
Platform-Based Design of Wireless Sensor
Networks for Industrial Applications

†Alvise Bonivento, ‡Luca P. Carloni, and †Alberto Sangiovanni-Vincentelli
†University of California at Berkeley, ‡Columbia University in the City of New York

e-mail: †alvise,alberto@eecs.berkeley.edu ‡luca@cs.columbia.edu

Abstract— We present a methodology, an environment and
supporting tools to map an application on a wireless sensor
network (WSN). While the method is quite general, we use
extensively an example in the domain of industrial control as
it is one of the most promising application of WSN and yet it is
largely untouched by it.

Our design flow starts from a high level description of the
control algorithm and a set of candidate hardware platforms
and automatically derives an implementation that satisfies sys-
tem requirements while optimizing for power consumption. To
manage the heterogeneity and complexity inherent in this rather
complete design flow, we identify three abstraction layers and
introduce the tools to transition between different layers and
obtain the final solution.

We present a case study of a control application for manu-
facturing plants that shows how the methodology covers all the
aspects of the design process, from conceptual description to
implementation.

I. INTRODUCTION

The application of WSN technology [1] to the design of
field-area networks for industrial communication and control
systems has the potential to provide major benefits in terms of
flexible installation and maintenance of field devices, support
for monitoring the operations of mobile robots, and reduction
in costs and problems due to wire cabling [2], [3]

Figure 1 illustrates an example of manufacturing cell, i.e. a
stage of an automation line in an industrial plant. The physical
dimensions of this cell range between 10 and 20 meters on
each side. In this area six robots cooperate to manipulate and
transform the same production piece under the supervision of
a process loop controller (PLC), which is placed right outside
the cell. In this example the robots are equipped with drilling
tips to work on metal surfaces. Careful monitoring of the state
of the drilling tips is a critical task because they do wear
out and they need to be replaced before damaging both the
piece under construction and the robot itself. A typical way
of monitoring the state of the tips is to observe the vibration
pattern of the robot. Different vibration sensors are placed on
the robot, and if the average vibration intensity of a robot
goes above a given threshold, all the robots of the cell must
be stopped so that a human operator (or another machine)
can safely perform the required maintenance. The monitoring
task is performed by the software running on the processor in
the PLC unit, which must periodically query each cluster for
information on the vibration intensity of each robot. We will
consider this case study as a running example to better explain
the proposed methodology.

PRODUCTION
LINE

PRODUCT
UNDER

DEVELOPMENT

ROBOT

PLC

PRODUCTION
LINE

20m

Fig. 1. Manufacturing Cell

The software for these applications is usually written by
process or mechanical engineers that are expert in process
control technology, but know little of the communication
and sensing infrastructure that has to be deployed to sup-
port these algorithms. On the other side, the communication
infrastructure is designed by communication engineers that
know little about process control technology. Moreover, the
adoption of wireless technology further complicates the design
of these networks. Being able to satisfy high requirements
on communication performance over an extremely unreliable
communication channel is a difficult task. Consequently, the
gap between the control algorithm designers and the network
designers will inevitably increase and this phenomenon might
delay the adoption of wireless sensor networks technology
within manufacturing plants.

To bridge this gap and derive a correct and efficient imple-
mentation, we propose a design methodology that:

1) Allows the control algorithm designer to specify the
application using a clear interface that abstracts the
drudgeries of the network implementation.

2) Starting from the application description, it derives a
set of constraints on the end-to-end (E2E) latency and
packet error rate that the network has to satisfy.

3) Using the E2E requirements and an abstraction of the
hardware platform, derives a solution for MAC and
Routing that satisfies requirements and optimizes for
energy consumption

4) Maps the communication protocol into the hardware
nodes and the PLC.

Following the Platform Based Design (PBD) methodol-



ogy [5], [6], our system level approach is characterized by a
top-down phase, where application requirements are refined
in E2E network requirements, a bottom up phase, where
hardware performance are abstracted, and a meet in the middle
phase where the requirements and performance are used
to solve a constrained optimization problem whose solution
determines the policies and the parameters of the MAC and
Routing layer.

