
Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs

Joseph Zuckerman
jzuck@cs.columbia.edu

Department of Computer Science,
Columbia University

New York, New York, USA

Davide Giri
davide_giri@cs.columbia.edu

Department of Computer Science,
Columbia University

New York, New York, USA

Jihye Kwon
jihyekwon@cs.columbia.edu

Department of Computer Science,
Columbia University

New York, New York, USA

Paolo Mantovani∗
paolo@cs.columbia.edu

Department of Computer Science,
Columbia University

New York, New York, USA

Luca P. Carloni
luca@cs.columbia.edu

Department of Computer Science,
Columbia University

New York, New York, USA

ABSTRACT
One of the most critical aspects of integrating loosely-coupled
accelerators in heterogeneous SoC architectures is orchestrating
their interactions with the memory hierarchy, especially in terms of
navigating the various cache-coherence options: from accelerators
accessing off-chip memory directly, bypassing the cache hierarchy,
to accelerators having their own private cache. By running real-
size applications on FPGA-based prototypes of many-accelerator
multi-core SoCs, we show that the best cache-coherence mode for a
given accelerator varies at runtime, depending on the accelerator’s
characteristics, the workload size, and the overall SoC status.

Cohmeleon applies reinforcement learning to select the best
coherence mode for each accelerator dynamically at runtime, as
opposed to statically at design time. It makes these selections
adaptively, by continuously observing the system and measuring
its performance. Cohmeleon is accelerator-agnostic, architecture-
independent, and it requires minimal hardware support. Cohmeleon
is also transparent to application programmers and has a negligi-
ble software overhead. FPGA-based experiments show that our
runtime approach offers, on average, a 38% speedup with a 66%
reduction of off-chip memory accesses compared to state-of-the-art
design-time approaches. Moreover, it can match runtime solutions
that are manually tuned for the target architecture.

CCS CONCEPTS
•Computer systems organization→ System on a chip; Recon-
figurable computing; Heterogeneous (hybrid) systems; • Computing
methodologies→ Reinforcement learning.

∗Paolo Mantovani is now with Google Research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MICRO’21, October 18-22, 2021, Athens, Greece
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8557-2/21/10. . . $15.00
https://doi.org/10.1145/3466752.3480065

KEYWORDS
cache coherence, hardware accelerators, q-learning, system-on-chip

ACM Reference Format:
Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P.
Carloni. 2021. Cohmeleon: Learning-Based Orchestration of Accelerator
Coherence in Heterogeneous SoCs . In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO ’21), October 18–22,
2021, Virtual Event, Greece. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3466752.3480065

1 INTRODUCTION
Modern computing systems of all kinds increasingly rely on het-
erogeneous system-on-chip (SoC) architectures, which combine
general-purpose processor cores with many domain-specific hard-
ware accelerators [10, 21, 27, 52, 57, 71, 89]. In the case of smart-
phones, for example, major vendors devote most of their SoC area
to a growing number of specialized hardware blocks [40, 70]. A
multitude of accelerators have been designed for many different
application domains [12, 17, 31, 39, 47, 60, 62, 65, 66, 76, 81, 86, 90].

This work is focused on fixed-function loosely-coupled accelera-
tors (LCAs), a very common category of accelerators that includes,
for instance, the NVIDIA Deep Learning Accelerator (NVDLA) –
part of the NVIDIA Tegra Xavier SoC [27, 60]. By following the
loosely-coupled approach, these hardware accelerators are designed
independently from the processor cores, lie outside the core on the
system interconnect, are invoked through a device driver, execute
coarse-grained tasks with no need for fine-grained synchronization,
and are shared among multiple cores on an as-needed basis [16, 23].
Fixed-function accelerators are not programmable (i.e. they do not
execute instructions), but they can be highly configurable.

For key computational tasks, hardware specialization delivers
order-of-magnitude gains in energy-efficient performance com-
pared to software execution on general-purpose processors [41].
These gains are due to a combination of specialization and par-
allelism, but they also require efficient memory subsystems [25].
Indeed, the integration of LCAs requires managing their interaction
with the SoCmemory hierarchy, which is typically designed around
the processor cores. Figure 1 highlights the memory hierarchy of a
generic heterogeneous SoC, where a multi-level cache hierarchy
supports the processor cores’ operation. Complex SoCs may have a

350

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3466752.3480065
https://doi.org/10.1145/3466752.3480065
https://doi.org/10.1145/3466752.3480065

MICRO’21, October 18-22, 2021, Athens, Greece Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni

interconnect
(bus, NoC)

CPU
L1cache

CPU
L1cache

L2 cache

...

...

mem ctrl mem ctrl...

DRAM DRAM

accelerator
local mem

accelerator
local mem

...

cache

LLC partition LLC partition

mem channels

SoC

accelerator
local mem

accelerator
local mem

non-coherent
DMA

LLC-coherent
DMA

fully
coherent

coherent
DMA

...

DMA

DMADMA

L2 cache

Figure 1: Memory hierarchy of a heterogeneous SoC with
partitioned memory space and multiple DRAM controllers.
The colored lines show the different ways accelerators can
interact with the memory hierarchy.

partitioned last-level cache (LLC) as well as multiple DRAM con-
trollers and channels to increase the off-chip bandwidth and better
distribute the traffic [4, 54, 64]. LCAs interact directly with the SoC
memory hierarchy to load data into their private scratchpad and to
store results back to memory [23, 52, 63].

Most LCAs process data in patterns that are very specific to
the particular algorithm they implement. Since these patterns are
predictable, designers exploit them to specialize the microarchi-
tectures of the accelerator scratchpad and datapath [74]. As a re-
sult, while some accelerators have irregular memory access pat-
terns that resemble those of general-purpose cores, many others
benefit from a different memory hierarchy, more tailored to their
needs [1, 35, 63, 72].

The literature proposes many different modes for the interaction
between LCAs and the memory hierarchy, ranging from accelera-
tors accessing off-chip memory directly, bypassing the cache hier-
archy, to accelerators having their own private cache [6, 35, 36, 45].
Even though fixed-function LCAs do not require fine-grained syn-
chronization like programmable accelerators (e.g. GPUs) or tightly-
coupled accelerators normally do, they may still benefit from access-
ing on-chip cached data and from using hardware-based coherence
provided by the cache hierarchy as an alternative to software-based
coherence mechanisms, such as cache flushes. By extending exist-
ing classifications, we identify four main cache-coherence modes for
accelerators.

Then, we show that the best coherence mode varies at runtime,
based on the communication properties of the specific accelerator,
its invocation parameters (e.g. the size of the task it executes), and
the overall system status (e.g. the number of accelerators active in
parallel). Thus, selecting an accelerator’s cache-coherence mode
statically at design-time yields suboptimal performance with re-
spect to a runtime approach. This is especially true for complex
SoCs, where many concurrent applications consisting of multiple
threads that invoke multiple LCAs in parallel to execute coarse-
grained tasks. The on-chip traffic may vary considerably depending

on which accelerators are running and what parameters they have
been configured with.

For these reasons, we make the case that SoC architectures
should support multiple cache-coherence modes for accelerators as
well as their runtime selection. Accordingly, we propose cohmeleon,
a learning-based approach for selecting the best coherence mode
for fixed-function LCAs dynamically at runtime, as opposed to
statically at design time. cohmeleon continuously observes the
system and measures its performance by means of a few hardware
monitors and performance counters that are commonly found in
SoC architectures. With this information, cohmeleon trains a rein-
forcement learning model to select the cache-coherence mode for
each fixed-function LCA invocation. Our learning model has the
flexibility to target multiple optimization objectives simultaneously,
like execution time and off-chip memory accesses. cohmeleon is
fully transparent to application programmers, and it adds a negligi-
ble overhead to the accelerator invocations. Our approach does not
require any prior knowledge about the accelerators in the SoC and
it is easily applicable to different SoC architectures. cohmeleon
requires minimal hardware support, provided that the target archi-
tecture has support for multiple cache-coherence modes.

To evaluate cohmeleon, we realized a set of complex FPGA-
based prototypes of SoC architectures. Each SoC has multiple LLC
partitions andmultiple DRAM controllers for parallel access tomain
memory. Using the FPGA as an experimental infrastructure allows
us to run real-size applications on top of Linux SMP, without losing
accuracy. We developed a set of multi-threaded applications with
broad coverage in terms of accelerator parallelism and workload
sizes. The applications invoke a variety of open-source accelerators
as well as a traffic-generator that reproduces the communication
characteristics of a wide range of fixed-function accelerators.

Our experiments show that cohmeleon, on average, gives a
speedup of 38%, while reducing the off-chip memory accesses by
66% compared to state-of-the-art design-time solutions. We also
show that cohmeleon, without any prior knowledge on the target
architecture, can match the performance of a runtime algorithm
manually tuned for it.

To build our SoC prototypes we leveraged ESP, an open-source
platform for agile design and prototyping of heterogeneous SoCs [9,
20, 54]. We enhanced the ESP cache hierarchy, hardware monitors,
and accelerator invocation API.

In summary, we make the following contributions:
• We classify the main accelerator cache-coherence modes for

heterogeneous SoCs (Section 2).
• We make the case for the runtime selection of the cache-

coherence mode of each accelerator (Section 3).
• We propose and evaluate cohmeleon, a learning-based ap-

proach that transparently selects at runtime the best cache-coherence
mode for each accelerator, without any prior knowledge of the tar-
get architecture (Sections 4, 6).

• The implementation of cohmeleon, its FPGA-based experi-
mental infrastructure (Section 5), and our enhancements to ESP are
released as part of the open-source ESP project[20].

351

Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs MICRO’21, October 18-22, 2021, Athens, Greece

non-
coh
DMA

LLC-
coh
DMA

coh
DMA

fully-
coh

Chen et al. [16] ✓
Cota et al. [23] ✓ ✓
Fusion [45] ✓ ✓
gem5-aladdin [6, 22, 72] ✓ ✓ ✓
Spandex [1] ✓
ESP [35, 36] ✓ ✓ ✓
NVDLA [60] ✓
Buffets [63] ✓
Kurth et al. [46] ✓
Cavalcante et al. [13] ✓
BiC [29] ✓
Cohesion [44] ✓
ARM ACE/ACE-Lite [3] ✓ ✓ ✓
Xilinx Zynq [56, 59, 68] ✓ ✓
Power7+ [8] ✓
Wirespeed [30] ✓
Arteris Ncore [11] ✓ ✓
CAPI [79] ✓
OpenCAPI [61] ✓
CCIX [14, 15] ✓ ✓
Gen-Z [32] ✓
CXL [24] ✓ ✓

Table 1: Accelerator coherence modes in literature.

2 COHERENCE MODES
The literature on cache coherence for accelerators has proposed
several ways of maintaining coherence in heterogeneous systems.
These solutions range from managing the coherence fully in hard-
ware to managing it fully in software, or with a hybrid of the two
methods [43, 48, 77].

By extending existing classifications in literature [7, 23, 35, 36],
we identify four main types of cache coherence for accelerators
from a system perspective. We refer to these as accelerator cache-
coherence modes, which are defined independently from the specific
cache-coherence protocol implemented by a given cache hierarchy.
All modes always keep data coherent, but they do so with different
combinations of software-based and hardware-based coherence.
The modes naming defines the degree of hardware coherence (non-
coherent, LLC-coherent, coherent), and at what level the accelerator
accesses the memory hierarchy: access to a private cache (cache
access) or direct memory access on the system interconnect (DMA).
Figure 1 depicts the accelerator interaction with the memory hierar-
chy for each cache-coherence mode, while Table 1 lists the literature
where these modes appear. The literature, including industry, has
clearly not converged on a single coherence mode for LCAs. Each
mode brings different benefits that can make it optimal depending
on the situation.

Non-Coherent DMA. The accelerator does not have a private
cache, and its memory requests bypass the cache hierarchy and
access main memory directly. In this approach, coherence is implic-
itly managed by software. If the accelerator data is allocated in a
cacheable memory region, a flush of the caches is required before
invoking the accelerator to make sure main memory contains the
updated version of the data. Some solutions allocate the accelerator

data in virtual memory for an efficient and transparent data shar-
ing between processors and accelerators (e.g. gem5-Aladdin [72]).
Others reserve a contiguous physical memory region for the accel-
erator data to avoid dealing with virtual address translation for the
accelerator (e.g. NVDLA [60]).

LLC-Coherent DMA. The accelerator does not have a private
cache, and its memory requests are sent directly to the LLC. The
accelerator is kept coherent with the LLC, but not with the private
caches of the processor cores. Therefore, only the private caches
must be flushed before the accelerator execution. Since the accel-
erator does not have a private cache, it normally sends memory
requests that have no notion of coherence, as, for example, when
using the AMBA AXI interface [3]. Then, the system around the
accelerator enforces the LLC-coherence. For this reason, enabling
the LLC-coherent mode requires a bridge to map the non-coherent
accelerator requests to the system’s cache protocol. LLC-coherent
DMA has been demonstrated in literature on top of a MESI cache
hierarchy [6, 35, 36, 75].

