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Abstract—We present an open framework for the efficient
deployment of heterogeneous wireless testbeds for Cyber-Physical
Systems (CPS). The testbed architecture, which can be configured
and optimized for each particular deployment, consists of a
low-power wireless network (LPWN) of embedded devices, a
backbone network, and a server back-end. Our framework, whose
source code is publicly available, includes a comprehensive set of
software tools for deploying, testing, reconfiguring, and evaluating
the CPS application software and the supporting firmware.
We discuss the architecture, the framework properties, and the
hardware resources that are necessary to deploy an experimental
testbed. We present two case studies built with our framework:
an outdoor lighting installation in a commercial parking lot
and an indoor university building instrumentation. Using the
two deployments, we present experiments normally conducted
by CPS engineers to better understand the environment in which
the CPS is deployed. The results of these experiments show the
feasibility of the proposed framework in assisting CPS research
and development.

I. INTRODUCTION

Many cyber-physical system (CPS) [24] applications
involve the deployment of low-power wireless networks
(LPWN). These networks consist of a set of embedded devices
(motes) that combine computation and communication infras-
tructures with sensing and actuating capabilities to interact
with the physical environment. A typical mote has limited
computation, communication, and memory resources [13],
[23], [30] and minimal operating system support [7], [8],
[17]. The interaction of the cyber infrastructure with the
physical world is controlled by a distributed, concurrent, and
heterogeneous system [5], [26]. The design of such system
and the programming of the application software is a complex
engineering task [15], [28], which includes a critical validation
step [14], [22] that requires physical implementation.

During new system installation, CPS engineers and re-
searchers can find only limited help in the use of network
simulators [16], [21] and remote network testbeds [2], [4], [6],
[11], [18], [29]. Even the most advanced models of wireless
communication and hardware architecture do not offer a testing
environment that can capture all the system design aspects
that impact reliability and operation. In fact, many issues
only become apparent in real deployments. Hence, the correct
execution of an application and the evaluation of the scalability
and robustness of the networking properties are performed on
remote LPWN testbeds. As illustrated in Fig. 1(a), a LPWN
testbed allows an engineer to remotely deploy a new firmware
image on every mote through a web-interface. However, due
to the increasing demand from development teams and to the
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Fig. 1. (a) An engineer tests a program on a remote testbed. (b) High-level
structure overview of the framework.

small number of LPWN testbeds, there is a limited time to run
experiments on them.

Furthermore, neither simulators nor remote testbeds can
capture the CPS design peculiarities. These include under-
standing and processing signals from the actual interaction
with the physical world, the intrinsic property of any CPS
application. To conduct their research, many CPS developers
set up their own local testbeds for early prototyping and
system evaluation. These testbeds need to provide a good
degree of deployment flexibility and support various services
for system reconfiguration and experimental evaluation. Given
the broad spectrum of CPS applications and the evolution of
software during the development process, the testbeds should
also accommodate various sensors and actuators deployed on
heterogeneous network architectures supporting, for instance,
both the IEEE 802.11 (WiFi) and the IEEE 802.15.4 standards.

To design and deploy from scratch a testbed that meets all
these criteria is a challenging task that requires a significant
amount of work, which greatly influences productivity and
time-to-market. Indeed, the lack of open tools for creating
local LPWN testbeds slows down the progress of CPS research
and development. To address this challenge, we present a
framework consisting of a set of tools for rapid deployment
of a testbed for CPS applications. As shown in Fig. 1(b), the
framework comprises of three main components:

• the server back-end, which stores information about
the status of the testbed, collects logging messages
sent by the LPWN motes, and provides a web-based
interface for remote testbed control;

• the backbone network, which connects the installed
LPWN with the user-interface, thus allowing the re-
mote control and diagnostics of all the sensor motes;

• the testbed management unit, which provides tools
and mechanisms for deploying CPS applications, re-
configuring firmware on the LPWN motes, and for
monitoring the testbed’s performance.978-1-4799-0658-1/13/$31.00 c© 2013 IEEE



We demonstrate the feasibility of the proposed framework
in assisting the development of CPS applications. In particular,
we study how well the WiFi-based backbone network can sus-
tain testbed control and high-frequency sensor data collection.
We evaluate the network throughput of the testbed’s LPWN
by providing statistics on how frequently the sensors can be
sampled to collect data over the IEEE 802.15.4 radio. Then,
based on examples of sensor events detection in CPS appli-
cations, we show tradeoffs between the size of the collected
sensor data and the quality of information retrieved from that
data. This step is critical to optimize the performance of the
CPS application, e.g. in adaptive lighting regulated by traffic
sensors - one of our case studies. We illustrate the properties of
the framework with two examples of the testbed deployments.
The first testbed is installed on the private outdoor parking
lot of a commercial building to monitor the occupancy and
traffic of cars in this space. The second testbed is deployed
inside a university building to experiment with algorithms for
people-occupancy estimation.

The proposed framework constitutes a new approach in
assisting researchers and engineers with deploying testbeds,
which are instrumental for the development of CPS applica-
tions relying on wireless communication. It addresses several
common challenges. First, it is easy to setup, thus allowing
engineers from multiple disciplines to follow the best practices
as they quickly deploy their own and local CPS testbeds.
Second, the flexibility of the WiFi-based backbone network
enables the fast testbed re-deployment and node-by-node plug-
and-play testbed extension. Third, the relatively low hardware
costs, $169 per node, allow researchers in academia and
industry to start with a small investment in a few nodes and
to quickly obtain a preliminary set of results before deciding
to which extent one should augment the deployment.

The rest of the paper is organized as follows. Section II
discusses related work. Section III describes the framework’s
components, while Section IV presents the two case studies.
Section V provides sample testbed statistical information for
early stage CPS prototyping.

