host sensor initiates a verification
function. The verification function is responsible for distinguishing between de-
coys and normal documents by computing a HMAC as described in Section 3.2
for that document and comparing it to the one embedded within the document.
If the two HMACs match, the document is deemed a decoy and an alert is trig-
gered; otherwise, the document is deemed normal and no action is taken. The

DDA sensor detects when decoy documents are being read, copied, or zipped.
The sensor was built for the Windows XP platform and relies on hooks placed
in the Windows Service Table. The hooking is performed by injecting code into
the address space of the processes, and by replacing the address of the file open
system call which is present in the kernel (.dll) library of windows. This code
injection guarantees that our code will be executed first, and post processing
it will call the actual system call. This approach also enables the configuration
of the list of processes that should be hooked into or should be excluded from
hooking into.

In order to prevent the sensor from being shut down by the adversary, we used
a random directed cycle of n monitors to protect the DDA sensor as proposed
by Chinchani et al. [5] and Stolfo et al. [14]. One of the n monitors, call it m,
monitors the critical processes of the sensor. If an attacker attempts to shut
down any of the sensor processes, monitor m will issue an alert. Similarly, if m is
shutdown, another monitor, as defined by the directed cycle of monitors, issues
an alert. The directed cycle of monitors is created based on a seed known only
to the owner of the system. It defines a unique shutdown sequence that must be
followed in order to shut down the sensor without any alerts.

4 User Study 1

4.1 Experiment Design

Our first user study aims to measure decoy document accesses performed by the
legitimate users of the system, which can be considered as false positives. We
seek to answer two questions through this user study:

1. Does the number of decoy files planted in a file system have an impact on
their non-interference with the legitimate user’s normal activities?

2. What are the best locations for planting decoys on a file system, so as to
minimize their non-interference?

To answer these questions, we designed an experiment where we controlled the
number n of decoy documents planted in a file system. We postulate that non-
interference is a variable that is dependent on the number of decoy documents
n. We do not measure non-interference as a probability. However, we measure
the average number of decoy accesses per one week of computer usage. To that
extent, we asked four user groups of thirteen computer science students each,
to plant ten, twenty, thirty, or forty decoy documents generated by D3 on their
own file systems. The 52 students downloaded a total of 1300 decoy documents
from D3. We encouraged the participants in the user study to carefully consider
where to place the decoy files and how to name them by taking into account
the desired properties of such documents, particularly enticingness, conspicu-
ousness and non-interference [4]. The objective is to maximize the likelihood
that a potential masquerader will get detected when they illegitimately access
the victim’s computer, while minimizing the likelihood that they (the legitimate

user) accidentally accesses these documents due to confusion or interference with
their normal activity. For instance, the user can choose file names that are easily
recognizable as decoy by them, while remaining enticing to the adversary. The
file name could, for example, include the name of a person who is outside the
social network of the user. For instance, one participant renamed a decoy file to
TaxReturnSylvia.pdf, while he did not file any tax returns jointly with Sylvia,
nor did he know anyone with that name. Carefully selecting the file names would
make the file easily recognizable as a decoy file by the legitimate user, but could
make it intriguing for the attacker.

The participants in the user study, who installed our DDA sensor before
downloading the decoy documents, agreed to share their data. The experiment
lasted for about seven days on average, during which access to decoy files was
monitored. The data collected by the DDA sensor was uploaded to a central
server for analysis.

4.2 Experiment Findings

At the end of the user study, the participants reported the directories under
which they placed the downloaded decoy files. We summarized the results of
these reports and ranked the directories based on decreasing numbers of placed
decoys. The top 42 directories are shown in Table 1. Subdirectories under the
My Documents and Desktop directories seemed to be the most popular choices
by the participants. In the following, we summarize the main findings of this
user study.