Coherent DMA. Similarly to LLC-coherent DMA, the acceler-
ator does not have a private cache, and its memory requests are
sent directly to the LLC. However, in this case, the cache hierarchy
maintains full hardware coherence. Therefore, no cache flush is
needed, and the LLC recalls or invalidates data in the private caches
as needed. Also in this case, the accelerators are normally non-
coherent, requiring a bridge to map their messages to the coherent
system interconnect. All the entries in Table 1 with support for
coherent DMA have their own version of this bridge. For instance,
ARM introduced the accelerator coherency port (ACP) in the AXI
protocol specification to allow the connection of non-coherent ac-
celerators to the coherent system interconnect [3, 77]. Coherent
DMA, also referred to as I/O coherence [11, 13, 24], is a common solu-
tion for cache-coherent chip-to-chip interconnects, as in the case of
connecting an accelerator to a CPU through a PCIe link [14, 61, 79].

Fully-coherent (Coherent Cache Access). A fully-coherent
accelerator is equipped with a private cache, to which it sends
memory requests, instead of sending them directly on the system
interconnect like in the case of DMA. The coherence is handled fully
in hardware, exactly as for general-purpose processors. There are
various available cache-coherence protocols for the accelerator’s
private cache. Beside standard protocols like MESI and MOESI [35,
36, 72], other options are Fusion [45], DeNovo [18], or GPU-like
coherence protocols [58]. Spandex acknowledges this diversity and
introduces a flexible coherence interface that enables systems with
heterogeneous cache-coherence protocols [1].

3 MOTIVATION
Accelerators are heterogeneous by nature and this diversity is re-
flected in their communication properties [23, 52]. They manifest a
wide range of memory access patterns, from long streaming bursts
to single-word irregular accesses. While an accelerator may read
the same input data multiple times, another may store intermediate
results or write the output in place. Some are highly computation-
bound, requiring a very low communication bandwidth. Others
are communication-bound and benefit from an increased memory
bandwidth. Furthermore, the same accelerator may show a wide
range of communication properties at runtime based on how it

352

MICRO’21, October 18-22, 2021, Athens, Greece Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni

A
ut
oe
nc
od

er

Ch
ol
es
ky

Co
nv

2D

FF
T

G
EM

M

M
LP

M
RI
-Q

N
VD

LA

N
ig
ht
-v
is
io
n1

So
rt

SP
M
V

Vi
te
rb
i

CortexSuite [82] ✓ ✓
ESP [54] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MachSuite [67] ✓ ✓ ✓ ✓ ✓
Parboil [78] ✓ ✓ ✓ ✓
PERFECT [5] ✓ ✓ ✓ ✓
S2CBench [69] ✓ ✓ ✓ ✓

Table 2: The accelerators in this work target relevant appli-
cations that appear in various benchmark suites.

is configured when invoked; some accelerators may even contain
multiple engines, each optionally selected at runtime. Another im-
portant factor is the input size. If the accelerator’s data is small
enough to fit in its local memory, it only needs to be loaded once
from the memory hierarchy; otherwise, many memory transac-
tions are needed. These varieties of communication properties and
runtime variability contribute to the complexity of optimizing the
interactions between accelerators and the memory hierarchy.

As mentioned in Section 1, our work is focused on fixed-function
loosely-coupled accelerators that execute coarse-grain tasks. Nor-
mally, the synchronization between processors and accelerators
and across multiple accelerators does not occur at fine granularity
(e.g. a cache line), but rather at the level of an entire task, which
corresponds to the invocation of a particular accelerator. Even with-
out fine-grained synchronization, the cache hierarchy can still be
useful. The primary benefit is accessing an on-chip copy of the data
(in case of a cache hit), as opposed to directly accessing off-chip
memory. The caches can be especially useful when accelerators
access the same data multiple times (e.g., for storing and loading
partial results), or when other components access data before or
after the accelerator invocation (preparing the inputs or reading the
outputs). Cache coherence also avoids the need for software-based
synchronization mechanisms, such as cache flushing or copying
accelerator data. The coherencemode determines whether the accel-
erators will leverage the caches to potentially mitigate the latency
of accessing shared data. Thus, the selection of one of the four
coherence modes dictates to which level of the cache hierarchy the
accelerator memory requests should be routed to.

To establish the advantage of managing the accelerator-memory
interactions dynamically at runtime, we performed a series of ex-
periments by leveraging the ESP open-source SoC platform [54].
We designed a many-accelerator multi-core SoC architecture and
we evaluated it on FPGA. We used 11 accelerators available in the
ESP release for the following tasks: Denoising Autoencoder for
the Street View House Numbers (SVHN) image dataset, Cholesky
decomposition, 2D convolution, 1D Fast Fourier Transform (FFT),
dense matrix multiplication (GEMM), multi-layer perceptron (MLP)
classifier for the SVHN dataset, magnetic resonance imaging (MRI-
Q), the NVDLA [33, 60], a “night-vision” application consisting of
four internal engines (noise filtering, histogram, histogram equal-
ization, discrete wavelet transform), sort, sparse matrix-vector mul-
tiplication (SPMV), and Viterbi algorithm. We built an SoC with
11 accelerators, one per type. These 11 accelerators target relevant

1The benchmark suites contain a subset of the night-vision pipeline.

applications amenable for hardware acceleration that appear in
a similar form in various benchmark suites, as shown in Table 2.
These accelerators are highly optimized; they employ custom local
memory and memory access patterns, use a pipelined datapath that
overlaps communication with computation, and exploit data reuse
as much as possible. These accelerators are also flexible; they can
be configured in different operating modes, to operate on batches
of inputs, and with a wide range of input sizes. All the accelerators
used in this work are designed with no notion of coherence. They
merely send out memory requests, and the surrounding system
transparently offers different ways, i.e. coherence modes, to han-
dle these requests. These accelerators form a good assortment of
fixed-function LCAs in terms of memory access patterns.

Accelerator Execution in Isolation. First, we evaluated the
four cache-coherence modes described in Section 2 with each ac-
celerator running alone and processing three different workload
data sizes: roughly 16KB (Small), 256KB (Medium) and 4MB (Large).
Each processor and accelerator has its own 32KB private cache. The
1MB LLC is split in two units, each corresponding to a contiguous
partition of the global address space and equipped with a dedicated
memory controller to access that partition.

Figure 2 shows the results in terms of execution time (blue) and
off-chip memory accesses (red) for all the combinations of cache-
coherence mode and workload size. Each bar shows the average of
ten executions, normalized against the non-coherent DMA results.
These measurements include the overhead of invoking the acceler-
ator, (i.e., the execution of the accelerator’s device driver and any
required cache flushes).

Since an application initializes all the data before invoking an
accelerator, the data is “warm” when the accelerator starts. Hence,
for Small andMedium workloads, some coherence modes have zero
off-chip accesses (i.e. the red bar is missing), because all data is
already loaded and fits in the caches. Instead, the Large workloads
are sized such that they do not fit in the cache hierarchy, so data
warm-up does not benefit performance.

The results in Figure 2 show that the best cache-coherence mode
can vary at runtime based on the workload size and on the acceler-
ator type. In fact, given an accelerator, the winner is not the same
for all workloads sizes, and given a workload size, the winner is not
the same for all accelerators. For instance, in the case of the autoen-
coder, the non-coherent mode goes from being the slowest mode
and by far the worst in terms of memory accesses (Small workload),
to being at least three times faster than all the other modes while
incurring 30% less memory accesses (Large workload). While a few
accelerators behave similarly, others, like GEMM, never have the
non-coherent mode as the best option.

The modes that do not require the device driver to flush the
caches have a smaller invocation overhead and may benefit from
cached data. Hence, they tend to perform best for smaller workload
sizes (e.g. MLP Small/Medium). The non-coherent mode becomes
more effective for larger workloads, which do not fit in the caches
and make the invocation overhead negligible. For large workloads,
in the case of some accelerators, the non-coherent DMA has fewer
off-chip accesses than the other modes (e.g. FFT Large). In fact,
for large workload sizes, the modes that use the caches can incur
thrashing, i.e. the miss rate is very high and causes a large amount
of cache evictions. As the workload size increases beyond 4MB,

353

Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs MICRO’21, October 18-22, 2021, Athens, Greece

Autoencoder Cholesky Conv−2D FFT GEMM MLP MRI−Q NVDLA Night−vision SPMV Sort Viterbi

S
m

all
M

edium
Large

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

non−
co

h−
dma

llc−
co

h−
dma

co
h−

dma

full−
co

h

0

1

2

0

1

2

0

1

2

Coherence Mode

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

execution time off−chip memory accesses

5.3 4.1 5.0

7.9 6.6 3.2 3.4 7.1 6.233

Figure 2: Accelerators running in isolation with different coherence modes and workload sizes.

1 Acc 4 Acc 8 Acc 12 Acc

M
edium

non−co
h−dma

llc−
co

h−dma

co
h−dma

full−
co

h

non−co
h−dma

llc−
co

h−dma

co
h−dma

full−
co

h

non−co
h−dma

llc−
co

h−dma

co
h−dma

full−
co

h

non−co
h−dma

llc−
co

h−dma

co
h−dma

full−
co

h
0

2

4

6

Coherence Mode

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

execution time off−chip memory accesses

Figure 3: Accelerators running in parallel.

this phenomenon is bound to increase in favor of the non-coherent
mode, which bypasses the caches.

The non-coherent DMA mode always accesses off-chip data
directly, but when the accelerator requests long bursts it can sustain
higher throughput than the modes using the caches. Hence, it can
have better performance even with more memory accesses (e.g.
Cholesky Large).

Parallel Accelerator Execution.Modern SoCs frequently con-
tain up to tens of hardware accelerators, and applications execut-
ing in parallel can cause multiple hardware accelerators to run
simultaneously. We thus study the performance degradation due to
concurrent execution of multiple accelerators and report the results
of our study in Figure 3. We chose medium-sized (256KB) work-
loads for each of accelerator types and ran multiple experiments
with 1, 4, 8 and 12 accelerators executing concurrently. We built
an SoC with 12 accelerators, with 3 instances of FFT, Night-vision,
Sort, and SPMV. Each accelerator is invoked multiple times in a
row from a separate software thread. For each set of experiments,
we averaged the performance of each accelerator over multiple
executions and we normalized it against the non-coherent DMA
results for the single accelerator execution. Then, we averaged the
normalized performance of all four accelerators to produce the
results in Figure 3.

As the number of active accelerators increases, the non-coherent
mode appears to suffer the least, recording an execution time loss
of up to 2.4× with 12 accelerators, whereas the value of off-chip
accesses stays constant. The other modes, which could benefit from
cached data in the case of standalone accelerators, see an increase

of memory accesses due to contention on the caches. Coherent
DMA suffers the worst slowdown: 8× higher execution time when
12 accelerators run concurrently compared to the single accelerator
case.

The Case for a Learning-Based Approach. The results pre-
sented in this section and summarized in Figure 2 and Figure 3
highlight that no fixed coherence solution is close to optimal for
heterogeneous SoCs integrating multiple types of fixed-function
LCAs. Furthermore, these results suggest that deriving an analytic
solution in the form of a heuristic would require a tremendous
effort to search a huge design space that consists of a large number
of variables to consider. For instance, the penalty of each particular
type of data transfer may differ depending on the type of coherent
interconnect of the system; the number of available accelerators
may vary; the number of concurrent accelerator invocations can
change over time; the size of the workload might not be fixed;
updates to the system software could impact scheduling priorities.

Our motivating results, collected with the implementation of the
4 coherence modes provided by ESP, are aligned with the findings
of the state-of-the-art literature presented in Table 1, which are
based on a variety of different coherence modes implementations.

These considerations led us to the development of cohmeleon:
the first learning-based approach to the orchestration of accelerator
coherence in heterogeneous SoCs. As we describe the implemen-
tation of cohmeleon in Section 4 and evaluate its advantages in
Section 6, we show how the learning approach can eliminate the
need for a human-in-the-loop and avoid a lengthy design-space
exploration that would have to be repeated whenever some of the
state-space variables change in the system. Furthermore, our learn-
ing approach can optimize concurrently a multi-objective reward
function, which leads to improved performance with fewer accesses
to external memory.