II. RELATED WORK

Over the years two simulators have gained popularity in the
LPWN research community: TOSSIM [16] and COOJA [21].
With TOSSIM, it is possible to simulate the execution of
software applications written in the nesC language [9] running
on a network of motes on top of the TinyOS operating
system environment [17] and communicating through the IEEE
802.15.4 wireless standard. Once successfully tested, the same
programs can be deployed on any hardware platform supported
by TinyOS. With COOJA, it is possible to simulate a wireless
network where each mote contains a complete firmware image
built for TinyOS and programmed in nesC or built for the
Contiki operating system [7] and programmed in C. Both
of these simulators, however, offer limited support to test
applications that extensively interact with the physical world
through sensors and actuators. In fact, the development of CPS
applications and the design of wireless infrastructure to support
them cannot prescind from the use of testbeds.

Motelab was one of the first successful LPWN
testbeds [29]. Through a web-based interface, an engineer
could reserve the network for a few hours, upload a com-
plete firmware image running on every mote, and collect
logging messages, which were providing information about the

network performance. At first, the testbed setup at Harvard
consisted of twenty-six Crossbow Mica2 nodes connected
together through Ethernet and the Crossbow MIB600 backbone
infrastructure that helped to manage firmware deployment and
logs collection. Then, the testbed grew up to 190 Tmote Sky
platform nodes, but it is not operating anymore.

Three other LPWN testbeds, which were deployed in a
similar fashion as Motelab, are currently available for experi-
ments through remote programming. Deployed at Ohio State
University, Kansei consists of over 700 nodes [2]. Through
its web-based interface, it allows engineers to run experi-
ments on networks supporting various wireless communica-
tion standards, e.g. 802.11, 802.15.4, and 900 MHz Chipcon
CC1000 radios, as well as various types of motes, including
XSM, TelosB [23], Imote2 and Stargates. Spanning across
three floors of a building at TU Berlin, Twist is an indoor
testbed that comprises of 204 TelosB motes connected through
a network of USB cables to 46-single-board wall-powered
NSLU2 computers [11]. It provides a web-based interface for
programming and debugging the motes. Finally, Indriya is a
testbed with 139 TelosB motes, deployed across three floors of
the Computer Science building at the National University of
Singapore [6]. With a backbone infrastructure consisting of 6
Mac Mini PCs and a network of USB hubs and cables, Indriya
is geographically the largest LPWN testbed, covering an area
equal to 23500m

3.

The above testbeds enable engineers from all over the
world to run embedded program prototypes on fairly large
LPWNs. The significant number of nodes makes these testbeds
particularly suitable to execute communication-oriented ex-
periments, i.e. new network routing and MAC protocols are
extensively evaluated on these testbeds to assess their robust-
ness and scalability. CPS researchers and engineers, however,
cannot completely evaluate their work on these testbeds be-
cause CPS applications require continuous interaction with the
physical world. Therefore, during the CPS instrumentation one
must have access to the target environment of deployment
as well as to the sensors and actuators. In particular, since
a great part of this effort typically involves the positioning,
configuring, and fine tuning of motes hosting various sensors
and actuators, the direct access to a local testbed is critical.
In the following section we present the framework that we
built to assist engineers and researchers in the deployment of
their own local testbeds supporting the development of CPS
applications.

III. THE OPEN TESTBED FRAMEWORK

In this section we describe the components of the frame-
work for deployment of CPS testbeds with heterogeneous
wireless infrastructures. We briefly discuss how to set up each
testbed component and point to online resources for more
detailed documentation. All presented software is open-source
and publicly available. Specifically, the source code of the
presented tools is licensed under GNU General Public Licence,
thus allowing everyone to freely use and modify the programs.

Fig. 2 shows the complete architecture of a testbed that can
be deployed and controlled with our framework. A collection
of various LPWN motes, such as TelosB or Z1 motes, is
controlled through a backbone network of WiFi routers from
a server back-end. The server and the WiFi routers can be
connected either through a private network or the Internet. The
testbed management software running on the server provides a
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Fig. 2. General architecture of a testbed that can be deployed with the
proposed framework.

user interface and a set of mechanisms to configure the testbed
according to the characteristics of the particular applications.
Each LPWN mote, which can host a particular set of sensors
and actuators, is connected to a router through a USB cable.
The application software and the operating system firmware
running on the motes can be efficiently uploaded, tested, and
configured through the backbone network.

The presence of the wireless backbone network is a dis-
tinctive element of our approach that significantly increases
design productivity. Once the development phase is completed
and the specific CPS is ready to be released and produced, the
backbone network can either be removed or scaled down as
appropriate.

A. Server Back-End

The server is setup with the Ubuntu operating system. In
our current deployment, we have configured it with the 32-bit
Ubuntu Server 12.04 LTS, which is a long-term release with
support guaranteed by Canonical Ltd. for five years, starting
from April 2012. The back-end includes also a database server
(MySQL, version 5.5.24) and a web server (Apache, version
2.2.22). The database server stores information about the
testbed configuration and debugging messages collected from
the LPWN motes. Depending on the size of the data and the
data processing algorithms, the sensor measurements are either
saved in the same MySQL database, in a local file on the
server, or are sent to Hadoop for distributed processing.

Fig. 3 shows two screen-shots of the web-interface running
on the server. Fig. 3(a) shows the firmware uploading interface.
From the list of available nodes, the user can specify the
IDs of those nodes that should be reprogrammed. In the
firmware image field, the user can choose the location on a
computer where a new firmware for a given mote architecture
is be stored. Before starting the experiment, the user tells the
framework the format in which the logging statements are
sent from the program under design. A log message can be
either a plain text statement or a byte-encoded report. After
reconfiguring the testbed and starting an experiment with the
new firmware, the user-interface switches to reporting online
logging messages, as shown in Fig. 3(b). The figure shows
two different experiment runs: one set of logs is sent in form
of plain ASCII text messages and the other is encoded as a
sequence of bytes. Each log statement starts with a timestamp
that is marked by a WiFi router when it receives a log
message from the corresponding mote attached through the
USB connection. A copy of the logs can be downloaded from
the server into a local computer.