Interference Increases with More Decoy Files: Recall that non-interference
is defined as the likelihood of the legitimate user accessing the authentic files af-
ter installing the decoy files. Decoy files planted on a file system for masquerade
detection are not supposed to be accessed by the legitimate user. They are placed
there in order to entice attackers to open and use them. Any accidental accesses
to decoy files by the legitimate users of the system, i.e. accesses that are not
caused by an attacker gaining access to the file system, are considered as false
positives. We have ignored all alerts issued within the first hour of the students
installing the decoy documents on their systems, giving them an opportunity
to decide where to place the decoy documents and how to rename them, based
on the recommendations given to them in our user study description. Table 2
presents the number of false positives and shows that it grows super-linearly
with the number of decoy files planted in the file system. The higher the number
of decoy files placed in the file system, the higher the likelihood of a legiti-
mate user accidentally accessing one of these decoy files, thus, the lower the
non-interference of these decoy files with the normal activities of the legitimate
user. While a more longitudinal study is needed to investigate the relationship
between the number of decoys planted and their impact on non-interference,
our preliminary results show that non-interference decreases with the number of
decoys planted.

Table 1. Decoy Document Placement

Decoy File Directory where Decoy was Placed
Number

1 C:\Documents and Settings\username \My Documents\
Personal\Shopping\

2 C:\Documents and Settings\username\My Documents\Taxes\
3 C:\
4 F:\
5 C:\Documents and Settings\username\My Documents\Receipts\
6 C:\Documents and Settings\username\Desktop\
7 C:\Documents and Settings\username\My Documents\Financial\

Bank Statements\
8 C:\Documents and Settings\Administrator\
9 C:\Documents and Settings\username\My Documents\
10 C:\Documents and Settings\username\My Documents\Financial\
11 C:\Documents and Settings\username\My Documents\Private\
12 C:\Documents and Settings\username\My Documents\Personal\
13 C:\Documents and Settings\username\My Documents\Private\

Medical
14 C:\Documents and Settings\username\My Documents\Downloads\
15 C:\Documents and Settings\username\My Documents\Financial\

Lost Card\
16 C:\Documents and Settings\username\My Documents\Financial\

Disputes\
17 C:\Documents and Settings\username\My Documents\

onn\bills and all\eBay\
18 C:\Documents and Settings\username\Desktop\Important\
19 C:\Program Files\License \
20 C:\Windows\Temp\
21 C:\Documents and Settings\username\My Documents\Personal\

Visa Applications\
22 C:\Documents and Settings\username\My Documents\Private Vacation \
23 C:\Windows\
24 C:\Documents and Settings\username\My Documents\Confidential\
25 C:\Documents and Settings\username\Cookies\
26 C:\Documents and Settings\username\Favorites\
27 C:\Documents and Settings\username\workspace\
28 C:\Documents and Settings\username\My Documents\Investments\
29 C:\Documents and Settings\username\My Documents\Resume\
30 C:\Documents and Settings\username\Desktop\My Journal\
31 C:\Backup\
32 C:\Documents and Settings\username\My Pictures\
33 C:\Documents and Settings\username\Desktop\Notes\
34 C:\Documents and Settings\username\My Documents\Confidential\

Employee Evaluations\
35 C:\Documents and Settings\username\Recent\
36 C:\Documents and Settings\username\Start Menu\
37 C:\Documents and Settings\username\Desktop\Insurance\
38 C:\Documents and Settings\username\Local Settings\
39 C:\Documents and Settings\username\My Documents\401K\
40 C:\Documents and Settings\username\My Documents\Mortgage\
41 C:\Documents and Settings\username\My Music\
42 C:\Documents and Settings\username\My Documents\Miscellaneous\

Table 2. Number of Decoys and Decoy Touches

Number of Placed Number of Participants Number of Decoy
Decoys in Experiment Accesses

10 13 2
20 13 6
30 13 9
40 13 24

Distribution of False Positives: Figure 2 is a box-and-whisker plot of the
decoy file accesses by the legitimate users for the four different values of decoys
planted in the file system. The horizontal line in the middle of each of the boxes
in these plots corresponds to the median value of decoy file accesses. Fifty per
cent of the data falls within this box, while the top and bottom quartiles (25%
of the data) of the data are represented by the whisker lines above and below
this box. Data points whose value is above 1.5 times the upper quartile or lower
than 1.5 times the lower quartiles are considered outliers, and are represented
as small crosses. The short horizontal lines above and below the box represent
the maximum and minimum data values excluding outliers.