The paper is organized as follows: In Section II, we offer
a quick overview of the layers of abstraction we use to
support our design methodology, in Section III we introduce a
tool to capture application requirements, and in Section IV a
methodology for protocol synthesis. In Section V we discuss
how to map the solution to the given hardware platforms,
and in Sections VII and VI we present our future plans
and the related work. For a more detailed overview of our
methodology, we refer the interested readers to [16].

II. PLATFORM-BASED DESIGN FOR WSN: ABSTRACTION
LAYERS

Following Figure 2, at the application level we introduce the
highest layer of abstraction in our methodology, the Sensor
Network Service Platform (SNSP) [4]. Similar to the role
played by the Socket in Internet applications, the SNSP offers
an application interface that is able to support the possible
services that can be used in a WSN independently of the
network implementation.

To perform its functionality, a controller (algorithm) has
to be able to read and modify the state of the environment.
In a WSN, controllers do so by relying on communication
and coordination among a set of distinct elements that are
distributed in the environment in order to complete three
different types of functions: sensing, control and actuation. The
role of the SNSP is to provide a logical abstraction for these
communication and coordination functions. The SNSP offers a
query service (QS) used by controllers to get information from
other components, a command service (CS) used by controllers
to set the state of other components, a timing/synchronization
service (TSS) used by components to agree on a common
time, a location service (LS) used by components to learn their
location, a concept repository service (CRS) which maintains a
map of the capabilities of the deployed system and it is used by
all the components to maintain a common consistent definition
of the concepts that they agreed upon during the network
operation. The CSR is quite novel in the WSN community,
but is deemed essential if a true ad-hoc realization of the
network is to be obtained. The repository includes definitions
of relevant global concepts such as the attributes that can
be queried (e.g. temperature, pressure), or the regions that
define the scope of the names used for addressing. It further
allows collecting information about the capabilities of the
system (i.e. which services it provides and at which quality and
cost) and provides the application with a sufficiently accurate
description. The repository is dynamically updated during the
network operations.

Fig. 2. Layers of abstraction and design flow

A. The Sensor Network Implementation Platform
The Sensor Network Implementation Platform (SNIP) is a

network of interconnected physical nodes that implement the
logical functions of the application and the SNSP. A physical
node is a collection of physical resources such as clocks and
energy sources, processing units, memory, communication,
I/O devices, sensor and actuator devices. The main physical
parameters of a node are the list of sensors and actuators
attached to node, the memory available for the application,
clock frequency range, the clock accuracy and stability, the
level of available energy, the cost of computation (energy), the
cost of communication (energy), the transmission rate (range).

B. The Sensor Network Ad-hoc Protocol Platform
To choose the architecture of the SNIP and to map the

functional specification of the system onto it are critical steps
in sensor network design. To facilitate the process we created
an intermediate level of abstraction called Sensor Network Ad-
hoc Protocol Platform (SNAPP).

The SNAPP is composed by a library of MAC and rout-
ing protocols that offer to the SNSP guarantees on latency,
error rate, sensing requirements. Different protocols have
been developed for different application classes. For example
SERAN [12] was developed for clustered topologies, while the
randomized approach of [10] (called RAND in Figure 2) was
developed for uniformly distributed topologies. The appropri-
ate protocol is selected according to the application class.

These protocols are “parametrized protocols”, meaning that
their structure is specified, but their working point is deter-
mined by a set of parameters. The value of these parameters is
obtained as the solution of a constrained optimization problem,
where the constraints are derived from the latency, error
rate, sensing requirements of the application while the cost
function is the energy consumption. The energy consumption
is estimated based on an abstraction of the physical properties
of the candidate hardware platform. The synthesis of these
parameters represents the meet-in-the-middle phase of the
PBD methodology when applied to the WSN domain.



III. MAPPING SNSP TO SNAPP FOR INDUSTRIAL
CONTROL: RIALTO

Rialto [11] is a tool that targets WSN industrial control
applications and helps the transition from the SNSP to the
SNAPP. It supports those applications in which, as in our case
study, the end user wants to deploy a dedicated network to
support a periodic control application.