(a) Upload Interface

1351039234351  1            2       Motion Sensor: 2654

1351039234331  1            2       Light Sensors: 460

1351039234321  1            2       Temperature: 25

1351039231151  1            3       Motion Sensor: 501

1351039230930  1            3       Light Sensors: 390

1351039230921  1            3       Temperature: 25

1351039230911  1            4       Motion Sensor: 489

1351039227741  1            4       Light Sensors: 462

1351039227561  1            4       Temperature: 25

Timestamp       Printf     MoteId                        Data

    (ms)

1351039424172  0            4      0b 03 00 65 00 03 00 bc

1351039424152  0            4      0b 03 00 65 00 03 00 bc

1351039424142  0            4      01 00 00 2e 00 00 00 00

1351039424132  0            4      01 00 00 2f 00 00 00 00

1351039424132  0            4      0b 11 00 65 00 03 00 bc

.

.

.

(b) Sample Logs

Fig. 3. Screen-shots of the framework’s user interface for new firmware
installation and downloading logs.

A complete server configuration, including the operating
system, database, and web-interface, can be downloaded as a
virtual machine image.The virtual machine format allows us to
deploy the server image on most computers and cloud systems.
For example, the server can be easily started through VMware
Player or VMware Workstation 9.0 on a Windows or Linux
PC, or through Fusion 5.0 on a OS X computer. Alternatively,
it can be started as a virtual server on an ESX Server cloud
infrastructure. Once the server is running, it can be accessed
through its IP address. Hence, by simply typing the server’s
IP address in the URL field of a web-browser, the user can
see the welcome page of the framework.

B. Backbone Network

The testbed backbone network connects together the server
and all the WiFi routers. The routers can be attached to a
wired network or form a wireless mesh network with other
routers. Furthermore, the backbone network can be setup as a
combination of both.

When the routers are connected to the wired network,
the server communicates directly with each router through
its assigned IP address. When routers together create the ad-
hoc WiFi mesh network, the server reaches a particular router
through a multi-hop path across other routers and a gateway
router: in this case, at least one router is attached to either
a private network or the Internet. Hence, at a minimum, the
backbone network requires only one router to be connected
to the server back-end. Since the backbone network serves as
the ad-hoc mesh network, the testbed can be efficiently re-
deployed in various places and new routers can be seamlessly
merged with other routers’ network. The routers, however,
need to be connected to a power source. Nevertheless, the
testbed is simpler and faster to deploy than most existing
LPWN testbeds because the routers do not require any form
of additional wired connection.

The WiFi routers are running the OpenWrt Linux-based
operating system. The OpenWrt project1 provides tools to
build complete firmware images for various WiFi routers and
for multiple embedded hardware architectures. The project
combines a Linux kernel with a set of tools that are commonly
used in wireless networking. In particular, the framework is
setup with the Optimized Link State Routing (OLSR) protocol
to organize the ad-hoc mesh network among the WiFi routers.
Each router is time-synchronized through the Network Time
Protocol.

1OpenWrt Project: http://openwrt.org
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Fig. 4. The sensor data collection experiment configurations on the framework built with heterogeneous network standards.

Support for Heterogeneous Network Architectures. The
existing testbed architectures preclude experimenting with
various wireless networks because they are solely based on
a wired backbone. While the WiFi routers provide wireless
communication according to the IEEE 802.11 standard, motes
such as TelosB and Z1 offer wireless communication based
on the IEEE 802.15.4 standard. With such communication
heterogeneity, an engineer can test a program in a network
solely operating within the IEEE 802.11 domain, utilizing only
the IEEE 802.15.4 communication, or with combination of
the two protocols. Thus, our proposed WiFi-based backbone
network architecture allows us to evaluate embedded software
in multiple configurations of wireless network standards.

Fig. 4 shows four configurations of wireless networks
supported by the framework. Fig. 4(a) shows a configuration
where all sensor data are sent from each mote through USB
directly to the attached WiFi router, and then the data are
routed to the server through WiFi mesh network. Fig. 4(b)
shows a configuration of the testbed with one mote collecting
sensor data from other motes and sending the collected data to
the attached WiFi routers that forward the data to the server.
Fig. 4(c) show one of the possible combinations of the testbed
configurations, where multiple motes collect sensor data from
other motes. The collected data are sent to the attached WiFi
router and further to the server through the WiFi mesh network.
By attaching each router directly to Ethernet, as shown in
Fig. 4(d), the testbed operates in the same fashion as existing
wired-based testbeds. As we will show in Section V, for CPS
development a testbed operating only on the wireless backbone
is as good as the testbed relying on the wired backbone.

The network architecture configuration for a given ex-
periment depends on the application scenario. For example,
consider the task of collecting sensor measurements for a CPS
application. An engineer might be required to test an embedded
program for various sensors, some connected through wires
and others employing wireless communication (IEEE 802.11
or IEEE 802.15.4). As shown in Fig. 4(a), to experiment with
CPS sending sensor measurements through WiFi network only,
the testbed needs to be configured with every mote sending
data over the USB connection to the attached router. For
many CPS applications, however, engineers do not have the
luxury of deploying a wired network for sensor-data collection.
In some applications, even WiFi is only allowed for testing
and debugging, but not in the final version of the system
deployment. Hence, it is important to evaluate a CPS prototype
within the restricted domain of LPWN, as shown in Fig. 4(b).

During the CPS design time, an embedded software en-
gineer is responsible for building a firmware consisting of
a sensor data collection application supported by a multi-
hop ad-hoc network routing among the motes. The sensor
measurements are routed to a collector using network protocol

such as the Collection Tree Protocol (CTP) [10], which runs
on top of the IEEE 802.15.4 MAC protocol. The collector
further forwards the sensor data to a database or a program
parsing sensor data logs. In some applications, however, where
the number of sensor motes is large, the LPWN itself may not
sustain the whole network traffic (see CTP study in Section V).
Then, one may want to consider a CPS implementation with a
two-tier network. At the lower-tier, the ad-hoc mesh network
is setup among one or more collectors. At the higher-tier, the
collectors are connected together through a network consisting
of the WiFi routers, as shown in Fig. 4(c).