The figure shows that for the case of ten decoys, only one false positive
was recorded for any single user, whereas that number reaches up to nine false
positives when 40 decoys are placed in the file system. Although the nine false
positives is considered an outlier in this figure, more than 50% of the users
who placed 40 decoy documents in their file systems did accidentally access at
least one decoy file and experienced some level of interference with their normal
activities. As the figure shows, not only does the likelihood of interference for
each user grow with the number of decoy documents placed in the file system,
but the amount of interference for each affected user increases non-linearly as
well.

Placement of Decoy Files: Figure 3 shows the number of false positives by
decoy location across the top 42 most popular locations as reported by the user
study participants. The specific directory locations are listed in Table 1. The
number of false positives varies widely by decoy document path or location. It is
noteworthy that only fifteen of the top 40 decoy file locations were accidentally
accessed by the legitimate users. Many decoy files were never accessed by these
users demonstrating that non-interference of the decoy documents varies by the
chosen decoy placement in the file system. While the ideal decoy placement
that minimizes interference should be customized by the user based on their file
system access habits, it seems that certain locations should be avoided such as
the high traffic location or those locations that get automatically scanned by
applications installed on the system.

The highest number of false positives are due to accesses to decoy files placed
in location number 14, i.e. under the Downloads directory. While eight of the
nine false positives in this location were triggered by a single user, the results
show that decoy files in this location can introduce a high level of interference.

Fig. 2. Distribution of the Number of Decoy Document Accesses by Legitimate Users

This is not surprising knowing that most browsers save downloaded files in the
Downloads directory by default, thus forcing a lot of user activity and traffic on
files in this directory.

Differentiability to the User is not Enough: The second decoy file location
that exhibited a high number of false positives according to Figure 3 is the My
Music directory. These false positives could be accidentally triggered by the
legitimate users when manually browsing the directory, but they are more likely
to be triggered by media player that are scanning the directory in order to
discover recently added music files. Even though this scanning for media files is
initiated by the user who knows exactly which files are decoy files, the media
player or application performing a thorough scan cannot identify these decoy
files, and therefore will access them in an attempt to identify whether these files
are indeed music or video files.

We will further investigate the decoy placement strategies in the next section,
where we will show that decoy placement, and therefore decoy conspicuousness,
is also tightly linked with the ability to detect masqueraders.

5 User Study 2

5.1 Experiment Design

In this experiment, we investigate two decoy deployment-related properties,
namely enticingness and conspicuousness. Evaluating the design-related prop-
erties such as believability, particularly as it pertains to the contents of the
decoy document, is not very relevant to the masquerade attack problem. Recall
that we detect access to the decoy files before the attacker sees the contents of

Fig. 3. Accidental False Positive Decoy Document Accesses by Legitimate Users

the file. We ensure variability by tagging all files on the system with a pseudo-
random HMAC tag. Detectability can be ensured through the use of the DDA
sensor and protecting the sensor, as well as protecting the key used to compute
the HMAC tags of the decoy files. Note that any attempt to modify the HMAC
tag by the attacker requires that the decoy file gets first accessed and loaded
into memory, which would trigger an alert by the DDA sensor.

We seek to answer the following questions through this experiment:

1. How many decoy documents are needed to detect with a high probability
masqueraders looking to steal information?

2. Where are decoy documents most likely to trap masquerade attackers, i.e. in
which directories should one place the decoys in order to maximize the like-
lihood of catching a masquerader, while not interfering with the legitimate
user’s normal activities?

3. What is the number of decoy documents that leads to the best trade-off be-
tween masquerade detection while not interfering with the legitimate user’s
activities?

4. To what extent do decoy file accesses reveal a masquerader’s malicious in-
tent?

5.2 Experimental Set-Up

We conducted a set of experiments where we simulated masquerader attacks.
While simulating masquerader attacks in the lab is not ideal, it was the best
available option. We randomly selected 40 computer science students to partici-
pate in our user study and gave all participants a specific scenario that described
the difficult financial situation that they were going through, and their need for
additional financial resources. The participants were asked to perform a specific
task, which consisted of stealing, from a coworker’s desktop computer, any infor-
mation that could be used for financial gain. They had access to the coworker’s
computer for 15 minutes while the coworker left for lunch. Besides their financial
difficulties, the scenario also described the personal problems they were having