Rialto supports only the subset of the services of the SNSP
that are relevant for the chosen industrial domain; specifically:
the query service, the command service and the concept
repository service. Rialto allows the end user to specify a
loose notion of the system topology in the concept repository
service and to describe the control algorithm in terms of logical
components, queries and commands.

Following the approach of [4], in the proposed framework,
designers describe the application in a Rialto Model in terms
of Virtual Controllers, Virtual Sensors, and Virtual Actuators.

A Virtual Controller (VC) contains the description of the
control algorithm of the application. If the application has
more than one independent control algorithm, multiple Virtual
Controllers have to be specified. In our case study, we have a
single VC with an algorithm that needs information on robot
vibrations to take its decisions.

A Virtual Sensor (VS) represents a sensing area. This
abstraction is useful because designers know which are the
areas that need to be sensed, but they generally don’t know
how many sensors must be placed to cover that area and
how they have to placed. For example, in our application,
there are six virtual sensors (one for each robot). There is not
necessarily a one-to-one relationship between virtual sensors
and physical sensors. The number and the type of physical
sensors that will be used to implement a virtual sensor is an
implementation choice. In our application, a virtual sensor will
most likely be implemented with a set of multiple sensors.

A Virtual Actuator (VA) represents an actuation capability.
Similarly to the VS, the user describes the position of the VA,
but the number and type of physical actuators that will be
selected to implement its functionality is an implementation
choice. In our case, there are six Virtual Actuators, one for
each robot.

After the virtual components are declared, the interaction
among them is described using queries and commands. Ri-
alto allows connections only between Virtual Controllers and
Virtual Sensors and between Virtual Controllers and Virtual
Actuators. Consequently, no connection is allowed between
two Virtual Sensors, two Virtual Actuators, or a Virtual Sensor
and a Virtual Actuator. This restriction makes sense because
we are describing an application using logical components.
Connections between two sensors (commonly referred to as
multi-hopping) are an implementation option, and as such they
don’t belong to the application description level of abstraction.
Similarly, a connection between two physical controllers is an
implementation option, but at the application description level
connections between two Virtual Controllers are not allowed.
Hence, if a Virtual Controller needs a particular set of data, it
has to send a query directly to a Virtual Sensor.

A. Scenarios exploration
After the application is described, the description is trans-

lated into an internal representation called RialtoNet.
Since we want to generate a set of requirements to design a

sensing and communication infrastructure that is able to satisfy
every possible request of the controlling algorithms, we need
to evaluate all the various combinations of requests that Virtual
Controllers could generate. The RialtoNet is created precisely
for an explicit exploration of all the possible combinations
of queries and commands in a given application. Since the
number in a control routine has is typically limited, the number
of possible combinations is often very manageable.

By analyzing the software code of every VC, we detect all
the possible combinations of conditional statements involving
a request, and for each of them we create a new independent
component, called VC Branch (VCB). Each Virtual Sensor
is modified into a Virtual Sensor Skeleton and each Virtual
Actuator into a Virtual Actuator Skeleton (VAS) that are
obtained from the original code modifying the read and write
semantic. A RialtoNet is generated by substituting each VC
with its relative VCBs, each VS with its relative VSS, and
each VA with its relative VAS.

B. Requirement generation
During the execution of the RialtoNet, we generate a set of

constraints on latency, bit error rate, and sensing requirements
that are the starting point for the design of the physical
network. Since the distinct VC Branches are executed as in-
dependent components and each of them represents a possible
combination of queries and commands, the requirements on
sensing and communication infrastructure guarantee that all
the possible combinations can be supported.

Consequently, the end user is able to describe the application
with no knowledge of the network architecture, while Rialto
provides a bridge to the implementation platform. Starting
from these requirements, a communication protocol can be
designed with the guarantee that, if these constraints are sat-
isfied, the network architecture will be appropriate to support
the correct functionality of the application.