4 COHMELEON
We now present cohmeleon, our solution for runtime orchestration
of accelerator coherence. cohmeleon’s ability to adaptively recon-
figure the memory hierarchy of a heterogeneous SoC is built upon
features that span various levels of the hardware-software stack.
We propose a general framework for runtime coherence selection,
highlighting the necessary hardware and software requirements.

354

MICRO’21, October 18-22, 2021, Athens, Greece Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni

Then, we show how reinforcement learning can be applied to this
framework to enable online and continuous learning. Finally, we
discuss the implementation of our approach in a particular SoC
platform.

4.1 Runtime Reconfiguration
Our general framework is divided into four main phases. During
each accelerator invocation we first sense the conditions of the SoC
using a minimal set of status variables. This information is used to
decide which coherence mode to apply to an accelerator invocation
following a given policy. This decision is immediately actuated, and
then its performance is evaluated using hardware monitors when
the accelerator execution completes.

(1) Sense: We aim at achieving system introspection with re-
spect to accelerator performance under cache coherence modes
by making the system capable of continuously observing its own
operation. We propose a lightweight software layer to keep track of
important system variables. Since tracking the complete state of an
SoC is intractable, we identified the following set of parameters in
order to capture a compact “snapshot" of the system while keeping
the overhead of doing so small:

• Number of active accelerators.
• Coherence mode of each active accelerator.
• Memory footprint (workload size) of active accelerators.
In Section 3, we saw that the number of active accelerators and

theworkload size affected performance. Furthermore, the coherence
and memory footprint of other active accelerators are relevant
because the active coherence choices can cause resource contention,
and the total amount of active data impacts the efficacy of caches.

(2) Decide: The coherence decision follows a policy, a set of
rules that dictate the runtime decision given the current state. We
consider various policies, including those generated by our rein-
forcement learning module and several baseline policies.

(3) Actuate: We choose to configure an accelerator’s coherence
once per invocation, since this is a natural point of synchroniza-
tion, and fixed-function accelerators tend to have uniform behavior
throughout an invocation. In addition, selecting the coherencemode
at invocation time incurs no overhead, because it happens concur-
rently to the application-specific configuration of the accelerator.

How the actuation of coherence mode is performed depends on
the underlying SoC implementation, but the important prerequisite
is that the coherence mode can be changed at runtime. Changing
the coherencemode requires hardware support for multiple policies,
as opposed to a static choice of coherence mode for each accelerator
or the entire SoC. cohmeleon does not necessarily require support
for all four coherence modes; it makes the selection based on the
options that are available. In general, support for particular coher-
ence modes can be decoupled from the accelerator design by using
mechanisms provided by the surrounding SoC. Hence, designers
need not worry about coherence when creating accelerators for a
system that utilizes cohmeleon.

(4) Evaluate: To evaluate the quality of an accelerator’s invoca-
tion, we identify four metrics to observe:

• Total execution time, including any overhead due to accelerator
invocation (i.e device driver, cache flushes).

• Off-chip memory accesses during the invocation.
• Total cycles in which the accelerator is actively executing.

• Total cycles in which the accelerator is communicating (issuing
a request or awaiting a response) with memory.

Total execution time and off-chip memory accesses are obvious
performance attributes. We choose the other two metrics to account
for compute-bound accelerators. For such accelerators, the total
execution timemay not change even if thememory system performs
better, but the ratio of communication cycles to total cycles would
get smaller.

While execution time can be measured in software, the remain-
ing values must be measured in hardware. Hence, we propose the
addition of a lightweight hardware monitoring system that can be
integrated easily into any SoC. Ourmonitoring system continuously
exposes these values to software, thus allowing for the evaluation
of an accelerator’s performance to inform an intelligent selection
of coherence modes.

4.2 Reinforcement Learning Module
In reinforcement learning (RL), an autonomous agent learns behav-
iors through trial-and-error interactions with the environment [42,
80]. At each step, the agent perceives the state (sense), chooses an
action (decide), takes the action (actuate), and receives a reward at
the beginning of the next step (evaluate). The objective is to find
an optimal policy that determines which action to choose at each
state so that the expected reward is maximized.

For the runtime reconfiguration problem of cohmeleon, we
propose a variant of Q-learning, a widely adopted RL approach
that does not require any model of the environment [84, 85]. This
approach has a number of advantages for the target problem. First,
it enables an automatic discovery of a coherence-selection policy
during regular SoC operation. Second, it requires neither human
expertise of the target SoC architecture nor offline-training data.
Third, RL allows continuous updating of the coherence-selection
policy. As an SoC runs new workloads and encounters new system
states, a RL module can update its policy to improve the perfor-
mance. Finally, we can optimize the system with respect to multiple
objectives by formulating the learning reward accordingly.

A Q-learning agent maintains aQ-table that stores, for each state-
action pair, a Q-value that represents the expected reward of taking
that action from that state. The agent can use many strategies
to select an action from each state, including an epsilon-greedy
approach. At each step, this approach selects either a random action,
with probability ϵ , or the action with the highest Q-value based on
the current state. This encourages both exploration of the action
space and exploitation of the knowledge gained from prior trials.
After each action is taken, the reward is evaluated at the next step,
and the Q-value corresponding to that state-action pair is updated
from the previous value with a learning rate α .

Model definition. Figure 4 shows an overview of the proposed
learning module for coherence selection. The problem is modeled
with the following states, actions, and rewards.

(1) States: Based on the results in the motivation section and on
prior work [7, 37], we define the state space S with the following 5
attributes: Fully-Coherent-Acc, Non-Coh-Acc-per-Tile, To-LLC-per-
Tile, Tile-Footprint, and Acc-Footprint. Each attribute can have one
of three possible values, as described in Table 3. A state s ∈ S is a
5-tuple of these attributes, and hence, |S | = 35 = 243. The value

355

Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs MICRO’21, October 18-22, 2021, Athens, Greece

State Attribute Description Values

Fully coh acc Total number of active fully coherent accelerators 0, 1, 2+

Non coh acc per
tile

Avg no. of non-coh accelerators communicating with each memory partition needed by the target
accelerator invocation 0, 1, 2+

To LLC per tile Avg no. of accelerators accessing each LLC partition needed by the target accelerator invocation 0, 1, 2+

Tile footprint Avg utilization of each partition of the cache hierarchy needed by the target accelerator invocation ≤L2, ≤LLC Slice, > LLC Slice

Acc footprint Memory footprint of the target accelerator invocation ≤L2, ≤LLC Slice, > LLC Slice

Table 3: State space S : a state s ∈ S is a 5-tuple of the following attributes.

Given (A, m),

CPU CPU
Config.
register

Acc. Acc.
System
statusRL

1) State 2) Action

RL (Reinforcement learning) module
Action

State

Q
-t

ab
le

. . .

..
.

..
.

..
.

..
.

. . .

. . .

...

3) Reward

SoC

sense the state Get an action
Update the
Q-value

...

DRAM DRAM m

A

...

...LLC partition LLC partition

mem ctrl mem ctrlAccess
monitor

Access
monitor

Config.
register

Perf.
monitor

Perf.
monitor

Figure 4: Overview of the proposed learning module.

of the state s for any accelerator invocation is used to index the
Q-table of Figure 4.

(2) Actions: The action set A contains the 4 coherence modes:
non-coherent, LLC-coherent-DMA, coherent-DMA, and fully-coherent.
Thus, the coherence Q-table contains |S | × |A| = 243 × 4 = 972
entries. The action step sets the coherence configuration register
of the given accelerator tile.

(3) Rewards: As shown in Figure 4, when an accelerator is to be
invoked, the RL module senses the state s and looks up the Q-table
to determine the best action (or, randomly chooses an action) a.
Then, the accelerator is invoked with the selected action. After it
completes execution, its reward is computed based on the perfor-
mance of both the accelerator invocation and the memory system
during the invocation. To define the reward function, we define
three measurements of an invocation. For the i-th invocation of an
accelerator k :

• exec(k, i) is the scaled execution time - the total execution time
divided by the footprint of the invocation.

• comm(k, i) is the communication ratio - the number of accelera-
tor communication cycles divided by the total number of execution
cycles.

•mem(k, i) is the scaled off-chip memory access count during the
invocation - the total number of memory accesses divided by the
footprint of the computation.

Then, we define the three component functions:

Rexec (k, i) =
minj≤i [exec(k, j)]

exec(k, i)

Rcomm (k, i) =
minj≤i [comm(k, j)]

comm(k, i)

Rmem (k, i) = 1 −
mem(k, i) −minj≤i [mem(k, j)]

maxj≤i [mem(k, j)] −minj≤i [mem(k, j)]

For the exec component, we store the best scaled execution time
for each accelerator thus far. We can see that smaller execution
times maximizes the ratio in Rexec . As previously mentioned, we
utilize the comm part to account for compute-bound accelerators. If
the memory system performs better, this ratio will be lower. Again,
we see that Rcomm is maximized for smaller values of the com-
munication ratio. Rmem takes a different form because accelerator
invocations may cause zero off-chip memory accesses. Using both
the maximum and minimum scaled access counts, the presented
equation maps higher memory-access counts near zero and lower
counts near one. Finally, the reward R(s,a;k, i) for the i-th invoca-
tion of accelerator k with action a from state s is

R(s,a;k, i) = x · Rexec (k, i) + y · Rcomm (k, i) + z · Rmem (k, i)

where x , y, and z are constant weights that can be tuned.
Training. At the beginning of training, all entries in the Q-

table are set to zero. The table is updated in the following manner.
Whenever an accelerator is invoked, the state is recorded. After
the accelerator completes execution, the reward is computed and is
used to update the Q-table for the recorded state and chosen action,
as follows:

Q(s,a) ← (1 − α) ×Q(s,a) + α × R(s,a)

where R(s,a) is the reward that results from taking action a out
of state s , and α is the learning rate.

4.3 Implementation
As shown in Table 1, there is already a number of architectures in lit-
erature that support multiple coherence modes for accelerators (e.g.
ARM ACE/ACE-Lite, gem5-aladdin) and are amenable for hosting
cohmeleon. We implemented and evaluated cohmeleon as part of
a comprehensive FPGA-based infrastructure that we developed to

356

MICRO’21, October 18-22, 2021, Athens, Greece Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni

study accelerator coherence-mode selections in many-accelerator
SoCs. Our implementation is based on ESP, an open-source platform
for agile SoC design [54]. We chose ESP because it supports the
runtime selection of three of the coherence modes we identified in
Section 2 and has a suite of fixed-function LCAs. Furthermore, ESP
allows for rapid prototyping of many-accelerator SoCs on FPGA
and is open source.

The ESP SoC platform automates the integration of processor
cores and accelerators into a grid of tiles connected by a 2D-mesh
multi-plane NoC. There are four main types of tiles: processor tile,
accelerator tile, memory tile for the communication with main
memory, and auxiliary tile for peripherals (e.g. UART or Ether-
net) or system utilities (e.g. the interrupt controller). In this work
the processor tile contains the SPARC 32-bit LEON3 processor
core [19] from Cobham Gaisler. All components are connected by
ESP’s network-on-chip, which counts 6 32-bit physical planes, with
one cycle latency between neighboring routers. Each memory tile
has a link to main memory with bandwidth of 32 bits per cycle. The
ESP cache hierarchy matches the one represented in Figure 1 and is
distributed across processor tiles, which include an L2 private cache,
and memory tiles. Each memory tile hosts a partition of the LLC,
a DRAM controller, and a dedicated channel to the corresponding
partition of off-chip main memory. In addition, the accelerator tile
can optionally integrate a private cache to enable the fully-coherent
mode. With the exception of the optional private cache, ESP’s sup-
port for the runtime selection from multiple coherence modes adds
negligible area to the SoC. Furthermore, coherence is handled by
the “socket" surrounding the accelerator, so the accelerators are
designed with no notion of coherence.

(1) Sense:We implemented our introspective SoC status tracking
in the ESP accelerator invocation API, which is a set of user-space
functions for invoking loosely-coupled accelerators from software
applications [54]. We defined new global structures containing
the number of active accelerators, their footprints, and the chosen
coherence mode. When an accelerator is invoked – and when it
returns control to software – this structure is updated accordingly.

(2) Decide: The decision-making for a runtime coherence pol-
icy is also implemented in the back-end of the ESP API. Here, we
outline several possible policies to compare to our RL approach.
The Random policy randomly chooses a coherence mode for each
accelerator invocation at runtime. The Fixed policy statically selects
the same coherence mode for each accelerator invocation, mim-
icking a design-time decision. This represents nearly all previous
work. The Fixed policy can either be homogeneous, where every
accelerator operates with the same coherence mode, or heteroge-
neous, where the coherence mode can be chosen independently for
each accelerator. In the heterogeneous case, we choose a coher-
ence mode based on profiling the accelerator’s performance in each
mode while sweeping the footprint of the workload on different
invocations. The fixed-heterogeneous policy is used as a comparison
to prior design-time solutions that select a fixed coherence mode
for each accelerator [6, 7].