with the coworker. In particular, they believed that their coworker had been
undeservingly promoted instead of them, making any PII information theft or
the cause of financial damage to their colleague, that they might engage in, jus-
tifiable to them. The task was goal-specific in order to capture the intent of the
users. Although one may argue that simulating a masquerade attack is not ap-
propriate, and that the participants may be constrained because of their ethical
concerns. We claim that, with a well-written scenario and very clear instructions,
the participants will act as masqueraders. To this extent, we refer the reader to
the very well-known Milgram experiment [11]. Milgram showed that subjects
would blindly follow clear instructions presented by an authority figure, even
when they contradict their own values and ethics [11].

The participants in the user study knew that they were being monitored.
They had unlimited access to a computer in our lab for 15 minutes using an ad-
ministrator’s account. So they had access to all the file systems mounted to that
computer. None of the participants had access to this file system before, which
was designed to look very realistic and to include potentially interesting patent
applications, personally identifiable information, as well as account credentials.
We installed the DDA sensor on this computer, and planted n decoy files in the
file system. The goal was to monitor when and where the masqueraders accessed
these decoy files. Table 3 shows how we varied the number of decoy documents
n for each experiment, which involved ten participants acting as masqueraders.

In order to reduce experimenter bias when placing these decoy documents, we
have surveyed 52 computer science students as to where they would place decoy
documents on their file systems. The directory list shown in Table 1 indicate
where we placed the decoy documents for each experiment (top 40, top 30,
top 20, and top 10 directories respectively). Recall that these decoy locations
have been selected based on the reports collected from the fifty-two student
participants in our first user study.

The number of decoy documents n is the independent variable that we control
in this user study. The number of decoy file touches is the dependent variable
on the number of decoys n planted in the file system.

The file system used in our lab had more than 100,000 files indexed by desktop
search tools installed on the system, and totaling a size of more than 70 GBytes.
The file system included at least eighty files containing personal information
that could be used for identity theft or financial gain. The contents of certain
personal files were sanitized, so that no personal information was leaked.

Table 3. Total Number of Decoy Alerts by Experiment

Experiment Number of Placed Decoys Number of Decoy Alerts
1 40 96
2 30 90
3 20 71
4 10 56

Before conducting the experiments, we ensured that all non-decoy documents
on the file system were tagged with a random tag, that is indistinguishable

from the HMAC tag of the decoy documents. This was done so that a more
knowledgeable attacker cannot distinguish the decoy files from the normal files
by editing them through a hex editor and looking for the HMAC tag within the
document. This ensures the fifth desirable property of decoy documents, namely
that they are not easily distinguishable as decoys to the attacker.

Besides tagging the real non-decoy files, we have indexed all the decoy files
using the available desktop search tools on the system. Recall that the DDA
sensor issues an alert if the contents of the decoy file are read or it gets loaded
into memory. Thus, indexing the decoy files during the deployment phase can
reduce potential false positive alerts that could be issued by the DDA sensor
while conducting the experiments. The goal is to have more reliable and accurate
results, where the sensor alerts are truly caused by the masquerader’s activity,
and not by desktop search tools suddenly scanning the decoy files.

5.3 Experiment Findings

In the following section, we list the major findings of this user study.

The Use of Decoys is Effective: The main purpose of our use of decoys
is to detect masquerader attacks. While non-interference with legitimate users’
activities is desirable, decoys would be useless if they fail to attract masqueraders
by being enticing and conspicuous. The results displayed in Figure 4 suggest that
at least one access to a decoy document was detected by the DDA sensor for
every masquerader, regardless of the number of decoys planted in the file system.
This finding shows that well-placed decoys can be very effective for masquerade
detection. When combined with other intrusion detection techniques, they could
potentially provide even more effective and accurate detectors.