IV. PROTOCOL SYNTHESIS

An important and usually non trivial step in the top-down
refinement process associated with the move from one layer
of abstraction to the next consists in analyzing application
requirements on the end-to-end (E2E) delay and translating
them into a hop-to-hop (H2H) delay which is simpler to
handle and of direct impact to the protocol design. The ability
of performing this refinement is subject to the capability of
characterizing the interaction among the different layers of
the protocol solution using a mathematical framework. The
mathematical framework allows us to capture the requirements
of the design functionality and performance as a constrained
optimization problem. The solution to this problem provides
the parameters to derive the final protocol implementation.
Once the trade-off equations are derived and solved as an



PLC

C2

C3

C4
C6

C5

Shortest path

Shortest path

C1

PLC

C2

C3

C4
C6

C5

Shortest path

Shortest path

C1

Fig. 3. Connectivity graph

optimization problem, all the protocol parameters are auto-
matically synthesized. The formalism and the capability of
offering end-to-end guarantees instead of local guarantees is
what distinguish our approach from the previous protocol
design for WSNs.

The use of parameterized protocols allows us to effectively
restrict the large design space to a few parameters. In addition,
since the protocols are developed with a specific mathematical
model in mind, we can easily gouge the effects of changing
these parameters on the overall network performance. This
predictive ability prevents the need for extensive simulation
and allows for the ease of comparison with other protocols.

A. A SEmi-RANdom Protocol for Clustered Topologies:
SERAN

For naturally clustered environments, as in our example,
we developed a semi-random protocol stack called SERAN,
which covers two layers of a classical protocol stack: routing
and MAC. In this section, we give a brief overview of SERAN,
see [12] for a more detailed description and performance
analysis.

1) Routing Algorithm: Routing over an unpredictable envi-
ronment is notoriously a hard task. High node density makes
the problem easier to solve. The idea is to have a set of nodes
within transmission range that could be candidate receivers; at
least one of them will offer a good link anytime a transmission
is needed.

The routing solution of SERAN is based on a semi-
random scheme that reduces the overhead of purely random
approaches. In SERAN, the sender has knowledge of the
region to which the packet will be forwarded, but the actual
choice of forwarding node is made at random. This approach
is motivated by the fact that the clustered topology of the
sensor network for robots monitoring in a manufacturing cell
is known a priori.

A connective graph like the one reported in Figure 3 can be
derived from the given cluster topology [12]. In the graph,
an arc between two clusters means that the nodes of the
two clusters are within transmission range. We further assume
that the nodes share the same communication channel. Then,
the first step of the SERAN routing algorithm consists of

calculating the shortest path from every cluster to the PLC and
generating the minimum spanning tree as shown in Figure 3.

Assuming that a particular node in Cluster 1 must forward
a packet to the PLC, the proposed routing algorithm works as
follows:

• first, the node that has the packet selects randomly a node
in Cluster 2 and forwards the packets to it;

• then, the chosen node determines its next hop by choosing
a node randomly in Cluster 4, and so on.

In other words, packets are forwarded to a randomly chosen
node within the next-hop cluster in the minimum spanning tree
leading to the PLC.

2) Hybrid MAC: The first priority in the design of our
MAC is ensuring robustness against topology changes. Since
nodes failure is a common phenomenon for WSN, we design
a MAC that is able to support the addition of new nodes
for preserving the high level of density required to ensure
robustness. This flexibility is usually obtained by using random
based access schemes. In the WSN domain, an interesting
example of this idea is presented in BMAC [14]. High density
unfortunately introduces a large number of collisions. This
drawback becomes crucial in our case because we have
only one channel that can be used for communication. To
reduce collisions, a deterministic MAC is used. A well-known
deterministic approach is SMAC [13], where the network is
organized according to a clustered TDMA scheme. Our MAC
solution is based on a two-level semi-random communication
scheme. This offers robustness to topology changes and node
failures that is typical of a random based MAC protocol and
robustness to collision that is typical of a deterministic MAC
protocol

a) High Level MAC: The higher level regulates channel
access among clusters. A weighted TDMA scheme is used
such that at any point in time, only one cluster is transmitting
and only one cluster is receiving. During a TDMA cycle, each
cluster is allowed to transmit for a number of TDMA-slots that
is proportional to the amount of traffic it has to forward. The
introduction of this high level TDMA structure has the goal of
limiting interference between nodes transmitting from different
clusters. The time granularity of this level is the TDMA-slot.
After the two clusters terminated their transmitting TDMA-
slot, another TDMA-slot (called the actuation slot) is reserved
for the PLC. During this slot, the PLC sends a message to the
actuator of each robot to continue operating or to switch the
robot off.