Next, we present an introspective, manually-tuned algorithm,
that chooses the coherence mode based on the status of the system.
We designed this algorithm tominimize the runtime for accelerators
in an ESP SoC. We used data from tens of thousands of accelerator
invocations, combined with knowledge of ESP’s implementation of

Algorithm 1 Manually-tuned coherence mode selection.
if footprint ≤ EXTRA_SMALL_THRESHOLD then

coh← FULLY-COH
else if footprint ≤ CACHE_L2_SIZE then

if active_coh_dma > active_fully_coh then
coh← FULLY-COH

else
coh← COH-DMA

end if
else if footprint + active_footprint > CACHE_LLC_SIZE then

coh← NON-COH
else

if active_non_coh ≥ 2 then
coh← LLC-COH-DMA

else
coh← COH-DMA

end if
end if

the coherence modes, to produce a highly optimized policy, shown
as Algorithm 1. The manual algorithm is used as a comparison to
prior approaches that use static heuristics to select a coherence
mode at runtime [37]. If applied to SoC architectures other than
our target (i.e. ESP) this algorithm would need manual tuning and
possibly some major adjustments. For instance, an SoC that uses
a more-optimized coherence protocol for accelerators than MESI
could benefit from an increased reliance on the fully-coherent mode,
but this manual algorithm would not select it more frequently.

In contrast, the RL module we presented in Section 4.2 generates
its own coherence-selection policy. In learning epochs where the
agent “chooses" to explore the state space, it follows a random
policy. When attempting to maximize the reward, however, the
model selects the coherence mode with the highest Q-value from
the current state. The Q-table thus dictates the coherence decision
given the current state, but unlike other policies, it is adaptive and
can change with the addition of new information.

(3) Actuate: Each coherence decision is actuated by the acceler-
ator device driver’s writing to a memory-mapped register in the
accelerator tile that controls the mechanism by which the accel-
erator communicates with memory. Because accelerators share
cacheable memory with processors in ESP, the LLC-coherent-DMA
and non-coherent-DMA modes require software-managed cache
flushes, as described in Section 2, before the accelerator can be-
gin executing. It is possible to handle the flushes in a way that is
completely transparent to the programmer, which is the case in
ESP. In fact, cohmeleon actuates the coherence mode with a single
line of code. Using a custom MESI directory-based and NoC-based
protocol, ESP supports runtime selection for all of the coherence
policies, excluding coherent-DMA. We extended the protocol to
support coherent-DMA by issuing recalls from the LLC to a private
cache when the private cache holds data that is the target of a DMA
request. By adding support for the coherent-DMA model, we did
not introduce any area overhead in the accelerator tiles.

(4) Evaluate: We developed a new hardware monitoring system
to measure our chosen metrics of accelerator performance. In each
tile, we added a set of memory-mapped registers to a pre-existing
APB interface. Each register is connected to logic that increments its
value when the corresponding phenomenon occurs. These monitors
are distributed across all tiles but are accessible from software
through a single contiguous region of the I/O address space using
standard Linux system calls, such as mmap and ioremap.

357

Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs MICRO’21, October 18-22, 2021, Athens, Greece

SoCs w/ Traffic Generator Case Study SoCs
SoC0 SoC1 SoC2 SoC3 SoC4 SoC5 SoC6

Accelerators 12 7 9 16 11 8 9
NoC size 5x5 4x4 4x4 5x5 5x4 4x4 4x4
CPUs 4 2 4 4 2 1 1
DDRs 4 4 2 4 4 4 2
LLC part. 512kB 256kB 512kB 256kB 256kB 256kB 256kB
Total LLC 2MB 1MB 1MB 1MB 1MB 1MB 512kB
L2 cache 64kB 32kB 32kB 64kB 32kB 32kB 32kB

Table 4: Parameters of the evaluation SoCs.

We access the hardware monitors from the accelerator device
driver. The accelerator cycle counters, which are reset at the begin-
ning of its execution, are read at the end of the invocation. Memory
access counters are read before and after each invocation to de-
termine the change, potentially accounting for overflow. We note
that when multiple accelerators are communicating with a memory
controller, we cannot know the exact number of memory accesses
caused by each accelerator without additional hardware support
to track which accelerator’s transactions cause misses or evictions
in the LLC. Instead, in order to minimize cohmeleon’s required
hardware support, we chose to approximate the number of off-chip
memory accesses for a particular accelerator. Our approximation
relies on the assumption that larger workloads will, in general,
trigger more memory accesses. This works particularly well for the
non-coherent mode, since all data must be brought in from off chip,
and the other modes when running workloads that do not fit in the
caches. Furthermore, more transactions likely mean more cache
misses and evictions. We thus define the memory accesses caused
by accelerator k at a memory controllerm as:

ddr (k,m) = ddr_total(m) ×
f ootprint(k,m)∑

acc ∈A f ootprint(acc,m)

where A is the set of active accelerators, ddr_total(m) is the ob-
served change in off-chip memory accesses at memory controller
m, and f ootprint(acc,m) is the memory footprint of accelerator acc
allocated to memory controllerm. By this definition, each accelera-
tor’s share of the total memory accesses will be proportional to its
active memory footprint. Better approximations are likely possible
with some knowledge of accelerator characteristics, but we chose
this approximation to keep cohmeleon accelerator-agnostic.

5 EVALUATION STRATEGY
To evaluate cohmeleon, we realized multiple SoC prototypes and
test applications that serve as full-system case studies.

Traffic-Generator. From the viewpoint of the rest of the SoC,
an accelerator can be characterized by its patterns of communica-
tion with the memory hierarchy. After analyzing many accelerators,
we derived a list of basic accelerator properties that influence these
patterns. Then, we designed a traffic-generator that is configurable
with respect to these properties, allowing us to efficiently study
the diverse set of communication patterns that are expressed by
accelerators. The parameters of the traffic-generator are access
pattern (streaming, strided, or irregular), DMA burst length, com-
pute duration, data reuse factor, read-to-write ratio, stride length
(for strided patterns), access fraction (for irregular patterns), and
in-place storage.

SoCs.We implemented FPGA-based prototypes of four different
SoCs utilizing the traffic-generator, and three Case Study SoCs

6 Threads: Large 3 Threads: Variable

10 Threads: Small 4 Threads: Medium

fix
ed

−n
on

−c
oh

−d
m

a

fix
ed

−ll
c−

co
h−

dm
a

fix
ed

−c
oh

−d
m

a

fix
ed

−f
ull

−c
oh

ra
nd

fix
ed

−h
et

er
o

m
an

ua
l

co
hm

ele
on

fix
ed

−n
on

−c
oh

−d
m

a

fix
ed

−ll
c−

co
h−

dm
a

fix
ed

−c
oh

−d
m

a

fix
ed

−f
ull

−c
oh

ra
nd

fix
ed

−h
et

er
o

m
an

ua
l

co
hm

ele
on

0.0

0.4

0.8

1.2

0.0

0.5

1.0

1.5

0.0

0.5

1.0

0.0

0.5

1.0

1.5

2.0

Coherence Policy

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

execution time off−chip memory accesses

Figure 5: Performance of four phases of the evaluation ap-
plication, varying threads count and workload sizes.

utilizing the same set of accelerators from Section 3. For these
designs, Table 4 reports the key parameters, which we vary in order
to validate that our contributions can generalize to different SoC
configurations. All accelerators are equipped with a private cache,
except five of the accelerators of SoC3, which could not be included
due to resource constraints of the chosen FPGA.

SoC4 has one instance of each of the 11 accelerators of Table 2,
thus representing the modern SoC trend of invoking many het-
erogeneous accelerators while running multiple applications in
parallel.

SoC5 targets the domain of collaborative autonomous vehicles
by embedding key accelerators [73]. Two FFT and two Viterbi
accelerators support encoding and decoding for vehicle-to-vehicle
(V2V) communication. Two 2D Convolution (Conv-2D) and two
Matrix Multiplication (GEMM) accelerators support inference for
convolutional neural networks (CNNs) for object recognition and
labeling. For this purpose the Conv-2D and GEMM accelerators
embed bias addition, pooling and activation capabilities.

SoC6 targets the computer vision domain by providing three
instances of an image classification pipeline composed of three
accelerators [34]: night-vision, which has a 4-stage pipeline for
processing dark images, autoencoder for denoising images, and
MLP for image classification.

Applications.We developed a multithreaded application to in-
voke the traffic-generator in many different ways. The application
consists of a set of phases that are each meant to represent a real
application. A phase consists of a number of threads. A thread con-
sists of a single dataset and a “chain" of accelerators, configured
with different parameters, that operate serially on that dataset -
the output of one accelerator is the input to the next. Optionally,
each thread can loop over the accelerator invocations. The appli-
cation phases and parameters are specified using a configuration
file. Through our experiments, we ensured that the instances of
the application vary in terms of the number of accelerator threads
running in parallel, the workload sizes in use, and the configuration
parameters of each traffic-generator.

358

MICRO’21, October 18-22, 2021, Athens, Greece Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni

Furthermore, we developed multithreaded evaluation applica-
tions specific to each Case Study SoC, with a structure similar to the
applications for the traffic-generators SoCs: organized in phases and
designed to stress multiple operating modes and workload sizes for
each accelerator. For each SoC, the application invokes pipelines of
accelerators as appropriate for the target domain. For example, the
night-vision, autoencoder and MLP work in a chain to undarken,
denoise, and then classify the input images. On SoCs containing
multiple copies of the same accelerators, our evaluation applications
can parallelize the workload to improve the throughput. For these
applications, we define the following characterization of workload
sizes: Small (S) when smaller than accelerator’s L2 cache; Medium
(M) if smaller than one partition of the LLC; Large (L) when smaller
than the aggregate LLC; Extra-Large (XL) if larger than the LLC.

We use ESP’s solution for the allocation of accelerator data [53].
Data is allocated in big Linux pages, so that it results in a relatively
small page table that can normally fit in the accelerator tile’s TLB.
The TLB is loaded at the beginning of the accelerator invocation
and it provides a miss-free address translation. This solution allows
for true data sharing between CPUs and accelerators with no need
for data copies or contiguous physical allocations. The overhead of
loading the TLB and address translation is included in all results.

Experimental Setup. We deployed the full SoCs on a Xilinx
Ultrascale XCVU440 FPGA. The LEON3 cores (soft-cores) in the
SoC run Linux SMP, on top of which we executed the evaluation
applications for each of the above SoCs.

cohmeleon learns online at runtime, i.e. there is no offline train-
ing. For each SoC we run a randomly configured instance of the
evaluation application. The learning coefficients are initialized to
ϵ = 0.5 and α = 0.25 and decay linearly to 0 over a selected number
of iterations. Once the learning model has converged, we disable
further updates and evaluate its performance on a different instance
of the application.

To compare performance across policies we measured the total
execution time and off-chip memory accesses for each phase of the
applications, including any overhead of the accelerator invocations,
such as cache flushes. Because the phases vary in terms of the
number of accelerators working in parallel and workload sizes, we
can compare how the different policies perform in many situations.

6 EXPERIMENTAL RESULTS
PhaseAnalysis.Wefirst present the results of four selected phases
of the evaluation application running on SoC0 (Figure 5). These
phases differ in the number of threads and workload sizes in order
to highlight both the variation of performance in policies and the
coverage that our evaluation applications provides. All results are
normalized to the values of the Fixed non-coherent DMA policy.

As the workload size and number of threads vary, we observe
variations in the relative performance of the Fixed homogeneous
policies, consistent with the motivation results in Section 3. On the
other hand, both the manually-tuned algorithm and cohmeleon
match or improve upon the best execution time of the other policies
in all phases. Meanwhile, the Fixed heterogeneous policy is unable to
achieve this result due to the variation in workload size and system
status. The manually-tuned algorithm achieves similar execution
times as cohmeleon in all phases, but cohmeleon achieves that
performance with fewer off-chip memory accesses.

●

0.00

0.25

0.50

0.75

1.00

0.8 1.0 1.2 1.4 1.6 1.8
Normalized Execution Time

N
or

m
al

iz
ed

 O
ff−

ch
ip

M
em

or
y

A
ce

ss
es

●
fixed−non−coh−dma
fixed−llc−coh−dma

fixed−coh−dma
fixed−full−coh

rand
fixed−hetero

manual
cohmeleon

Figure 6: The impact of the reward function on SoC0.