Recommended Number of Decoys: Figure 4 shows the distribution of the
number of decoy file accesses by attackers in the four experiments by the number
of decoy files placed in the file system. One could clearly see that the average
number of touched decoys (horizontal line within each box) is comparable in the
case of 20, 30, and 40 decoys. Whereas it is slightly lower (5.6 touches) when
10 decoys are planted in the file system. Considering Figures 2 and 4 then, one
can conclude that the use of twenty decoy documents provides the best trade-
off between detection capability and non-interference. Although the minimum
number of touched decoys jumps from 1 or 2 to 5 in the case of 40 planted decoys,
this high number could be attributed to the location of the planted decoys and
not merely to the higher number of decoys. This can be clearly seen in Figures 8
and 9 which show the conspicuousness of decoy files 33 and 37 for instance. We
will elaborate on this point in the following discussion.

High Number of Decoy Accesses is Indicative of Attacker’s Malicious
Intent: The question is how many of these decoy file accesses are caused by

Fig. 4. Distribution of the Number of Decoy Document Accesses

the masquerader’s malicious activity. To answer this question, we conducted an
experiment with three groups of ten participants each. Each group was given a
different scenario to execute: a ‘malicious attacker’ scenario which we described
in subsection 5.2, a ‘benign masquerader’ scenario, or a ‘neutral’ scenario. In
the benign scenario, the participants in the experiment were allowed to access a
coworker’s computer for 15 minutes in order to accomplish a specific work-related
task, after their own computer experienced a hard drive failure. In the neutral
scenario, the participants were left to freely choose whether they wanted to
access their coworker’s desktop while the coworker left for 15 minutes. They had
no specific motive to do so. In all three scenarios, we placed 30 decoys in the file
system of the lab computer that served as the participant’s coworker’s computer.
The benign and malicious scenarios can provide a baseline to compare the decoy
touches of a malicious masquerader to. Figure 5 shows the distribution of decoy
touches by scenario. One can clearly see that the number of decoy touches is
very low in the benign and neutral scenarios when compared to the malicious
scenario.

The Use of Decoys is Efficient: According to the results shown in Figure 6,
17 attackers were detected during the first minute of their masquerade activity,
while another ten were detected during the second minute after accessing the
victim’s computer. All masqueraders were detected within ten minutes of their
accessing the system under attack. Figure 6 also shows that for attackers 31-
40, who participated in experiment 4 with only 10 planted decoy documents,
the average period of undetected masquerader activity (3.6 minutes) is much
longer, than for attackers 1-10 (1.3 minutes), 11-20 (1.6 minutes), and 21-30 (1.2
minutes).

Attackers 1 and 14 recorded the longest times of undetected masquerader
activity. These attackers had a different strategy for finding personal information.
One attacker was mostly after information related to the victim’s online banking

Fig. 5. Distribution of the Number of Decoy Document Accesses by Scenario

activity, rather than after information that existed locally on the file system.
The attacker, therefore did not navigate or search the My Documents directory,
where most decoys were located. Not surprisingly, the first decoy that they hit
was decoy number 16. located under Internet Explorer’s Favorites directory.
Attacker 14, on the other hand, suspected that no important information would
be stored under the user’s file system, but rather under the administrator’s file
system, which is why he only hit a single decoy document, namely decoy number
8 (see Table 1 for the exact decoy location). Note that attacker 1 took part in
the first experiment where 40 decoys were planted, and attacker 14 participated
in experiment 2, where 30 decoys were used. So even with a larger number of
decoys, the attackers managed to escape detection for 10 minutes, which suggests
we need a well thought-out placement of decoys, that covers all potential attacker
strategies for locating and stealing information.

Consider the null hypothesis that a masquerader activity within a 10-minute
time window gets missed with at least 10% probability in the presence of at least
40 decoy files. Based on the observed results, we can reject this hypothesis at
the 2% significance level with a p-value=0.0148. In other words, we can claim
that with a 98% probability, the probability of detecting a masquerader within
10 minutes of their activity on the victim’s system is at least 90%.

Decoy Placement is Important: The objective is to identify the decoy doc-
ument locations that would be less interfering with the normal activity of the
legitimate user, while being conspicuous to potential attackers. While the exper-
iments have not been conducted on the same system, and the decoy file locations
vary by normal user (customized for their own non-interfering use of the system),

Fig. 6. Detection Time by User

Fig. 7. Decoy File First Touches

we argue that the cumulative results do provide ground for comparison, as we
have monitored the use for about 7 days on average for each user, for a total of
52 users.