Deployment Flexibility. The flexible framework architec-
ture allows us to adjust the placement of the LPWN motes dur-
ing the CPS design and prototype evaluation phase. Once the
target application is defined, it is necessary to establish where
and how many sensors and actuators should be installed. At the
beginning, the blue-print of a new cyber architecture is guided
by intuition and experience. Later on, through the iterations
of experiments on the CPS deployment on an actual testbed,
the cyber architecture becomes more precisely characterized
until the number and position of the motes with the specific
sensor and actuators is completely determined. During these
adjustments, the flexible testbed architecture enables engineers
to reorganize the placement of the nodes and to attach more
nodes where needed.

The proposed framework simplifies the task of finding
critical parameters of the system under design. For instance,
the design of a new CPS application requires to specify how
often a sensor should sample a given physical entity. This
question is usually difficult to answer. On the one hand,
higher frequency sampling rates provide more data about
the surrounding environment. On the other hand, low-power
embedded wireless devices have limited bandwidth and are
constrained by power resources that are mostly consumed
by collecting sensors’ measurements and transmitting data
over the radio. Therefore, each CPS deployment must find
the right balance for the particular system implementation.
One needs to find the minimum sampling frequency that
guarantees correct interaction with the physical world and the
maximum sampling frequency that the cyber infrastructure can
maintain (Section V). The heterogeneous testbed architecture
that we propose helps define the CPS sampling parameters.
A CPS architect can first rely only on the WiFi network
collecting sensor samples at a higher rate than the LPWN can
sustain. Then, by studying the collected sensor samples, the
lower sampling frequencies can be identified together with the
values of the system parameters impacting its responsiveness,
correctness, and lifetime. Once the new sampling frequency
parameters are determined, the CPS application software can
be migrated into the motes architecture and validated using the
same testbed deployment.



C. Testbed Management Unit

Our framework provides a set of tools connecting together
the third-party software running on the WiFi routers and the
back-end server. Software programs running on each router
manage the interaction between the motes and the back-end
server. When a new mote firmware image is being uploaded
from the server, each router flushes the firmware into the
mote’s program Flash memory and reports back to the server
the status of the mote. The router receives logs messages from
the program executing on the mote and stores them locally in
its own memory before they are downloaded into the server.
The tools operating on the WiFi routers are compatible with
the Open PacKaGe Management (opkg), a lightweight pack-
age management system for embedded Linux devices. This
software-distribution format permits installation and system
updating over the Internet without interrupting the testbed
services.

The framework tools running on the server offer a web-
based user interface to communicate with the routers. Partic-
ularly, this interface comprises of two programs. When a user
uploads a new firmware through the web-interface, the first
program checks the correctness of the user’s input, verifies
network connectivity with the WiFi routers, and initiates a
secure SSH-encrypted connection with each router. The secure
connection with the WiFi routers increases the safety of the
intellectual property of the software and the privacy of the
data containing sensor measurements and actuator control
signals. While an experiment is running, the second program
periodically checks the status of the testbed and informs the
user when a misbehavior is observed. Every minute, the testbed
server securely downloads the log messages from the motes
which have been buffered on each router. The logs are stored
in the database server and the latest log update is continuously
displayed on the user interface. The source code of the testbed
OpenWrt packages and the source code of the set of the tools
running on the server are available online2.

IV. TESTBED DEPLOYMENT EXAMPLES

In this section we present two case studies of actual
deployments made by using the proposed framework: the first
example is an outdoor testbed deployment in a commercial
environment while the second example is an indoor testbed
deployment in a university building.

A. Outdoor Parking Lot Testbed

We deployed an outdoor testbed in the parking lot at Philips
Research North America in Briarcliff Manor, New York. Cur-
rently, fourteen light poles, spanning an area of 80x100 meters,
are instrumented with the testbed hardware. The testbed is
used to evaluate prototypes of Intelligent Outdoor Lighting
Control applications. These applications focus on detecting
traffic (e.g., vehicles and pedestrians) and actuating on the
system composed of the outdoor lighting network to improve
energy efficiency and to meet safety and user requirements. For
instance, our application allows autonomous light-dimming
based on the presence of people or on the movement of cars.

Hardware Infrastructure. Fig. 5(a) shows the mounting
of the the testbed hardware on one of the light poles. Each
pole comprises of one WiFi box and one sensor box. Each
WiFi box contains a TP-LINK 1043ND WiFi router with a

2Project Repository: https://github.com/mszczodrak/otf
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Fig. 5. Testbed deployment on a parking lot.

400MHz microcontroller and 8MB of Flash and 32MB of
RAM memories. The router is secured inside a plastic box.
To maintain strong WiFi signal reception, all three router’s
antennas are extended outside of the box. To create the USB
connection with motes, the router’s USB port is extended
outside of the box. In total, three industrial USB cables are
used in order to decouple the WiFi box from the sensor box, for
installation and maintenance purposes. Each WiFi box draws
AC power from the light pole.

Fig. 5(b) shows an opened sensor box. The box contains a
Zolertia Z1 [30] mote, connected to different sensors depend-
ing on the particular application. For example, in this figure
the Z1 mote is connected to a sound sensor mounted at the
bottom of the box and to a motion sensor monitoring the street
through a secured hole in the front cover of the box. The sensor
box has attached a USB cable that is connected to the Z1 mote
and with the WiFi box. Each sensor box is powered through
USB.

The WiFi box and the sensor box are assembled out of com-
mercial off-the-shelf components. Each box is professionally
assembled and tightly sealed to protect the electronic devices
from water damage. The WiFi boxes are framed with metal
blades, allowing us to screw each box into a light pole. The
sensor boxes have metal stripes for an installation on various
poles. The testbed has been running for over a year and it has
survived diverse extreme weather conditions.