Design-Space Exploration of Reward Function. Next, we
experiment with different reward functions on SoC0, only varying
the values of the three x ,y, z coefficients of Rexec , Rcomm , and
Rmem . We train cohmeleon for 50 iterations of the evaluation
application with each reward function, and then test each model,
as well as the other baseline policies, on a different instance of
the application. For each policy, we normalize the performance
of each phase to the Fixed non-coherent DMA policy. In Figure 6,
we plot the geometric mean of the normalized execution time and
off-chip memory accesses over all phases. First, we highlight the
large cluster of cohmeleon data points in the bottom left of the
chart. cohmeleon is capable of matching the execution time of the
manually-tuned algorithm, while achieving the best value for off-
chip memory accesses. cohmeleon’s flexibility in optimizing for
multiple objectives clearly allows for the discovery of policies that
are near-optimal over multiple performance metrics. However, we
notice that while cohmeleon generates Pareto-optimal data points,
the cluster of points does not present much variation. Thus, we
cannot trade off an improvement in execution time with a reduction
of off-chip memory accesses or vice versa. Indeed, off-chip memory
accesses contribute to a relevant part of the execution time of
communication-bound accelerators.

We trained 15 different models, and most perform quite similarly.
In fact, only two points, which correspond to reward functions
that weighed heavily (> 90%) for off-chip memory accesses, have
significantly worse performance. The remaining points have ex-
tensive variation in the reward function. For instance, two of the
Pareto-optimal points use reward functions that give the following
percentage weights to execution time, communication ratio, and
off-chip memory accesses, respectively: (a) 67.5, 7.5, 25 and (b) 12.5,
12.5, 75. We conclude that, for this particular architecture, near-
optimal performance can be achieved with a wide variety of reward
functions without significant trial-and-error.

Coherence Breakdown. In Figure 7, we present the breakdown
of coherence decisions by cohmeleon and the manually-tuned al-
gorithm. We report both the total breakdown and the breakdown
for each category of workload size. Across all invocations, we see a
heavy reliance on the coherent DMA (coh-dma) and non-coherent
DMA (non-coh-dma) modes. Broadly, cohmeleon seems to learn
a policy that results in a breakdown of coherence modes similar
to that of the manually-tuned algorithm. However, across all cat-
egories (except XL workloads), cohmeleon relies less upon the
non-coherent DMA and more upon coherent DMA and LLC-coherent

359

Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs MICRO’21, October 18-22, 2021, Athens, Greece

Manual (XL)

Cohmeleon (XL)

Manual (L)

Cohmeleon (L)

Manual (M)

Cohmeleon (M)

Manual (S)

Cohmeleon (S)

Manual

Cohmeleon

0 25 50 75 100

Selection frequency of each coherence mode (%)

C
oh

er
en

ce
 S

el
ec

tio
n

P
ol

ic
y

(W
or

kl
oa

d
S

iz
e)

non−coh−dma llc−coh−dma coh−dma full−coh

Figure 7: Breakdown of coherence decisions.

DMA (llc-coh-dma) than the manual algorithm. The non-coherent
DMAmode typically results in the highest number of off-chip mem-
ory accesses for workloads that fit on-chip. Due to its bi-objective
reward, cohmeleon tries to avoid this selection in such a situation.

Training Time. To evaluate the effects of training time on
cohmeleon, we run a series of experiments in which we eval-
uate the performance of the RL model after each training iteration.
We alternate the training of cohmeleon on one iteration of an
instance of the evaluation application with testing the resulting
model on a different instance of the evaluation application. Both
instances of the application contain several hundred accelerator
invocations and are designed to be as diverse as possible in terms
of operating conditions. We repeat this experiment for 10, 30, and
50 total iterations. Each trial initializes ϵ (exploration rate) to 0.5
and α (learning rate) to 0.25. Each value is decayed linearly to 0
over the course of training, thus making the decay rates different
for each number of iterations. Figure 8 shows the performance after
each iteration, reported as the geometric mean over all phases of
the performance normalized to the Fixed non-coherent DMA policy.
Iteration 0 is the performance of an untrained model, equivalent
to the Random policy. We see a quick drop-off in execution time
and off-chip memory accesses after just one training iteration for
all models. A training iteration includes over 300 accelerator in-
vocations, which provide for enough exploration to immediately
learn an improved policy. We see some oscillation in the results
for the next few iterations, as the models continue to explore the
state space with different actions. All models reach approximately
the same performance at the end of training. We conclude that ten
iterations are sufficient to achieve near-optimal results.

Additional SoCs.We repeat our experiments on eight different
SoC configurations, utilizing the SoCs from Table 4 to verify that
cohmeleon is effective with different architectural parameters. On
each configuration, we use a reward function of 67.5% execution
time, 7.5% communication ratio, and 25% off-chip memory accesses
and train for 10 iterations of the corresponding application. These
results are reported in Figure 9.

First, we reuse the SoC0 layout, but this time we use one set
of accelerators with streaming access patterns and another set of
accelerators that have irregular access patterns. We observe that
the Fixed non-coherent DMA has the best execution time among the
fixed homogeneous policies for streaming accelerators, whereas
for irregular accelerators the Fixed LLC coherent DMA and Fixed
coherent DMA policies achieve better execution time with fewer
off-chip memory accesses. This clearly shows once again that the

●

●

●
●

●

●
● ● ● ● ●

●

● ● ● ●
●

● ●

●

●
●

● ● ● ●
●

● ● ● ● ● ● ● ● ● ●

●

●
● ●

● ●

10 Iterations
30 Iterations

50 Iterations

0 10 20 30 40 50

0.00
0.25
0.50
0.75
1.00
1.25
1.50

0.00
0.25
0.50
0.75
1.00
1.25
1.50

0.00
0.25
0.50
0.75
1.00
1.25
1.50

Training Iteration

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

● execution time off−chip memory accesses

Figure 8: Performance over training iterations.

communication patterns can affect the optimal coherence choice. In
both of these configurations, cohmeleon and the manual algorithm
achieve the best execution time, while cohmeleon slightly lowers
off-chip memory accesses.

We also utilize SoC1, SoC2, and SoC3, each configured with a set
of accelerators with mixed properties. We see the same ordering
among the fixed homogeneous policies, but with some substantial
differences in their relative performance. (i.e. Fixed fully-coherent
has roughly 2.2× the execution time of Fixed non-coherent DMA on
SoC1, but only 1.5× on SoC3). The performance of cohmeleon and
the manual algorithm remains the best across these SoCs.

Finally, we perform the same experiments on the Case Study
SoCs, i.e. SoC4, SoC5, and SoC6. On SoC5 and SoC6, we observe
that there is much less variability among the performances of the
fixed modes. Because the accompanying applications only invoke
accelerators in ways that are appropriate for the corresponding
real-world application, there is less diversity in terms of the char-
acteristics of the applications. cohmeleon still achieves optimal
or near-optimal performance across these SoCs. In contrast, the
manual algorithm has suboptimal performance on SoC5, showing
it is not capable of generalizing optimally to all SoCs.

Given these observations, it is clear that these SoC configura-
tions have different communication properties due to their set
of accelerators and architectural parameters. Nonetheless, we see
that cohmeleon can achieve the minimal or near-minimal value
for both execution time and off-chip memory accesses across all
experiments. cohmeleon improves as there is more diversity in
performance across the coherence modes. This is intuitive, as there
are opportunities to improve performance by exploiting an intelli-
gent decision. Across all SoC configurations, cohmeleon gives an
average speedup of 38% with a 66% reduction in off-chip memory
accesses when compared to the five fixed policies.

Cohmeleon Overhead.We measured the fraction of the total
execution time caused by cohmeleon’s status tracking, computa-
tion, and decision-making, which is included in all prior results. For
small (16KB) workloads, the overhead is between 3 and 6% of the
total execution time. This value drops as the workload size increases
and the accelerators have longer execution times. For large (4MB)
workloads, the overhead is safely below 0.1%, a negligible value.

360

MICRO’21, October 18-22, 2021, Athens, Greece Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni

●

●

●

●

●

●

●

●

SoC3 SoC4 (Mixed Accelerators) SoC5 (Autonomous Driving) SoC6 (Computer Vision)

SoC0 − Streaming SoC0 − Irregular SoC1 SoC2

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5

0.00

0.25

0.50

0.75

1.00

1.25

0.00

0.25

0.50

0.75

1.00

1.25

Normalized Execution Time

N
or

m
al

iz
ed

 O
ff−

ch
ip

 M
em

or
y

A
cc

es
se

s

●fixed−non−coh−dma fixed−llc−coh−dma fixed−coh−dma fixed−full−coh rand fixed−hetero manual cohmeleon

Figure 9: Performance across SoCs with different accelerators and architectural parameters.

7 RELATEDWORK
Comparing Accelerator Coherence Modes. There are only a
few studies that compare the cache-coherence options for accelera-
tors, as we did in Section 3. Kumar et al. propose a fully-coherent
approach based on a timestamp-based coherence protocol [55]
and compare it with classic fully-coherent and coherent-DMA so-
lutions [45]. Shao et al. investigate the non-coherent and fully-
coherent modes [72]. Cota et al. evaluate LLC-coherent and non-
coherent accelerators [23]. These works focus on the simulation
of simple SoCs with a few accelerators. We prototype NoC-based
SoCs with up to 16 accelerators using an FPGA-based setup to run
complex real-size applications that manage multiple accelerators
on top of Linux. The setup of Giri et al. is similar to ours, but they
did not evaluate all four cache-coherence modes [35, 36].

Heterogeneous Accelerator Coherence Modes. Bhardwaj et
al. propose a machine learning approach to assign an optimal co-
herence mode to each accelerator at design time [6, 7]. Giri et al.
propose a manually-designed algorithm for deciding the cache-
coherence mode at runtime, based on the system status [37]. These
approaches do not handle all four cache-coherence modes, are not
updated online, and require specific tuning for the target architec-
ture; further, the latter is not a learning-based approach.

Multi-chip Accelerator Coherence. Cache coherence is rele-
vant also for systems where the accelerators live on their own chip
and communicate with a host processor core via an I/O interface,
such as PCIe. Industry examples of cache-coherent chip-to-chip
interconnect for accelerators include CCIX [14, 15], CXL [24], IBM
CAPI [79], OpenCAPI [61], Arteris NCore [11] and ARM Core-
Link [2]. Similarly to the single-chip case, they offer multiple op-
tions for handling the accelerators’ cache coherence. Hence, our
approach could be applied also to multi-chip systems.

Cache Bypassing. The coherence modes classified in Section 2
differ based on the degree of hardware coherence and cache by-
passing. The cache bypassing for fixed-function LCAs has task

granularity and doesn’t require modifications to the cache hierar-
chy. Differently, because of the programmable nature of GPUs, the
literature proposes a variety of GPU-specific cache bypassing tech-
niques with instruction granularity and that require modification
either to the compiler or the cache hierarchy [49, 50, 83, 87, 88].

RL for SoC Control Problems. Although cohmeleon is the
first work using online learning to orchestrate accelerator coher-
ence, many online learning methods have been proposed in various
application domains. Liu et al. propose a dynamic power manager
based on Q-learning that does not require any prior knowledge
of the workload [51]. Gupta et al. present a deep Q-learning ap-
proach to dynamically manage the type, number, and frequency of
active cores in SoCs [38]. Zheng et al. propose an energy-efficient
NoC design with DVFS (dynamic voltage and frequency scaling)
and a per-router Q-learning agent for selecting voltage/frequency
values [91]. Besides Q-learning and RL, other machine-learning ap-
proaches have also been proposed for system optimization [26, 28].
8 CONCLUSIONS
We showed that the performance of fixed-function LCAs in SoC
architectures benefits from runtime reconfiguration of their cache-
coherence mode. cohmeleon applies reinforcement learning to
automatically and adaptively select the optimal cache-coherence
mode at the time of each accelerator’s invocation. It operates in a
way that is transparent to the programmer, with negligible over-
head, and without any knowledge about the target accelerators and
architecture. We released cohmeleon and its FPGA-based experi-
mental infrastructure as part of the open-source ESP project [20].

ACKNOWLEDGMENTS
This work was supported in part by DARPA (C#:FA8650-18-2-7862),
the ARO (G#:W911NF-19-1-0476), the NSF (A#:1764000) and the NSF
Graduate Research Fellowship Program. The views and conclusions
expressed are those of the authors and should not be interpreted
as representing the official views or policies of the Army Research
Office, the Department of Defense, or the U.S. Government.

361

Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs MICRO’21, October 18-22, 2021, Athens, Greece

A ARTIFACT APPENDIX
A.1 Abstract
To build and evaluate cohmeleon, we leveraged ESP, an open-
source platform for agile design and prototyping of heterogeneous
SoCs. We integrated cohmeleon in ESP, and we released it in a
fork of ESP on GitHub. cohmeleon will be merged into the main
ESP repository on GitHub before MICRO 2021.