Figure 8 shows the number of accesses to each decoy file by experiment.
Note that the first ten decoy documents were present during all four experi-
ments, whereas the decoys 31-40, for instance were in place only during the last
experiment. This explains the falling line in Figure 8, which depicts the maxi-
mum number of potential attackers accessing these decoys, knowing that there
were ten masqueraders in each experiment.

The number of decoy file accesses varies widely by file location. The loca-
tions are available in Table 1. Some files were accessed more than 25 times,
while others, namely nine out of the forty decoy files, have never been touched

by any attacker. This underlines the importance of decoy placement in highly
conspicuous locations.

Considering figures 8 and 2 for instance, one can notice that the decoy placed
in location 18 was touched by 28 masqueraders. Decoys placed in the same
location by the participants in the first user study were not touched by the
legitimate users and did not trigger any false positives. On the other hand,
decoys placed in locations 19, 23, 25, and 31 for instance caused several false
positives without catching any masquerader. The two figures clearly show that
the location of the decoy document plays an important role in its detection
capability and non-interference with normal user activities. While the locations
that yield the least interference depend on the legitimate user’s file system access
patterns, there is clearly room for placing decoys under directories, so that high
detection rates with very low interference rates.

Fig. 8. Number of Decoy Document Accesses

Conspicuousness Comes First: In order to understand how effective each
decoy file was in catching masqueraders, we have ranked the decoy files based on
the probability of an attacker accessing them in Figure 9. Recall that an access
in this case refers to viewing, editing, copying, zipping, or moving the decoy file.
Considering Figure 9 and the table in Table 1, the top three decoy files that are
most likely to be accessed by an attacker reside on the Desktop. These three files
reside respectively in the Important, Notes and Insurance directories. The first
file was a payment receipt. The second file included a budget plan, and the third
file was a copy of test results from a medical lab. Other decoys with contents
similar to the contents of decoy 18, such as decoys 4 and 5 which constituted
payment receipts also, did not achieve the same detection capability as decoy
37. This leads us to the conclusion, that conspicuousness is more important than

enticingness. Although the attackers were mostly after information with financial
value, they were more likely to access files with health-related information that
were highly conspicuous (located on the desktop), than other decoys with more
relevant information to their objective, i.e. finance-related information.

Fig. 9. Probability of an Attacker Opening the Decoy File

6 Discussion and Recommendations

We list here a few recommendations related to the deployment of decoy doc-
uments for effective masquerade attack detection based on the findings of our
user studies.

6.1 Recommendation 1

While, the detectability property of the decoy documents is the most important
property, our second user study has shown how important the conspicuousness
property is. The latter is even more important than the enticingness property,
as revealed by the user study.

We recommend considering the following ranking of decoy properties when
designing and deploying decoy documents for masquerade attack detection. The
ranking is based on decreasing importance of the decoy properties.

1. Detectability
2. Conspicuousness
3. Enticingness
4. Non-Interference and Differentiability

5. Believability

The importance of the variability property varies by attacker sophistication.
Similarly, the importance of the decoy shelf-life depends on the deployment en-
vironment.

6.2 Recommendation 2

While the number of false positives varies widely by user and by decoy docu-
ment location, overall we averaged less than 1 false positive per user per week.
This is a very encouraging number, but it could be even further reduced with
more intelligent placement of the decoy documents. For example, the decoy files
placed under the My Pictures and My Music directories could be accessed by
applications scanning the file system for picture or music files respectively. Such
accesses are not deliberate accesses by the legitimate user and could be avoided,
if the decoy files are placed under directories that are not by default scanned by
such applications. The user may choose to ignore decoy alerts triggered by these
applications by configuring the sensor accordingly. Recall that, as described in
section 3.3, the hooking mechanism used by the sensor enables the filtering of
decoy alerts issued by user-defined processes.

7 Conclusion

In this paper, we presented an experimental evaluation of the different deployment-
related properties of decoy documents. We also made a few recommendations
based on the findings from our experiments. These recommendations should
guide the deployment of decoy documents for effective masquerade detection.