Table I lists the testbed hardware and its cost3 per node
deployed outdoor. Each testbed node is assembled with three
units of antenna extension cables and one unit of the rest of
the items listed in the table. The total cost of a single node
deployed outdoor is approximately $282, with $113 spent to
secure the electronic hardware equipment. However, the actual
total cost of a single light pole instrumentation is higher due to
the labor of the technicians preparing the boxes and soldering
the external antenna, and the electricians mounting the boxes
and connecting them to the power source out of each light
pole. Despite that, the costs of our testbed quickly pay back
in terms of increased productivity.

Software Infrastructure. The testbed server is deployed
on a private cloud infrastructure. The OpenWrt embedded
Linux operating system is installed on all the WiFi routers.
In particular, the routers are operating on the OpenWrt Back-
fire 10.03.1 stable release with Linux kernel 2.6.32. When

3Price as of March 5, 2013
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WiFi
Router

TP-LINK WR1043ND with Atheros
AR9132 400MHz CPU, 8MB Flash,
32MB RAM, 4 Gigabit ports and one
USB.

$52.95 x x

Z1
platform

Zolertia Z1 with TI msp430 micro-
controller, 92BK Flash, 8KB RAM
and Phidget ports.

85.00e x x

Antenna
Cable

RP-SMA Plug to RP-SMA Pigtail
19” (x3)

$14.99 3x

Antenna 2dBi Gain Antenna with U.FL $4.49 x
USB A Male to Micro B, 6ft $5.99 x
USB Waterproof USB Cable-A to Mini-B

78”
$16.50 x

USB USB Mini-B Waterproof Mountable
20”

$16.91 x

USB Waterproof A Female to A Male 20” $17.43 x
Box 12x12x4 (inches) - Cantex 5133714 $36.89 x
Box 6x6x4 (inches) - Carlon E987R $11.78 x

Indoor Cost per Node $169
Outdoor Cost per Node $282

TABLE I. OUTDOOR AND INDOOR TESTBED HARDWARE AND COST.

powered-on, the routers automatically configure the ad-hoc
mesh network through the OLSR protocol. One router is placed
inside a building and serves as the gateway to other routers
mounted on the light poles.

Research and Development Practice. The presented
framework enables us to prototype embedded software running
on the LPWN and to enhance lighting control performance by
testing various system configurations. The framework offers
three key advantages. First, the WiFi-based flexible backbone
network architecture represents the least invasive testbed de-
ployment approach for a commercial outdoor environment.
Whereas any wire-based approach would require laying down
wires across the street and parking lot, the wireless solution
only needs a connection to a power-source which in most
industrial environments can be found in proximity. In the
deployments of the outdoor CPS applications, the light-pole
is a good infrastructure to connect to a power source. Second,
thanks to our framework we can remotely update the firmware
of all fourteen Z1 motes within less than thirty seconds.
Without the framework, updating firmware of just one mote
would take over ten minutes because it would be necessary
to go to the field, open the enclosure, and connect it to the
development computer. Third, the online logs that are gathered
from the firmware running on the Z1 motes, enable continuous
debugging of the sensing firmware while collecting actual
sensor measurements, and provide quick feedback about the
system performance.

B. Indoor Office Testbed

We deployed an indoor testbed at the Computer Science
Department of Columbia University. The testbed spans an area
of 10x18 meters, placed across labs and offices of one floor.

Hardware Infrastructure. We use two models of the
WiFi routers: TP-LINK TL-WR1043ND and TP-LINK TL-
WDR4300. Out of 16 routers, 2 are mounted far from any
power source and, therefore, are powered through Power-over-
Ethernet (PoE), following the IEEE 802.3af standard. During

POWER

SUPPLY

USB

TP-LINK 1043ND

WIRELESS ROUTER

ZOLERTIA Z1

PHIDGET 

PIR SENSOR

PHIDGET

SOUND

SENSOR

Fig. 6. An indoor testbed node assembled with the TP-Link 1043ND WiFi
router, Zolertia Z1 mote, and two Phidget sensors.

the experiments these routers are not using Ethernet, so the
WiFi mesh network is supported with only one gateway node.
One of the routers is connected to two motes. The routers are
installed with the OpenWrt Attitude Adjustment 12.09 stable
release with Linux kernel 3.3.8. The routers are connected to
17 motes: 4 are TelosB and 13 are Zolertia Z1.

The testbed server was first deployed as a virtual machine
running on a laptop computer and then migrated to the
department IT cloud, where it has assigned a unique IP address
and DNS record: this allows us to connect to the server through
its own URL address. The virtual machine is configured with
a single-core 1GHz processor and 1GB of RAM.

All seventeen motes create a LPWN collecting sensor mea-
surements, which are then stored in a database and processed
as part of CPS applications for smart-buildings, such as room-
environment monitoring and people-occupancy estimation. The
TelosB motes gather information on temperature, humidity,
and light through a set of integrated sensors. The Z1 motes
are factory-assembled with a 3-axis digital accelerometer and
a low-power digital temperature sensor. In addition to these
sensors, each Z1 mote is connected to two Phidget sensors,
which can provide the following sensing capabilities depending
on the given application: touch, distance, infrared reflective,
sound, vibration, passive infrared motion, magnetic, thin force,
and precision light.

Fig. 6 shows one of the deployed testbed nodes: the TP-
LINK 1043ND WiFi router is connected to the power source
and to the Z1 mote through a USB cable. The Z1 mote is
connected to two sensors, PIR (motion detection), through
the available Phidget ports. Combined, the assembly of one
testbed node and the uploading of the OpenWrt firmware takes
approximately five minutes. As part of the node-installation
process, each mote’s corresponding router is connected to a
power source and the sensors’ placement and orientation are
adjusted. When a node is turned on, it automatically becomes
part of the testbed network. The wireless backbone network
and the firmware-upgrade capabilities allow users to remotely
control the testbed without interrupting the work of people
who are present in the area of deployment.