b) Low Level MAC: The lower level regulates the com-
munication between the nodes of the transmitting cluster and
the nodes of the receiving cluster within a single TDMA-slot.
It has to support the semi-random routing protocol presented
in IV-A.1, and it has to offer flexibility for the introduction
of new nodes. This flexibility is obtained by having the
transmitting nodes access the channel in a p-persistent CSMA
fashion [15]. The random selection of the receiving node
is obtained by multi-casting the packet over all the nodes
of the receiving cluster, and by having the receiving nodes



implement a random acknowledgment contention scheme to
prevent duplication of the packets.

In this approach, nodes need to be aware only of the next-
hop cluster connectivity and do not need a neighbor list of next
hop nodes. We believe this is an important benefit because
cluster based connectivity is very stable, while neighbor lists
of nodes are usually time-varying (nodes may run out of power
and other nodes may be added) and their management requires
significant overhead.

c) Energy Minimization: In most of the proposed MAC
algorithms for WSNs, nodes are turned off to save energy
whenever their presence is not essential for the network to
be operational. Following this approach, our duty-cycling
algorithm leverages the MAC properties and does not require
extra communication among nodes. During an entire TDMA
cycle, a node has to be awake only when it is in its listening
TDMA-slot or when it has a packet to send and it is in its
transmitting TDMA-slot. For the remainder of the TDMA
cycle, the node radio can be turned off.

3) Protocol parameter synthesis: The working point of
the communication protocol is determined by tuning a set of
parameters such as the TDMA schedule, the duration of the
TDMA-slot, and the channel access probability p.

The number of transmitting TDMA-slots assigned to each
cluster is proportional to the amount of traffic that the cluster
has to forward. Consequently, clusters closer to the PLC have
more transmitting slots since they have to forward the packets
that they generate plus the packets coming from upstream
clusters. For each path, the first cluster to transmit is the closest
to the PLC (Cluster 4). Then Cluster 2 and Cluster 4 again.
Then Cluster 1, 2 and 4, and similarly on the other path. This
scheduling is based on the idea that evacuating the clusters
closer to the PLC first, we minimize the storage requirement
throughout the network.

In [12] we show that the energy consumption is monoton-
ically decreasing with the duration of the single TDMA-slot.
Consequently, using the TDMA structure and the cluster based
routing, we are able to determine the maximum duration of
the TDMA-slot so that the E2E requirements of the far most
clusters are satisfied.

The random access parameter p needs to be set such that all
the nodes in the cluster are able to forward their packets during
a TDMA-slot. In [12], we model the packet transmission
process as a Discrete Time Markov Chain and we show how
to find the optimum p solving a convex optimization problem.

V. MAPPING AND IMPLEMENTATION

After creating the network infrastructure, the final step of
the design flow consists in mapping the controlling algorithm
onto the controller hardware platform, and mapping the com-
munication protocol onto the wireless nodes.

The first step consists in mapping the controlling algorithm
into the hardware platform of the PLC. This represents a
classical embedded systems mapping problem (i.e. not specific
of the WSN domain) and it can be performed with classical
mapping tools. Consequently, we do not address it in this work

The second step is to map the communication protocol on
the physical nodes. Since the communication protocols of the
SNAPP are already described in a distributed fashion, the
parametrized code for each node can be easily developed using
the software interface of the nodes. Most often, this interface
is given by TinyOS and the parametrized code can be written
using NesC [7].