We collected the results presented in the paper by running real-
size applications on FPGA-based prototypes of many-accelerator
multi-core SoCs designed with ESP. The main steps required to
evaluate cohmeleon on FPGA include: high-level synthesis (HLS)
of accelerators, FPGA bitstream generation for full SoCs, software
build, deployment of the SoCs and software on an FPGA board, and
execution of the experiments on the FPGA by running application
software on top of the Linux operating system. This document
contains the instructions for reproducing the experiments presented
in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Reinforcement learning algorithm for selecting the
coherence mode of each accelerator at run-time based on the con-
tinuous monitoring of the system.
• Program: Multiple multi-threaded applications containing many

accelerator invocations. These applications present a wide range of
accelerator parallelism and workload sizes.
• Compilation: Automated cross-compilation for the SPARC pro-
cessors in the SoC prototypes on FPGA. The compilation includes
Linux and the test programs.
• Run-time environment: SoC prototypes on FPGA: Linux 5.1 SMP.
Host machine for using ESP: either Docker or one of the OS sup-
ported by ESP, i.e. CentOS 7, Ubuntu 18.04 or Red Hat Enterprise
Linux 7.8.
• Hardware: proFPGA UltraScale XCVU440 Prototyping Board.
• Metrics: Execution time and off-chip memory accesses.
• Output: CSV files with detailed results for each accelerator invoca-
tion.
• Experiments: Accelerators running in isolation with different co-

herencemodes (Fig. 2), accelerators running in parallel with different
coherence modes (Fig. 3), comparison of cohmeleon to other solu-
tions (design-time, run-time) on 7 different SoCs (Fig. 5,6,9), results
with varying training iterations (Fig. 8).
• Howmuch disk space required (approximately)?: Up to 64 GB
if reproducing all experiments in the paper.
• Howmuch time is needed to prepareworkflow (approximately)?
Setting up ESP takes 2-3 hours assuming all required tools are al-
ready installed. The generation of each FPGA bitstream takes up to
5 hours due to the large size of the target FPGA.
• Howmuch time is needed to complete experiments (approx-
imately)? Around 2 hours per experiment.
• Publicly available? Yes: complete source code and expected re-
sults.
• Code licenses (if publicly available)? Apache 2.0.
• Archived (provide DOI)?: Yes: 10.5281/zenodo.5150725.

A.3 Description
A.3.1 How to access. We integrated cohmeleon in ESP and we released
it on GitHub (https://github.com/jzuckerman/esp/tree/cohmeleon) and on

Zenodo (https://doi.org/10.5281/zenodo.5150725). The most relevant direc-
tories and files for the integration and evaluation of cohmeleon are the
following:

• accelerators/: Accelerators used in the experiments.
• soft/common/apps/examples/: Applications for the case study
SoCs and the motivation section results.
• socs/: SoC design folders. The SoCs used for the experiments are
labeled with the prefix profpga-xcvu440-. All Make commands
should be issued from these design folders. Each folder comes with
scripts and configuration files for running the experiments.
• results/: Expected results in CSV format.
• soft/common/drivers/linux/libesp/rl.h: Core implementation
of the cohmeleon reinforcement-learning algorithm.
• rtl/sockets/csr/esp_tile_csr.vhd: Core implementation of the
ESP hardware monitoring system used by cohmeleon.
• soft/common/drivers/linux/esp/esp.c: Changes to the ESP de-
vice driver for accelerators to enable cohmeleon.
• soft/common/drivers/linux/libesp/libesp.c: Changes to the
ESP API for accelerator invocation to enable cohmeleon.

A.3.2 Hardware dependencies. proFPGA UltraScale XCVU440 Prototyping
Board (https://www.profpga.com/products/fpga-modules-overview/virtex-
ultrascale-based/profpga-xcvu440) with four DDR4 daughter cards, a giga-
bit Ethernet interface daughter card, and a multi-interface daughter card.
cohmeleon will also work with any of the other FPGA boards supported
by ESP. We used the XCVU440 board because it has the largest FPGA and
is the only one with support for up to 4 memory channels.

A.3.3 Software dependencies. The software dependencies of ESP are de-
scribed in the “How to setup” guide (https://esp.cs.columbia.edu/docs/setup/
setup-guide/), specifically in the sections “Software packets”, “CAD tools”,
“Environment variables”, and “Docker” for users interested in using the
ESP Docker image. In terms of CAD tools, evaluating cohmeleon requires
only Xilinx Vivado 2019.2 and Cadence Stratus HLS 20.24 (other versions of
Stratus should work too).

A.4 Installation
The installation of ESP is described in the “How to setup” guide (https:
//esp.cs.columbia.edu/docs/setup/setup-guide/), specifically in the sections
“ESP repository”, “Software toolchain”, and “Docker”. Evaluating cohmeleon
requires cloning the fork of ESP listed in Section A.3.1 and checking out
the cohmeleon branch. Additionally, only the toolchain for the LEON3
processor needs to be installed.

A.5 Experiment workflow
We encourage anyone attempting to use cohmeleon to first familiarize
themselves with ESP. The resources available on the ESP website (https:
//esp.cs.columbia.edu/resources/) include several hands-on tutorial guides,
the recordings of conference tutorials, and an overview paper.

(1) Run HLS. Generate the RTL implementation of the accelerators.
From any of the socs/proFPGA-xcvu440-*/ folders, run
make <acc_name>-hls for all the following accelerators:
cholesky_stratus, conv2d_stratus, fft_stratus, gemm_stratus,
mriq_stratus, nightvision_stratus, sort_stratus,
svhn_autoenc_hls4ml, svhn_mlp_hls4ml, synth_stratus,
vitdodec_stratus.

(2) Generate FPGA Bitstream. In each socs/proFPGA-xcvu440-*/
SoC design folder, run the following:
• make esp-config: Apply a predefined SoC configuration, which
can be visualized by running make esp-xconfig.
• make vivado-syn: Generate the FPGA bitstream. This step can
take several hours.

362

https://github.com/jzuckerman/esp/tree/cohmeleon
https://doi.org/10.5281/zenodo.5150725
https://www.profpga.com/products/fpga-modules-overview/virtex-ultrascale-based/profpga-xcvu440
https://www.profpga.com/products/fpga-modules-overview/virtex-ultrascale-based/profpga-xcvu440
https://esp.cs.columbia.edu/docs/setup/setup-guide/
https://esp.cs.columbia.edu/docs/setup/setup-guide/
https://esp.cs.columbia.edu/docs/setup/setup-guide/
https://esp.cs.columbia.edu/docs/setup/setup-guide/
https://esp.cs.columbia.edu/resources/
https://esp.cs.columbia.edu/resources/

MICRO’21, October 18-22, 2021, Athens, Greece Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni

There is a design folder for each of the 7 SoCs used for the experi-
ments:
• profpga-xcvu440-12synth : SoC0
• profpga-xcvu440-7synth : SoC1
• profpga-xcvu440-9synth : SoC2
• profpga-xcvu440-16synth : SoC3
• profpga-xcvu440-10acc : SoC4, also used for accelerator exe-
cution in isolation experiment (Fig. 2)
• profpga-xcvu440-autonomous-driving : SoC5
• profpga-xcvu440-computer-vision : SoC6
• profpga-xcvu440-12acc : Used for accelerator execution in par-
allel experiment (Fig. 3), subsequently referred to as SoC7

(3) Build Software.
• make linux: Compile Linux for the Leon3 processor, and create
Linux image for the experiments on FPGA.
• make apps-cohmeleon: Compile the applications required for
the cohmeleon experiments, and copy all executables, scripts,
and data to the root-file system that gets included in the Linux
image (soft-build/leon3/sysroot).
• make linux: Always re-run this target after modifying the con-
tent of the root file system.

(4) Deploy on FPGA.
• make fpga-program: Program the FPGA with the SoC bitstream.
• make fpga-run-linux: Boot Linux on the SoC deployed on
FPGA. Once the boot reaches the login prompt, log in with the
username root and the password openesp.

Deploying the bitstream and compiled software on the FPGA, as well
as running the experiments described in the next steps, requires
proper connections to the FPGA. The main communication link
is Ethernet, which is used for transferring the Linux image onto
the FPGA. After booting Linux on the FPGA, the same Ethernet
link enables the use of ssh and scp. In addition, it is possible to
establish a connection the UART port in order to monitor the ter-
minal outputs of the programs executing on the FPGA. Detailed
instructions on the FPGA setup can be found in the ESP “How to:
design a single-core SoC" tutorial (https://esp.cs.columbia.edu/docs/
singlecore/singlecore-guide/), specifically in the sections “Debug
link configuration", “UART interface", and “SSH".

(5) Run Experiments. After the login, navigate to the following di-
rectories to launch the experiment scripts for each SoC. Scripts and
outputs are described in Section A.6.
• profpga-xcvu440-<N>synth :
/applications/test/
• profpga-xcvu440-10acc :
/examples/multiacc/
/examples/single_acc_coh
• profpga-xcvu440-autonomous-driving :
/examples/auton_driving/
• profpga-xcvu440-computer-vision :
/examples/comp_vision/
• profpga-xcvu440-12acc :
/examples/parallel_acc_coh

Output files of each experiment can be copied from the FPGA using
scp.

(6) Process Data. We provide scripts to process the experiments’ out-
puts and produce the results presented in the paper, as described in
Section A.6.

A.6 Evaluation and expected results
We provide the following scripts to execute the experiments presented in
the paper:

• single_acc_coh.sh: Reproduce the results in Fig. 2. Output file:
single_acc_coh.csv. (SoC4)
• parallel_acc_coh.sh: Reproduce the results in Fig. 3. Output file:
parallel_acc_coh_devices.csv. (SoC7)
• cohmeleon_eval.sh: Reproduce the results in Fig. 5, 7, 9. Output file:
<app_name>_phases.csv, which reports the execution time and
memory accesses for each phase of the application. These files can
be passed to the script process_results.py to produce the results
of Fig. 9. Selected phases can be used to produce the results from Fig.
5. The coherence mode selected for each accelerator invocation is
reported, along with statistics, in <app_name>_devices.csv. This
can be used to reproduce the results in Fig. 7. (SoCs 0, 1, 2, 3,
4, 5, 6)
• training_time.sh : This script trains cohmeleon over the course

of 10, 30, and 50 iterations, and records the performance after each it-
eration. The script outputs 3 files, training_10.csv, training_30.csv,
and training_50.csv. These results can be passed to the script
process_training.py to extract the results for Fig. 8. (SoC0)

The results for each figure in the paper are included in the results
folder of the repository. There is one CSV file for each figure.

A.7 Experiment customization
The reward function can be tuned by changing the coefficients in the last
line before the return of calculate_reward() in the rl.h header file. After
recompiling the applications and redeploying Linux on the FPGA, the new
model parameters can be tested with the cohmeleon_eval.sh script. Re-
peating these steps for multiple sets of coefficients will produce the results
in Fig. 6.

363

https://esp.cs.columbia.edu/docs/singlecore/singlecore-guide/
https://esp.cs.columbia.edu/docs/singlecore/singlecore-guide/

Cohmeleon: Learning-Based Orchestration of
Accelerator Coherence in Heterogeneous SoCs MICRO’21, October 18-22, 2021, Athens, Greece

REFERENCES
[1] Johnathan Alsop, Matthew Sinclair, and Sarita Adve. 2018. Spandex: A Flexible In-

terface for Efficient Heterogeneous Coherence. In Proceedings of the International
Symposium on Computer Architecture (ISCA). 261–274.

[2] ARM. [n. d.]. CoreLink Interconnect. https://developer.arm.com/ip-products/
system-ip/corelink-interconnect.

[3] ARM. 2020. AMBA AXI and ACE Protocol Specification. https://developer.arm.
com/documentation/ihi0022/h.

[4] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,
Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,
MatthewMatl, and DavidWentzlaff. 2016. OpenPiton: An Open Source Manycore
Research Framework. In Proceedings of the ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems (ASPLOS).
217–232.

[5] Kevin Barker, Thomas Benson, Dan Campbell, David Ediger, Roberto Gioiosa,
Adolfy Hoisie, Darren Kerbyson, Joseph Manzano, Andres Marquez, Leon Song,
Nathan Tallent, and Antonino Tumeo. 2013. PERFECT (Power Efficiency Revo-
lution For Embedded Computing Technologies) Benchmark Suite Manual. Pacific
Northwest National Laboratory and Georgia Tech Research Institute.

[6] Kshitij Bhardwaj, Marton Havasi, Yuan Yao, David M. Brooks, José Miguel
Hernández-Lobato, and Gu-Yeon Wei. 2020. A Comprehensive Methodology to
Determine Optimal Coherence Interfaces for Many-Accelerator SoCs. In Proceed-
ings of the International Symposium on Low Power Electronics and Design (ISLPED).
145–150.