The hardware and its costs per single testbed node de-
ployed indoor are reported in Table I. The complete testbed-
installation cost depends on the number of nodes and the price



for deploying the testbed’s virtual server. A single node, as the
one shown in Fig. 6, costs $249 ($169 without the sensors).
Depending on their quality, sensors and actuators cost in a
range of $0.99-$45.00 per item.

Software Infrastructure. The motes run applications that
are developed using the Swift Fox programming language
on top of the Fennec Fox framework [27] and TinyOS [17].
Combined, these provide the necessary software support for
configuring the LPWN multi-hop message routing and for
designing applications interacting with sensors and actuators.

Research and Development Practice. The indoor testbed
is used for research and development of smart-building ap-
plications and for educational purposes to allow students to
acquire hands-on experience with these hardware and soft-
ware. The deployed sensor network is currently collecting
sensor measurements for occupancy-estimation applications
in commercial buildings. Our framework effectively supports
CPS research by providing the following advantages. First, the
remote firmware reconfiguration enables us to install various
embedded programs without interrupting the work of people
occupying the space under monitoring. Second, because WiFi
routers require only a single wire, either a power-cable or PoE,
testbed installation becomes more flexible. Wiring additional
cables would increase deployment cost and might depend on
obtaining permits, which would delay the testbed deployment.
Third, the flexible testbed infrastructure makes it possible to
quickly move sensors around the building as we look for the
most appropriate places for gathering sensor measurements
and for monitoring the areas of the highest interest. This is
particularly important in establishing ground truths for the
development of event-detection algorithms.

The heterogeneous wireless backbone network allows us
to proceed with the CPS deployment in two steps. In the first
step, the firmware running on the motes sends data over the
USB to the attached router which forwards messages over the
WiFi to the testbed’s server. The high bandwidth of the WiFi
routers enables us not only to collect enough data to establish
ground truths but also to determine the key parameters that
influence the results of the interaction with the physical world.
After studying the environment, in the second step, we ran the
same embedded program as in the first step, but this time we
used LPWN’s multi-hop communication, instead of sending
messages over the USB and WiFi routers. Recompiling the
firmware to use LPWN instead of the USB connection and
installing it across all the LPWN motes takes less than a
minute. Setting the communication type parameter (USB or
wireless) and tuning the system performance parameters is as
simple as changing their corresponding values in the Swift
Fox [27] program that configures the embedded firmware.

V. TESTBED EVALUATION

In this section we present an evaluation of the two testbed
deployments introduced in Section IV, and on these examples
we show how to implement a testbed for CPS prototyping.
First, we show how much sensor data can be collected by a
single mote. Then, we present the exemplary performance of
the WiFi mesh network throughput measured while routing
the sensors’ data in indoor and outdoor deployments. These
experiments confirm that the WiFi-based testbed’s backbone
network is sufficient to collect sensors’ samples. After studying
WiFi throughput, we show measurements of the LPWN net-
work throughput. These experiments indicate the data rates that

can be sustained by IEEE 802.11 and IEEE 802.15.4 standards.
Finally, we present examples of CPS instrumentation that
finds the sensor sampling frequency necessary to detect an
event. Based on motion and distance sensor data traces, we
provide empirical results on how frequently these sensors need
to gather samples to support applications such as occupancy
estimation and parking movement detection.

Maximum Sensor Sampling Frequency. We start the
evaluation by asking how the framework helps us better un-
derstand the environment which the CPS application interacts
with. This problem comes from the questions that often arise
at the beginning of many CPS developments: how the events
of interest look like, how much data is necessary to detect
an event, what is the sensor frequency sampling, and how
often the sensor samples should be collected. To answer these
questions, CPS engineers start with collecting as much data as
possible. Therefore, it is crucial to estimate how much sensor
data a single mote can generate.

The maximum rate at which a mote can collect the sensor
samples is limited by the mote’s architecture, i.e. the maximum
throughput of the USB connection between a mote and a
WiFi router. During the first test, we sent 8000-bytes of
application data payload per second (62.5Kbps) over UART.
This is equivalent to a CPS application collecting 2-byte
samples from 4 sensors every 1ms. First, we established the
limitations of two sensor platforms. The Z1 platform, operating
on 16MHz, can send 80-bytes of sensor measurements every
10ms. The TelosB platform, operating on 8MHz, can send
96-bytes of sensor measurements every 12ms (the larger data
size amortizes the serial packet header’s overhead). Next, we
measured the actual speed at which sensor samples can be
collected. Using the faster Z1 platform, we observed a delay
of 18-20ms in receiving the measurements from the Phidget
motion and Phidget distance sensors attached to the mote
through ADC; this is analogous to an application sending
data at the rate of 1.735Kbps. We conclude that in those
testbed configurations where every mote sends data over USB
to the attached router, as shown in Fig. 4(d), the bandwidth
requirements for data collection are orders of magnitude lower
than the Ethernet bandwidth. Therefore, the testbeds relying
on the wired backbone network infrastructure do not utilize
the Ethernet bandwidth resources. Next, we verify that the
backbone network consisting of wireless infrastructure can also
sustain the data flow generated by all motes transmitting over
UART at the maximum rate.

One of the concerns of the framework is how well the
backbone network operating on IEEE 802.11 ad-hoc mode can
collect data from all sensor motes reporting simultaneously,
especially in an indoor deployment where other WiFi networks
are present. We tested the throughput of the WiFi mesh by
downloading 1GB file from a server located right next to
the network’s gateway. On a single WiFi router, we observed
download rates oscillating between 21.12Mbps and 20.73Mbps
for indoor and outdoor deployments, respectively. When all
routers were downloading at the same time, depending on each
router’s distance from the gateway, download rates ranged from
0.99Mbps to 2.17Mbps for the indoor deployment, and from
1.1Mbps to 4.451Mbps for the outdoor deployment.