The actual setting of the parameters of the nodes to deter-
mine their working point is obtained using an initialization al-
gorithm that kicks in when the nodes and the PLC are switched
on. This algorithm allows for self-adaptation of the network to
the optimal working conditions. Furthermore, to preserve the
correct behavior of the communication infrastructure, network
management algorithms are automatically run on the network
on a periodical basis.

VI. RELATED WORK

Since we propose a design methodology that supports
all the phases of the design of WSN, from application to
implementation, there is quite a large body of related work on
system level methods, tools and protocols. For sake of brevity,
we outline only some recent works while we refer to [16] for
a more detailed analysis.

A system level approach to the design of WSNs was recently
proposed by Polastre et al. [17]. A platform called SP is
proposed between the link and the network layer. The SP
should provide the adequate modularity for the nodes to
support different MAC and Routing layers. The philosophy
is similar to the Internet “everything over IP”, where in this
case it would be “everything over SP”. Although this is a very
interesting architecture for best effort networks, we believe it is
not appropriate for control applications where E2E guarantees
are required. Our top-down approach and synthesis method
are customized for control applications.

An attempt of raising the level of abstraction was presented
in [8], where a classification for node communication mech-
anisms was introduced to allow for a higher level description
of the network algorithms. In [9], the proposed methodology
is based on a bottom-up part for the description of network
algorithms, a top-down part to describe the application, and a
mapping process to deploy software onto the nodes. The over-
all method fits with the PBD paradigm advocated in this paper
but it does use different layers of abstraction. Our approach
emphasizes the control based nature of WSN applications and
offers a rigorous semantics and set of primitives to interpret
timing issues at a very high level, hence providing a well-
defined level of abstraction for the application designer.

VII. FUTURE DIRECTIONS

We are currently working in different directions to improve
the capabilities of our design flow in terms of supported classes
of application and improved performance of the network
infrastructure. In this section, we offer a quick overview of
these efforts.



A. Non-Periodic control applications
Consider the case in which a mechanical engineer does not

have the freedom of designing from scratch a WSN but has to
use what was already deployed to implement different control
applications that have to run for a limited amount of time.
The problem is to reconfigure the existing network and offer
E2E guarantees under certain restrictions given by the physical
capabilities of the nodes already deployed. Although the levels
of abstraction that we already discussed stay the same, the
mapping of the application into the network infrastructure
changes substantially. Specifically, this mapping will have to
be performed at run time. For this to be feasible, the network
infrastructure has to be flexible, easily reprogrammable, and
capable of determining at run time the type of E2E guarantees
it can offer given the current status of activity in the network
and a projection of the utilization of the new queries. Modeling
these aspects in the SNAPP is a focus of our future work.

To solve the dynamic mapping problem, we are cur-
rently developing a real time network scheduler capable
of recognizing different priority classes for the incoming
queries/commands, of analyzing the satisfiability of these
queries/commands depending on the network status, and of
deciding whether to dispatch or to stall the query/command
according to a given policy.

B. Distributed Aggregation Algorithms
The case study presented here is based on a centralized

approach where the PLC periodically receives a packet from
every node in each cluster with the updated data on the
vibration intensity of the corresponding robot. The efficiency
of the centralized implementation, however, depends on cluster
topology and the number of nodes per cluster. In fact, due
to the multi-hop communication scheme used, the nodes that
are closer to the PLC are required to support also the traffic
due to packets coming from distant nodes. Consequently, they
dissipate more energy, and statistically end up having a shorter
lifetime.

Since WSN nodes include some computational capabilities,
it is often preferable that the nodes on the same cluster locally
compute the average vibration and select one among them to
report the data to the PLC along the multi-hop chain. However,
since node malfunctions and failures are not rare events in a
WSN, fault-tolerant protocols are essential which guarantee
that multiple, if not all, nodes can take over the responsibility
of computing and propagating the result to the PLC. To this
end, we are developing a library of fault tolerant distributed
aggregation algorithms that enable nodes of the same cluster to
share data locally, eventually computing aggregate functions,
during their transmitting TDMA-slot so that only one packet
has to be forwarded to the downstream cluster at the end
of the slot. Notice however, that both the structure of the
TDMA/CSMA communication protocol and the cluster-to-
cluster routing algorithm that are used in the centralized
solution can be seamlessly used in the distributed solution.
This is an important point since it enables the separation of
the mechanism for computing the aggregate function from

the design of the inter-cluster communication infrastructure,
thereby minimizing the extra design complexity due to the
introduction of the distributed aggregation capability.