In our future work, we will repeat the experiments in different environments,
other than universities, to ascertain whether the results are broadly applicable.
We will also evaluate other decoy document properties, including the believability
of documents. Furthermore, we will investigate the decoy document properties
for masquerade attacks perpetrated through the installation of rootkits and mal-
ware such as Torpig. Finally, we will study how attacker behavior changes based
on their knowledge about the monitoring mechanisms running on the victim’s
system and their perception of risk and expected financial gain.

Acknowledgment

We thank Shlomo Hershkop and Brian Bowen for their work on D3. We further
thank Shlomo Hershkop for his support with the DDA sensor.

References

1. Ben-Salem, M. DDA Sensor: http://www1.cs.columbia.edu/ids/ruu/data/.

2. Ben-Salem, M., Hershkop, S., and Stolfo, S. J. A survey of insider attack de-
tection research. In Insider Attack and Cyber Security: Beyond the Hacker (2008),
Springer.

3. Bowen, B., and Hershkop, S. Decoy Document Distributor:
http://sneakers.cs.columbia.edu/ids/ruu/dcubed/.

4. Bowen, B. M., Hershkop, S., Keromytis, A. D., and Stolfo, S. J. Baiting
inside attackers using decoy documents. In SecureComm’09: Proceedings of the
5th International ICST Conference on Security and Privacy in Communication
Networks (2009).

5. Chinchani, R., Upadhyaya, S., and Kwiat, K. A tamper-resistant framework
for unambiguous detection of attacks in user space using process monitors. In
Information Assurance, 2003. IWIAS 2003. Proceedings. First IEEE International
Workshop on (march 2003), pp. 25 – 34.

6. Greenberg, A. ID Theft: Don’t Take it Personally.
http://www.forbes.com/2010/02/09/banks-consumers-fraud-technology-security-
id-theft.html, February 2010.

7. Higgins, K. J. Widespread Confickr/Downadup Worm Hard To Kill.
http://www.darkreading.com/security/attacks-breaches/212901489/index.html,
January 2009.

8. Kim, J., Biryukov, A., Preneel, B., and Hong, S. On the security of hmac and
nmac based on haval, md4, md5, sha-0 and sha-1 (extended abstract). In SCN’06:
Proceedings of the 5th International Conference on Security and Cryptography for
Networks (Berlin, Heidelberg, January 2006), OUP Oxford, pp. 242–256.

9. Krawczyk, H., Bellare, M., and Canetti, R. RFC2104, HMAC: Keyed-
Hashing for Message Authentication. The Internet Engineering Task Force (IETF).

10. Maxion, R. A., and Townsend, T. N. Masquerade detection using truncated
command lines. In DSN ’02: Proceedings of the 2002 International Conference on
Dependable Systems and Networks (2002), IEEE Computer Society, pp. 219–228.

11. Milgram, S. Obedience to Authority: An Experimental View. Harpercollins, Jan-
uary 1974.

12. Schonlau, M., Dumouchel, W., Ju, W., Karr, A. F., Theus, M., and Vardi,
Y. Computer intrusion: Detecting masquerades. Statistical Science 16 (2001), 58–
74.

13. Spitzner, L. Honeypots: Catching the insider threat. Annual Computer Security
Applications Conference (2003).

14. Stolfo, S. J., Greenbaum, I., , and Sethumadhavan, S. Self-monitoring mon-
itors. In Columbia University Computer Science Department, Technical Report #
cucs-026-09 (2009).

15. Stone-Gross, B., Cova, M., Cavallaro, L., Gilbert, B., Szydlowski, M.,
Kemmerer, R., Kruegel, C., and Vigna, G. Your botnet is my botnet: anal-
ysis of a botnet takeover. In CCS ’09: Proceedings of the 16th ACM conference
on Computer and communications security (New York, NY, USA, 2009), ACM,
pp. 635–647.

16. Wang, K., and Stolfo, S. J. One-class training for masquerade detection. In
Proceedings of the 3rd IEEE Workshop on Data Mining for Computer Security
(2003).

17. Yuill, J., Zappe, M., Denning, D., and Feer, F. Honeyfiles: deceptive files for
intrusion detection. In Information Assurance Workshop, 2004. Proceedings from
the Fifth Annual IEEE SMC (June 2004), pp. 116 – 122.