[7] K. Bhardwaj, M. Havasi, Y. Yao, D. M. Brooks, J. M. H. Lobato, and Gu-Yeon Wei.
2019. Determining Optimal Coherency Interface for Many-Accelerator SoCs
Using Bayesian Optimization. IEEE Computer Architecture Letters 18, 2 (2019),
119–123. https://doi.org/10.1109/LCA.2019.2910521

[8] B. Blaner, B. Abali, B. M. Bass, S. Chari, R. Kalla, S. Kunkel, K. Lauricella, R.
Leavens, J. J. Reilly, and P. A. Sandon. 2013. IBM POWER7+ processor on-chip
accelerators for cryptography and active memory expansion. IBM Journal of
Research and Development 57, 6 (2013), 3:1–3:16.

[9] Luca P. Carloni. 2016. The Case for Embedded Scalable Platforms. In Proceedings
of the ACM/IEEE Design Automation Conference (DAC). 17:1–17:6.

[10] Luca P. Carloni, Emilio G. Cota, Giuseppe Di Guglielmo, Davide Giri, Jihye
Kwon, Paolo Mantovani, Luca Piccolboni, and Michele Petracca. 2019. Teaching
Heterogeneous Computingwith System-Level DesignMethods. In Proc. ofWCAE.

[11] Loyd Case. 2016. Easing Heterogeneous Cache Coherent SoC Design using
Arteris Ncore Interconnect IP. The Linley Group (2016).

[12] Jared Casper and Kunle Olukotun. 2014. Hardware Acceleration of Database
Operations. In Proceedings of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA). 151–160. https://doi.org/10.1145/2554688.
2554787

[13] Matheus Cavalcante, Andreas Kurth, Fabian Schuiki, and Luca Benini. 2020. De-
sign of an Open-Source Bridge between Non-Coherent Burst-Based and Coherent
Cache-Line-BasedMemory Systems. In Proceedings of the International Conference
on Computing Frontiers (CF). 81–88. https://doi.org/10.1145/3387902.3392631

[14] CCIX Consortium. 2018. CCIX Base Specification 1.0. https://www.
ccixconsortium.com/library/specification/.

[15] CCIX Consortium. 2019. An Introduction to CCIX. https://www.ccixconsortium.
com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf.

[16] Y. Chen, J. Cong, M. A. Ghodrat, M. Huang, C. Liu, B. Xiao, and Y. Zou. 2013.
Accelerator-rich CMPs: From concept to real hardware. In Proceedings of the IEEE
International Conference on Computer Design (ICCD). 169–176. https://doi.org/10.
1109/ICCD.2013.6657039

[17] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. 2016. Eyeriss:
An energy-efficient reconfigurable accelerator for deep convolutional neural
networks. IEEE Journal of Solid-State Circuits 52, 1 (2016), 127–138.

[18] B. Choi, R. Komuravelli, H. Sung, R. Smolinski, N. Honarmand, S. V. Adve, V. S.
Adve, N. P. Carter, and C. Chou. 2011. DeNovo: Rethinking theMemoryHierarchy
for Disciplined Parallelism. In Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT). 155–166. https://doi.
org/10.1109/PACT.2011.21

[19] Cobham Gaisler. [n. d.]. LEON3 Processor. www.gaisler.com/index.php/products/
processors/leon3.

[20] Columbia SLD Group. 2019. ESP Release. www.esp.cs.columbia.edu.
[21] Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Karthik

Gururaj, and Glenn Reinman. 2014. Accelerator-rich Architectures: Opportunities
and Progresses. In Proceedings of the ACM/IEEE Design Automation Conference
(DAC).

[22] Thanh Cong and Francois Charot. 2021. Design Space Exploration of
Heterogeneous-Accelerator SoCs with Hyperparameter Optimization. In 2021
26th Asia and South Pacific Design Automation Conference (ASP-DAC). 338–343.

[23] Emilio G. Cota, Paolo Mantovani, Giuseppe Di Guglielmo, and Luca P. Carloni.
2015. An Analysis of Accelerator Coupling in Heterogeneous Architectures. In
Proceedings of the ACM/IEEE Design Automation Conference (DAC).

[24] CXL Consortium. 2020. Compute Express Linx 2.0 White Paper. https://www.
computeexpresslink.org/resource-library.

[25] William J. Dally, Yatish Turakhia, and Song Han. 2020. Domain-Specific Hardware
Accelerators. Communication of ACM 63, 7 (2020), 48–57.

[26] Yi Ding, Nikita Mishra, and Henry Hoffmann. 2019. Generative and Multi-phase
Learning for Computer Systems Optimization. In Proceedings of the International
Symposium on Computer Architecture (ISCA). 39–52.

[27] Michael Ditty, Ashish Karandikar, and David Reed. 2018. Nvidia’s Xavier SoC. In
Hot Chips: A Symposium on High Performance Chips.

[28] Bryan Donyanavard, Tiago Mück, Amir M Rahmani, Nikil Dutt, Armin Sadighi,
Florian Maurer, and Andreas Herkersdorf. 2019. SOSA: Self-optimizing learning
with self-adaptive control for hierarchical system-on-chip management. In Pro-
ceedings of the IEEE/ACM International Symposium on Microarchitecture. 685–698.

[29] C. F. Fajardo, Z. Fang, R. Iyer, G. F. Garcia, S. E. Lee, and L. Zhao. 2011. Buffer-
Integrated-Cache: A cost-effective SRAM architecture for handheld and embed-
ded platforms. In Proceedings of the ACM/IEEE Design Automation Conference
(DAC). 966–971.

[30] Hubertus Franke, Jimi Xenidis, Claude Basso, Brian M. Bass, Sandra S. Woodward,
Jeffrey D. Brown, and Charles L. Johnson. 2010. Introduction to the Wire-Speed
Processor and Architecture. IBM Journal of Research and Development 54, 1 (2010),
3:1–3:11.

[31] D. Fujiki, S. Wu, N. Ozog, K. Goliya, D. Blaauw, S. Narayanasamy, and R. Das.
2020. SeedEx: A Genome Sequencing Accelerator for Optimal Alignments in
Subminimal Space. In Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO). 937–950. https://doi.org/10.1109/MICRO50266.2020.
00080

[32] Gen-Z Consortium. 2020. Gen-Z Specification 1.1. https://genzconsortium.org/
specifications/.

[33] Davide Giri, Kuan-Lin Chiu, Guy Eichler, Paolo Mantovani, and Luca P. Carloni.
2021. Accelerator Integration for Open-Source SoC Design. IEEE Micro 41, 4
(2021), 8–14. https://doi.org/10.1109/MM.2021.3073893

[34] Davide Giri, Kuan-Lin Chiu, Giuseppe Di Guglielmo, Paolo Mantovani, and
Luca P. Carloni. 2020. ESP4ML: Platform-Based Design of Systems-on-Chip for
Embedded Machine Learning. In Proceedings of the IEEE Conference on Design,
Automation, and Test in Europe (DATE).

[35] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. Accelerators & Coher-
ence: An SoC Perspective. IEEE Micro 38, 6 (2018), 36–45.

[36] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2018. NoC-Based Support of
Heterogeneous Cache-Coherence Models for Accelerators. In Proceedings of the
International Symposium on Networks-on-Chip (NOCS). 1:1–1:8.

[37] Davide Giri, Paolo Mantovani, and Luca P. Carloni. 2019. Runtime Reconfigurable
Memory Hierarchy in Embedded Scalable Platforms. In Proceedings of the Asia
and South Pacific Design Automation Conference (ASPDAC). 719–726.

[38] Ujjwal Gupta, Sumit K Mandal, Manqing Mao, Chaitali Chakrabarti, and Umit Y
Ogras. 2019. A deep Q-learning approach for dynamic management of heteroge-
neous processors. IEEE Computer Architecture Letters 18, 1 (2019), 14–17.

[39] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,
and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep
Neural Network. In Proceedings of the International Symposium on Computer
Architecture (ISCA). 243–254. https://doi.org/10.1109/ISCA.2016.30

[40] Mark D. Hill and Vijay Janapa Reddi. 2020. Accelerator-level Parallelism.
arXiv:cs.DC/1907.02064

[41] Mark Horowitz. 2014. Computing’s energy problem (and what we can do about
it). In Digest of Technical Papers of the International Solid-State Circuits Conference
(ISSCC). 10–14.

[42] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. 1996. Rein-
forcement Learning: A Survey. Journal of Artificial Intelligence Research 4 (1996),
237–285. https://doi.org/10.1613/jair.301

[43] John H. Kelm, Daniel R. Johnson, William Tuohy, Steven S. Lumetta, and Sanjay J.
Patel. 2010. Cohesion: A Hybrid Memory Model for Accelerators. In Proceedings
of the International Symposium on Computer Architecture (ISCA). 429–440.

[44] J. H. Kelm, D. R. Johnson, W. Tuohy, S. S. Lumetta, and S. J. Patel. 2011. Cohesion:
An Adaptive Hybrid Memory Model for Accelerators. IEEE Micro 31, 1 (2011),
42–55. https://doi.org/10.1109/MM.2011.8

[45] Snehasish Kumar, Arrvindh Shriraman, and Naveen Vedula. 2015. Fusion: Design
Tradeoffs in Coherent Cache Hierarchies for Accelerators. In Proceedings of the
International Symposium on Computer Architecture (ISCA). 733–745.

[46] Andreas Kurth, Wolfgang Rönninger, Thomas Benz, Matheus Cavalcante, Fabian
Schuiki, Florian Zaruba, and Luca Benini. 2020. An Open-Source Platform for
High-Performance Non-Coherent On-Chip Communication. arXiv:2009.05334.
arXiv:cs.AR/arXiv:2009.05334

[47] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. 2018. MAERI: Enabling
Flexible Dataflow Mapping over DNN Accelerators via Reconfigurable Intercon-
nects. In Proceedings of the ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 461–475.

[48] Jacob Leverich, Hideho Arakida, Alex Solomatnikov, Amin Firoozshahian, Mark
Horowitz, and Christos Kozyrakis. 2008. Comparative Evaluation of Memory
Models for Chip Multiprocessors. ACM Trans. Archit. Code Optim. 5, 3, Article 12

364

https://developer.arm.com/ip-products/system-ip/corelink-interconnect
https://developer.arm.com/ip-products/system-ip/corelink-interconnect
https://developer.arm.com/documentation/ihi0022/h
https://developer.arm.com/documentation/ihi0022/h
https://doi.org/10.1109/LCA.2019.2910521
https://doi.org/10.1145/2554688.2554787
https://doi.org/10.1145/2554688.2554787
https://doi.org/10.1145/3387902.3392631
https://www.ccixconsortium.com/library/specification/
https://www.ccixconsortium.com/library/specification/
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://www.ccixconsortium.com/wp-content/uploads/2019/11/CCIX-White-Paper-Rev111219.pdf
https://doi.org/10.1109/ICCD.2013.6657039
https://doi.org/10.1109/ICCD.2013.6657039
https://doi.org/10.1109/PACT.2011.21
https://doi.org/10.1109/PACT.2011.21
www.gaisler.com/index.php/products/processors/leon3
www.gaisler.com/index.php/products/processors/leon3
www.esp.cs.columbia.edu
https://www.computeexpresslink.org/resource-library
https://www.computeexpresslink.org/resource-library
https://doi.org/10.1109/MICRO50266.2020.00080
https://doi.org/10.1109/MICRO50266.2020.00080
https://genzconsortium.org/specifications/
https://genzconsortium.org/specifications/
https://doi.org/10.1109/MM.2021.3073893
https://doi.org/10.1109/ISCA.2016.30
https://arxiv.org/abs/cs.DC/1907.02064
https://doi.org/10.1613/jair.301
https://doi.org/10.1109/MM.2011.8
arXiv:2009.05334
https://arxiv.org/abs/cs.AR/arXiv:2009.05334

MICRO’21, October 18-22, 2021, Athens, Greece Joseph Zuckerman, Davide Giri, Jihye Kwon, Paolo Mantovani, and Luca P. Carloni

(Dec. 2008), 30 pages.
[49] Ang Li, Gert-Jan van den Braak, Akash Kumar, and Henk Corporaal. 2015. Adap-

tive and Transparent Cache Bypassing for GPUs. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’15). Association for Computing Machinery, New York, NY, USA,
Article 17, 12 pages. https://doi.org/10.1145/2807591.2807606

[50] Chao Li, Shuaiwen Leon Song, Hongwen Dai, Albert Sidelnik, Siva Kumar Sastry
Hari, and Huiyang Zhou. 2015. Locality-Driven Dynamic GPU Cache Bypassing.
In Proceedings of the 29th ACM on International Conference on Supercomputing
(ICS ’15). Association for Computing Machinery, New York, NY, USA, 67–77.
https://doi.org/10.1145/2751205.2751237

[51] Wei Liu, Ying Tan, and Qinru Qiu. 2010. Enhanced Q-Learning Algorithm for
Dynamic Power Management with Performance Constraint. In Proceedings of
the IEEE Conference on Design, Automation, and Test in Europe (DATE). 602–605.