REFERENCES

[1] D. Culler, D. Estrin, and M. Srivastava, “Overview of Sensor Networks”,
IEEE Computer, vol. 37, num.8, pg 41-49, Aug. 2004.

[2] R. Zurawski,“Introduction to Special Issue on Industrial Communication
Systems”, Proc. of the IEEE, vol.9, num.6, pg. 1067-1072, Jun.2005.

[3] A. Willig, K. Matheus, and A. Wolisz, “Wireless Technology in In-
dustrial Networks”, Proc. of the IEEE, vol. 9, num.6, pg.1130-1151,
Jun.2005.

[4] M. Sgroi, Adam Wolisz, Alberto Sangiovanni-Vincentelli and Jan M.
Rabaey, “A Service-Based Universal Application Interface for Ad-hoc
Wireless Sensor Networks”, whitepaper, U.C.Berkeley 2004.

[5] A. Sangiovanni-Vincentelli, A. Ferrari, “System Design - Traditional
Concepts and New Paradigms”, Proceedings of ICCD 99, Austin,
October, 1999, pp.2-12.

[6] A. L. Sangiovanni-Vincentelli, L. Carloni, F. De Bernardinis and M.
Sgroi, “Benefits and Challenges for Platform-Based Design”, Proceed-
ings of the Design Automation Conference (DAC’04), San Diego, CA,
USA, June 2004.

[7] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC Language: A Holistic Approach to Networked Embedded
Systems”, Proceedings of Programming Language Design and Imple-
mentation (PLDI) 2003, June 2003.

[8] Y. Yu, B. Hong, V.K. Prasanna, “Communication Models for Algorithm
Design in Wireless Sensor Networks”, IPDPS ’05.

[9] A. Bakshi, V.K. Prasanna, “Algorithm Design and Synthesis for Wireless
Sensor Networks”, ICPP ’04.

[10] A. Bonivento, C. Fischione, A. Sangiovanni-Vincentelli “Randomized
Protocol Stack for Ubiquitous Networks in Indoor Environment”, CCNC
2006.

[11] A. Bonivento, L.P. Carloni, A. Sangiovanni-Vincentelli, “Rialto: a
Bridge between Description and Implementation of Control Algorithms
for Wireless Sensor Networks”, Proc. of EMSOFT 2005, Jersey City,
NJ, USA, Sept. 2005.

[12] A. Bonivento, C. Fischione, A. Sangiovanni-Vincentelli, F. Graziosi, F.
Santucci, “SERAN: A Semi Random Protocol Solution for Clustered
Wireless Sensor Networks”, To appear in Proc. of MASS 2005, Wash-
ington D.C., USA, Nov. 2005.

[13] Wei Ye, John Heidemann and Deborah Estrin, “Medium Access Control
with Coordinated Adaptive Sleeping for Wireless Sensor Networks”,
IEEE/ACM Transactions on Networking, Vol. 12, No. 3, pp. 493-506,
June 2004.

[14] J. Polastre, J. Hill, and D. Culler, “Versatile Low Power Media Access
for Wireless Sensor Networks”, Sensys 2004.

[15] T.S. Rappaport, “Wireless Communications”, Prentice Hall, Upper Sad-
dle River NJ, 1996.

[16] A.Bonivento, L.P. Carloni, A. Sangiovanni-Vinctelli, “Platform-Based
Design for Wireless Sensor Networks”, to appear in Mobile Networks
and Applications, The Journal of Special Issues on Mobility of Systems,
Users, Data and Computing, 2006.

[17] J. Polastre et al., “A Unified Link Anstraction for Wireless Sensor
Networks”, Sensys 2005.