During the experiments with all the routers downloading
simultaneously, we observed one of the indoor deployed WiFi
routers sporadically stalling downloads, whereas in the outdoor



Sampling
Delay (ms)

Packet TX
Delay (ms)

App
(bps)

Radio
(bps)

Avg. Delivery
(%)

15 300 2133 2906 87.94
17.5 350 1828 2491 92.41
20 400 1600 2180 97.36
22.5 450 1422 1937 99.30
25 500 1280 1744 99.76

TABLE II. AVERAGE DELIVERY OF PACKETS AT THE SINK NODE.

deployment 2 to 4 routers were always pausing downloading
for few seconds. The network throughput variation on each
router resulted from the dynamics in the network routing
topology computed by the OLSR. In the indoor deployment,
the routes were more stable, and only one out of 16 routers
was more than one hop away from the gateway. Instead, in
the outdoor deployment, 5 out of 14 routers were two hops
away from the gateway. Despite the variations in the WiFi
ad-hoc network routing topology, in both testbed deployments
we observed that the wireless communication bandwidth was
orders of magnitude larger than the limits at which motes
collect sensors’ samples. The size of the presented testbeds
does not allow us to evaluate the WiFi mesh network scalability
of collecting the sensor data through a single gateway or to
exactly estimate when more routers need to be connected to
Ethernet to serve as gateways. We can confirm, however, that
the presented examples of the network backbone resources
are sufficient to collect sensor data. We conducted a 3-hour
experiment with all motes sending data over USB at the max-
imum rate (62.5Kbps). During the experiment, all messages
were successfully transmitted to the testbed server. Then, for
over a year, both testbeds have been successfully collecting
sensor data sampled at the rate of 10Hz.

These presented experiments show that the framework can
support sensor sampling at the maximum rate at which the
existing mote architecture can generate measurements, while
relying solely on the WiFi-based backbone network, as shown
in Fig. 4(a). While high-frequency sensor sampling is helpful
in understanding the testbed’s surrounding environment, it is
not practical for many CPS production deployments, which
require both the IEEE 802.11 and the IEEE 802.15.4 wireless
communication standard. Moreover, in many CPS deployments
designers do not have the luxury of using WiFi at the final
product version, i.e. WiFi installation may be too expensive or
impractical to deploy due to power constraints.

Collecting Data Through LPWN. We continued the expe-
riments and studied when CPS can collect sensor data through
the LPWN infrastructure itself, as shown in Fig. 4(b), instead
of using the WiFi network. We compiled a firmware for Z1
and TelosB motes with an application simulating the collection
of 2-byte sensor measurements from 2 sensors of each mote.
Once 80-bytes of sensor samples are collected, the application
running on each mote sends over the network a packet with
the sensors’ measurements to one mote designated as the data
sink. The sink mote operates as the LPWN’s gateway to the
WiFi network. The sensor data is routed by the Collection Tree
Protocol (CTP) [10], running over the CSMA MAC protocol
and radio following the IEEE 802.15.4 standard.

Table II reports the results of the experiments with 17
sensor motes collecting measurements through LPWN at one
sink mote. Starting from the leftmost column the table reports:
the rate at which each of the 2 sensors sampled measurements,

the rate at which packets with 80-bytes of sensor data payload
were sent over the network, the bandwidth generated by the
application’s data, and the bandwidth at which the radio sent
packets - this includes sensor data payload together with the
application, network protocol, and MAC protocol headers: a
total of 109-bytes. The rightmost column of the table reports
the network average delivery defined as a percentage of packets
that were received at the sink mote. Each line of the table
contains the average result of a separate one hour experiment.

We compared the results of the data collection experiments
with the results reported in literature. CTP operating on CSMA
MAC delivers 94.7-99.9% of the packages, depending on the
testbed deployment [10]. In our experiments, we achieved
above 97% of delivery when each of the 17 motes sent
109-byte long packets not faster than every 400ms. When
the packet transmission delay increased, the average network
delivery increased as well up to 99.75% for packets sent every
500ms. Next, we analyzed the network data throughput. For an
application sampling sensors at the rate of 20, 22.5 and 25ms,
the network sent data at the rate of 36.1, 32.1 and 28.9Kbps,
with the delivery rate of 97.36, 99.30 and 99.76%, respectively.
As a reference, the theoretical upper bound of the single-hop
throughput for IEEE 802.15.4 is 225Kbps [20] (the standard
defines bandwidth of 250Kbps). This physical limit is further
impacted by the CSMA MAC protocol with unslotted random-
access to the channel [1]. Further, the throughput decreases
due to the overhead of the network and MAC protocols (peri-
odic beacons, message acknowledgements, packet transmission
back-off delays), motes’ hardware limitations [20] and the
dynamics in the wireless channel with links between the motes
being bursty (shifting between good and poor quality) [3], [25].

We presented the application data collection and network
throughput statistics showing how much sensor data can
be collected through 17-mote LPWN, deployed within the
framework in an indoor environment. These results provide
a reference point for a user deploying the framework and
collecting sensor data through the motes’ wireless network
instead of WiFi. While these results are sensor data agnostic,
in the following examples we show traces of physical world
measurements together with an analysis of how much sensor
data is needed to detect physical events of interest.

Sensing for Event Detection. In the last set of the
experiments we show examples of using the framework to
understand how much sensor data has to be gathered to detect
an event. Some events, such as change in temperature, do
not require frequent sensor sampling. Thus collecting sensor
measurements every one, three or even fifteen minutes is suffi-
cient to detect such events. For other events, however, such as
motion detection or occupancy estimation, the adequate sensor
sampling frequency is not that straightforward to estimate.
Next, we show tradeoffs between the number of taken sensor
samples and the accuracy of the detected events.