[52] Michael J. Lyons, Mark Hempstead, Gu-Yeon Wei, and David Brooks. 2012. The
Accelerator Store: A Shared Memory Framework for Accelerator-based Systems.
ACM Transactions on Architecture and Code Optimization (TACO) (2012).

[53] Paolo Mantovani, Emilio G. Cota, Christian Pilato, Giuseppe Di Guglielmo, and
Luca P. Carloni. 2016. Handling Large Data Sets for High-performance Embedded
Applications in Heterogeneous Systems-on-chip. In Proceedings of the Interna-
tional Conference on Compilers, Architectures, and Synthesis of Embedded Systems
(CASES). 3:1–3:10.

[54] Paolo Mantovani, Davide Giri, Giuseppe Di Guglielmo, Luca Piccolboni, Joseph
Zuckerman, Emilio G Cota, Michele Petracca, Christian Pilato, and Luca P Carloni.
2020. Agile SoC development with open ESP. In 2020 IEEE/ACM International
Conference On Computer Aided Design (ICCAD). IEEE, 1–9.

[55] Sang Lyul Min and Jean-Loup Baer. 1992. Design and analysis of a scalable cache
coherence scheme based on clocks and timestamps. IEEE Transactions on Parallel
and Distributed Systems 1 (1992), 25–44.

[56] Seung Won Min, Sitao Huang, Mohamed El-Hadedy, Jinjun Xiong, Deming Chen,
and Wen-mei Hwu. 2019. Analysis and Optimization of I/O Cache Coherency
Strategies for SoC-FPGA Device. In 2019 29th International Conference on Field
Programmable Logic and Applications (FPL). 301–306. https://doi.org/10.1109/
FPL.2019.00055

[57] Mobileye (an Intel Company). 2018. Towards Autonomous Driving.
https://s21.q4cdn.com/600692695/files/doc_presentations/2018/CES-2018-
final-MBLY.pdf. CES.

[58] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood. 2020. A Primer on Memory
Consistency and Cache Coherence: Second Edition. Morgan & Claypool.

[59] Rikin J Nayak and Jaiminkumar B Chavda. 2018. Comparison of accelerator
coherency port (ACP) and high performance port (HP) for data transfer in DDR
memory Using Xilinx ZYNQ SoC. In Information and Communication Technology
for Intelligent Systems (ICTIS 2017) - Volume 1. Springer, 94–102.

[60] NVIDIA. 2017. NVIDIA Deep Learning Accelerator (NVDLA). www.nvdla.org.
[61] OpenCAPI Consortium. 2016. OpenCAPI 4.0 Specifications. https://opencapi.

org/technical/specifications/.
[62] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-

harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and
William J. Dally. 2017. SCNN: An Accelerator for Compressed-Sparse Con-
volutional Neural Networks. In Proceedings of the International Symposium on
Computer Architecture (ISCA). 27–40. https://doi.org/10.1145/3079856.3080254

[63] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde,
Rangharajan Venkatesan, Stephen W. Keckler, Christopher W. Fletcher, and Joel
Emer. 2019. Buffets: An Efficient and Composable Storage Idiom for Explicit
Decoupled Data Orchestration. In Proceedings of the ACM International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS). 137–151. https://doi.org/10.1145/3297858.3304025

[64] D. Petrisko, F. Gilani, M. Wyse, D. C. Jung, S. Davidson, P. Gao, C. Zhao, Z. Azad,
S. Canakci, B. Veluri, T. Guarino, A. Joshi, M. Oskin, and M. B. Taylor. 2020.
BlackParrot: An Agile Open-Source RISC-V Multicore for Accelerator SoCs. IEEE
Micro 40, 4 (2020), 93–102. https://doi.org/10.1109/MM.2020.2996145

[65] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das, B. Kaul, and T.
Krishna. 2020. SIGMA: A Sparse and Irregular GEMM Accelerator with Flexible
Interconnects for DNN Training. In Proceedings of the International Symposium
on High-Performance Computer Architecture (HPCA). 58–70. https://doi.org/10.
1109/HPCA47549.2020.00015

[66] S. Rahman, N. Abu-Ghazaleh, and R. Gupta. 2020. GraphPulse: An Event-Driven
Hardware Accelerator for Asynchronous Graph Processing. In Proceedings of
the IEEE/ACM International Symposium on Microarchitecture (MICRO). 908–921.
https://doi.org/10.1109/MICRO50266.2020.00078

[67] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. 2014. Machsuite: Benchmarks for accelerator design and customized
architectures. In 2014 IEEE International Symposium onWorkload Characterization
(IISWC). IEEE, 110–119.

[68] Mohammadsadegh Sadri, Christian Weis, Norbert Wehn, and Luca Benini. 2013.
Energy and performance exploration of accelerator coherency port using Xilinx
ZYNQ. In Proceedings of the FPGAworld Conference.

[69] Benjamin Carrion Schafer and Anushree Mahapatra. 2014. S2cbench: Synthesiz-
able systemc benchmark suite for high-level synthesis. IEEE Embedded Systems
Letters 6, 3 (2014), 53–56.

[70] Yakun Sophia Shao and David Brooks. 2015. Research Infrastructures for Hardware
Accelerators. Morgan & Claypool.

[71] Yakun Sophia Shao, Jason Clemons, Rangharajan Venkatesan, Brian Zimmer,
Matthew Fojtik, Nan Jiang, Ben Keller, Alicia Klinefelter, Nathaniel Pinckney,
Priyanka Raina, Stephen G. Tell, Yanqing Zhang, William J. Dally, Joel Emer,
C. Thomas Gray, Brucek Khailany, and Stephen W. Keckler. 2019. Simba: Scaling
Deep-Learning Inference with Multi-Chip-Module-Based Architecture. In Pro-
ceedings of the IEEE/ACM International Symposium on Microarchitecture (MICRO).
14–27. https://doi.org/10.1145/3352460.3358302

[72] Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei,
and David Brooks. 2016. Co-Designing Accelerators and SoC Interfaces Us-
ing gem5-Aladdin. In Proceedings of the IEEE/ACM International Symposium on
Microarchitecture (MICRO). Article 48, 12 pages.

[73] E Sisbot, Augusto Vega, Arun Paidimarri, John-David Wellman, Alper Buyukto-
sunoglu, Pradip Bose, and David Trilla. 2019. Multi-Vehicle Map Fusion using
GNU Radio. Proceedings of the GNU Radio Conference 4, 1 (2019).

[74] Stephanie Soldavini and Christian Pilato. 2021. A Survey on Domain-Specific
Memory Architectures. arXiv preprint arXiv:2108.08672 (2021).

[75] Daniel J. Sorin, Mark D. Hill, and David A. Wood. 2011. A Primer on Memory
Consistency and Cache Coherence. Morgan & Claypool.

[76] N. Srivastava, H. Jin, J. Liu, D. Albonesi, and Z. Zhang. 2020. MatRaptor: A
Sparse-Sparse Matrix Multiplication Accelerator Based on Row-Wise Product.
In Proceedings of the IEEE/ACM International Symposium on Microarchitecture
(MICRO). 766–780. https://doi.org/10.1109/MICRO50266.2020.00068

[77] Ashley Stevens. 2011. Introduction to AMBA® 4 ACE and big.LITTLE Processing
Technology. ARM White Paper, CoreLink Intelligent System IP by ARM (2011).

[78] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012).

[79] Jeffrey Stuecheli, Bart Blaner, C. R. Johns, andM. S. Siegel. 2015. CAPI: A Coherent
Accelerator Processor Interface. IBM Journal of Research and Development (2015).

[80] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press.

[81] Thierry Tambe, Coleman Hooper, Lillian Pentecost, Tianyu Jia, En-Yu Yang,
Marco Donato, Victor Sanh, Paul N. Whatmough, Alexander M. Rush, David
Brooks, and Gu-YeonWei. 2021. EdgeBERT: Sentence-Level EnergyOptimizations
for Latency-Aware Multi-Task NLP Inference. arXiv:cs.AR/2011.14203

[82] Shelby Thomas, Chetan Gohkale, Enrico Tanuwidjaja, Tony Chong, David Lau,
Saturnino Garcia, and Michael Bedford Taylor. 2014. CortexSuite: A synthetic
brain benchmark suite. In 2014 IEEE International Symposium on Workload Char-
acterization (IISWC). IEEE, 76–79.

[83] Yingying Tian, Sooraj Puthoor, Joseph L. Greathouse, Bradford M. Beckmann, and
Daniel A. Jiménez. 2015. Adaptive GPU Cache Bypassing. In Proceedings of the
8th Workshop on General Purpose Processing Using GPUs (GPGPU-8). Association
for Computing Machinery, New York, NY, USA, 25–35. https://doi.org/10.1145/
2716282.2716283

[84] Christopher J.C.H. Watkins and Peter Dayan. 1992. Q-learning. Machine Learning
8, 3/4 (1992), 279–292. https://doi.org/10.1023/a:1022676722315

[85] Christopher John Cornish HellabyWatkins. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation. King’s College, Cambridge, UK.

[86] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A.
Ross. 2014. Q100: The Architecture and Design of a Database Processing Unit.
In Proceedings of the ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 255–268. https://doi.
org/10.1145/2541940.2541961

[87] Xiaolong Xie, Yun Liang, Guangyu Sun, and Deming Chen. 2013. An effi-
cient compiler framework for cache bypassing on GPUs. In 2013 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). 516–523. https:
//doi.org/10.1109/ICCAD.2013.6691165

[88] Xiaolong Xie, Yun Liang, Yu Wang, Guangyu Sun, and Tao Wang. 2015. Coor-
dinated static and dynamic cache bypassing for GPUs. In 2015 IEEE 21st Inter-
national Symposium on High Performance Computer Architecture (HPCA). 76–88.
https://doi.org/10.1109/HPCA.2015.7056023

[89] Xilinx. 2018. Adaptable Intelligence: The Next Computing Era. Keynote, Hot
Chips Symposium.

[90] P. Yao, L. Zheng, Z. Zeng, Y. Huang, C. Gui, X. Liao, H. Jin, and J. Xue. 2020.
A Locality-Aware Energy-Efficient Accelerator for Graph Mining Applications.
In Proceedings of the IEEE/ACM International Symposium on Microarchitecture
(MICRO). 895–907. https://doi.org/10.1109/MICRO50266.2020.00077

[91] Hao Zheng and Ahmed Louri. 2019. An energy-efficient network-on-chip design
using reinforcement learning. In Proceedings of the ACM/IEEE Design Automation
Conference (DAC).

365

https://doi.org/10.1145/2807591.2807606
https://doi.org/10.1145/2751205.2751237
https://doi.org/10.1109/FPL.2019.00055
https://doi.org/10.1109/FPL.2019.00055
https://s21.q4cdn.com/600692695/files/doc_presentations/2018/CES-2018-final-MBLY.pdf
https://s21.q4cdn.com/600692695/files/doc_presentations/2018/CES-2018-final-MBLY.pdf
www.nvdla.org
https://opencapi.org/technical/specifications/
https://opencapi.org/technical/specifications/
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1109/MM.2020.2996145
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/10.1109/HPCA47549.2020.00015
https://doi.org/10.1109/MICRO50266.2020.00078
https://doi.org/10.1145/3352460.3358302
https://doi.org/10.1109/MICRO50266.2020.00068
https://arxiv.org/abs/cs.AR/2011.14203
https://doi.org/10.1145/2716282.2716283
https://doi.org/10.1145/2716282.2716283
https://doi.org/10.1023/a:1022676722315
https://doi.org/10.1145/2541940.2541961
https://doi.org/10.1145/2541940.2541961
https://doi.org/10.1109/ICCAD.2013.6691165
https://doi.org/10.1109/ICCAD.2013.6691165
https://doi.org/10.1109/HPCA.2015.7056023
https://doi.org/10.1109/MICRO50266.2020.00077

	Abstract
	1 Introduction
	2 Coherence Modes
	3 Motivation
	4 Cohmeleon
	4.1 Runtime Reconfiguration
	4.2 Reinforcement Learning Module
	4.3 Implementation

	5 Evaluation Strategy
	6 Experimental Results
	7 Related work
	8 Conclusions
	Acknowledgments
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected results
	A.7 Experiment customization

	References