On all the motes we deployed a firmware with an applica-
tion detecting if a person walked through a doorway. In related
work, motion and door sensors were used to detect occupancy
in a home [19]. In another work, multiple distance sensors were
used to track people walking between the rooms of a house
[12]. In our indoor deployment we used two Phidget sensors
attached to Zolertia Z1 motes: motion sensor and distance
sensor, operating on 5V and 3V, respectively, and mounted
on top of the door and facing downward.
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Fig. 7. Motion and distance measurements from sensors detecting people walking through a doorway, for various sampling frequencies. In each experiment a
person first walks through a doorway and then walks along the hallway next to the door. The motion sensor detects both events, while the distance sensor only
detects a person walking through a doorway.
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Fig. 8. Motion sensor measurements samples every 200ms in indoor and outdoor deployments. The traces show sensor measurements when a person walks at
a various distances from the sensor and when a car drives in front of the sensor.

The goal of these experiments was to determine the fre-
quency at which the two sensors should collect samples. In
a work focusing on detecting the height of a person walking
through a door, Hnat et al. observed that a head moving at a
speed of 3 meters per second passes the sensing region of the
distance sensor in about 100ms [12]. In our experiments, we
started with sampling every 25ms because that is the highest
rate at which 99.76% of packets are successfully delivered,
as reported in Table II. Then, we continued the experiments
with longer sampling delays, studying the trade offs between
the number of collected sensor data samples and the quality of
the data for the event detection based on the visual observation.

Fig. 7 shows sample results from six experiments with
the motion and distance sensors detecting if a person walked
through a door. For each experiment, the sensors’ sampling
frequency varies from 25ms up to 1000ms. During each
experiment a person walked through a door and then, after
a short delay, another person passed by the door. As shown
on the upper graphs of the figure, the motion sensor detected
people walking both through the door and by the door. For
sampling rates of 25, 100, 200, and 400ms, the observed events
could be positively classified between the two cases. When
the motion sensor took samples every 500ms or longer, the
measurements were not sufficient to distinguish if a person
walked through the doorway or not.

The lower graphs of the Fig. 7 show the measurements
from the distance sensor. The distance sensor only detected
people walking through the doorway, not people walking
on the hallway. As the sampling frequency decreased, the
amplitude value of the distance sensor raw measurement

decreased as well, from 1973 to 1414 for 25 and 400ms delays,
respectively. When sampling at the rate of 500ms or more, the
distance measurements either did not indicate a walk through
the doorway or, as shown in the figure, the sensing value was
very low, often not distinguishable from the noise.

The indoor deployment case-study highlights the need for
minimizing the impact of false-negative and false-positive
events in CPS. In designing CPS, it is thus necessary to find the
sampling rate that will lower the chance of miss-recognizing
events. In some applications, like occupancy-estimation, it is
crucial to use multiple sensor modalities to cross-validate the
occurrence of events.

Understanding the Physical Phenomena. In the last
experiment, we compare the motion sensor measurements
from the indoor testbed deployment with the motion sensor
measurements from the outdoor testbed deployment.

Fig. 8 shows traces sampled every 200ms for the same
Phidget motion sensor (operating on 3V) detecting four events
in the indoor and outdoor testbed deployments. Each chart
shows 50 motion sensor measurements collected for a period
of 10 seconds and with each single measurement marked as a
dot. Fig. 8(a) shows a trace of measurements from the motion
sensor mounted on top of the door and recording when a person
walked through the doorway. The remaining charts show traces
of measurements gathered by the motion sensor installed 3
feet from the ground, on the parking’s light pole. Fig. 8(b) and
Fig. 8(c) show traces of measurements collected when a person
walked in front of the sensor at the distance of 6 feet and 12
feet, respectively. Fig. 8(d) shows a trace of measurements
taken when a car was passing in front of the motion sensor.



As shown in Fig. 8, the values of the motion sensor
measurements depend on the distance between the sensor and
an object of interest, the speed at which the object moves,
and the context of deployment. In the first three charts, we
notice that people who walked in front of the motion sensor at
a further distance spent more time in the sensing area, which
resulted in longer event measurements with higher amplitudes.
The last three charts compare different speeds at which objects
moved in front of the sensor, indicating shorter event time
and lower amplitude values for the car’s motion detection than
for peoples’ motion detection, because cars move faster and
consequently spend less time in front of the sensor. Finally,
we compare the first chart from Fig. 8(a) with the last one
from Fig. 8(d). The charts show similar measurements with
events occurring for a similar period of time (approximately 3
seconds) in two different scenarios: a person walking through
the doorway and a car driving on the parking lot.

The outdoor deployment case-study makes evident how
critical the understanding of the context of the sensor deploy-
ment is to successfully detect and classify the event. Informa-
tion such as the sensor’s position, orientation and distance from
objects of interest as well as the physical models of events
need to be combined with the sensor’s data. The meta-data
describing the context of the deployment is as essential as the
sensors’ measurements themselves.

In conclusion, the experimental results presented in Fig. 7
and Fig. 8 confirm the importance of deploying CPS testbeds to
understand the physical environment together with the behav-
ior of the events of interest. Depending on the CPS application,
the placement of sensors and their sampling frequency, the
traces of events of interest have different characteristics and
need to be studied at the beginning of the CPS development.
High-frequency sensor sampling and measurement data collec-
tion are crucial not only for understanding the environment in
which CPS is deployed but also for quantifying the quality
of information retrieved from the sensors. Our tests show
that early stage CPS prototyping and deployment is necessary
to understand both the information impacting the control of
CPS and the cyber technology tradeoffs, which influence the
cost and the quality of CPS products. Therefore, the local
testbed deployment process boosts both research and business
in developing CPS applications.

VI. CONCLUSION

We presented a new framework to assist engineers and
researchers in the efficient deployment of heterogeneous wire-
less testbeds for CPS applications. Our framework addresses
prevalent issues in multi-disciplinary CPS projects which rely
on the actual deployment of control systems utilizing sensor
and actuator peripherals connected together in a network of
low-power wireless embedded devices. It provides software
tools that simplify the setup of flexible testbed architectures for
relatively low hardware costs. We presented the functionality
of the framework on testbed deployments in outdoor and
indoor environments, in industry and academia, respectively.
The tools are shared through an open source project, thus
allowing the research community to use the framework and
encouraging contributions to its further development.
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