
Dynamic Reconfiguration of Wireless Sensor

Networks to Support Heterogeneous Applications

Marcin Szczodrak

Columbia University

msz@cs.columbia.edu

Omprakash Gnawali

University of Houston

gnawali@cs.uh.edu

Luca P. Carloni

Columbia University

luca@cs.columbia.edu

Abstract—As larger numbers of Wireless Sensor Network
(WSN) applications get deployed in our homes and offices, it is
desirable to use the same network to run different applications.
We present and analyze the problem of scheduling and supporting
the execution of multiple heterogeneous applications on top of the
same WSN. First, we establish that using the same MAC or network
protocol is not sufficient to obtain acceptable performance across
a set of applications that require different types of communication
services from the protocol stack (e.g., low-rate reliable many-to-
one collection vs point-to-point low-latency bulk-data streaming).
Hence, we propose a framework to dynamically reconfigure the
WSN and adapt its power consumption, transmission reliability, and
data throughput to the different requirements of the applications.
The framework makes it possible to specify, at design time, distinct
network, MAC and radio protocols for each application as well as
the events and policies triggering the WSN reconfigurations. At
run-time, the WSN automatically reconfigures itself in response to
these events and according to these policies. Through experiments
on a 119-node testbed, we show that the proposed approach can
reconfigure the whole network in few hundreds of milliseconds
while incurring little memory and control overhead.

I. INTRODUCTION

Indoor climate monitoring and control, intrusion detection,
and energy-use monitoring are examples of Wireless Sensor
Network (WSN) applications being deployed in large numbers.
Often, each new application requires installation of a dedicated
WSN. However, researchers have realized that it is infeasible
to deploy a separate WSN for each application.

We propose a WSN framework that supports the execu-
tion of different applications at different times. We motivate
and demonstrate our framework by presenting the combined
deployment of two heterogeneous applications for indoor mon-
itoring of a building environment on the same WSN. The
deployment must satisfy the following requirements:

1) Minimize the number of WSN nodes deployed in the
building.

2) During normal operation, the network must reliably col-
lect climate data (e.g., temperature) to a single server
while remaining energy efficient. We call this application
Collection.

3) When an emergency event occurs in a particular zone of
the building (e.g. a smoke sensor goes off), the network
must rapidly transmit a sequence of images from this zone
to the server. We call this application Firecam.

The first requirement (1), common to many other WSN
applications, stems from physical, logistical, and cost con-
siderations. While compressive-sensing and optimal sensor
placement partly address this requirement, our approach shares
nodes across applications to reduce the number of required
nodes. The second (2) and third (3) requirements are specific
to the Collection and Firecam applications.

In our desire to leverage prior work to meet the require-
ments of our target applications we focus on a few choices:

• Run different dataflow programs corresponding to Collec-
tion or Firecam at different times on top of the same net-
work, link, and physical layer protocols, as in Tenet [8].

• Re-program the WSN using systems such as Deluge [13]
when we switch from Collection to Firecam.

• Re-configure the MAC parameters with systems such as
pTunes [26] to optimize performance as the traffic pattern
changes between running Collection and Firecam.

Tenet and pTunes do not allow the two applications to run
on their preferred protocol stack. Deluge, however, takes sev-
eral minutes to reprogram the nodes, leading to unacceptable
delays while transitioning from Collection to Firecam. We also
find and show (later in the paper) that the selection of different
protocols or tuning the parameters of a single layer (e.g., MAC)
misses the opportunity to comprehensively optimize network
performance at each operational phase.

To overcome these limitations we developed Fennec Fox,
a framework to dynamically reconfigure a WSN to support
different applications at different times. To perform optimally,
these applications depend on different network and MAC pro-
tocols. By providing a way to dynamically select and configure
each component of the protocol stack, Fennec Fox allows
us to leverage these existing works and support execution of
heterogeneous applications on a single WSN.

Our approach consists of two steps. At design time, for
each application we can specify a distinct protocol stack
(consisting of a network, a MAC, and a radio protocol) as
well as the policies that govern the WSN reconfigurations
and the events that trigger them. Then, at run-time, the WSN
automatically reconfigures itself in response to these events
and according to these policies. These two steps result in the
dynamic scheduling of the execution of different applications,
each supported by its own optimized network, MAC, and radio
protocols.

Our main contributions include:

• Design of a language and tool-chain to configure a net-
work protocol stack to support execution of an application
and the conditions under which different applications with
their corresponding protocols should execute.

• Implementation of Fennec Fox to demonstrate the feasi-
bility of executing Collection and Firecam on top of their
preferred protocol stack in a single WSN.

• Evaluation of Fennec Fox on a 119-node testbed, showing
that dynamic reconfiguration is not only feasible, but
also quick, efficient, and extendible to a large number
of applications and various protocols.

2013 IEEE International Conference on Distributed Computing in Sensor Systems

978-0-7695-5041-1/13 $26.00 © 2013 IEEE

DOI 10.1109/DCOSS.2013.21

52

2013 IEEE International Conference on Distributed Computing in Sensor Systems

978-0-7695-5041-1/13 $26.00 © 2013 IEEE

DOI 10.1109/DCOSS.2013.21

52

2013 IEEE International Conference on Distributed Computing in Sensor Systems

978-0-7695-5041-1/13 $26.00 © 2013 IEEE

DOI 10.1109/DCOSS.2013.21

52

2013 IEEE International Conference on Distributed Computing in Sensor Systems

978-0-7695-5041-1/13 $26.00 © 2013 IEEE

DOI 10.1109/DCOSS.2013.21

52

2013 IEEE International Conference on Distributed Computing in Sensor Systems

978-0-7695-5041-1/13 $26.00 © 2013 IEEE

DOI 10.1109/DCOSS.2013.21

52

���������	

���
��������
�����	

�
�������������������� ���������������

�����

��
����������
�����	

�����������

�������

 ��

��!��

Fig. 1. Two different applications and their corresponding protocol stacks.
In the sequel we will use the term CTP stack and PNP stack to denote the
protocol stacks required by Collection and Firecam, respectively.

II. ONE NETWORK, TWO APPLICATIONS

We want to run two different sensor network applications
in our office building.

Collection is the default WSN application, in the sense
that is executed “continuously” during the normal network op-
erations: it monitors the building’s environment by collecting
various kinds of information (e.g. temperature, humidity, light,
and, possibly, also people occupancy through PIR and camera
sensors) from the WSN nodes that are distributed almost
uniformly across all the various zones in which is partitioned
the building. The collected information can be used for various
purposes, such as improving the operation of the HVAC system
or saving the power consumed by the building. As part of this
application, every WSN node periodically sends a message
with the collected sensors’ sample to a collective node hosted
on a server (the sink.) These messages are small, just a few tens
of bytes, but transmission reliability is important, i.e the sink
is expected to receive them with a high delivery ratio1. The
period of the transmission may vary depending on the size of
the building and the required granularity of the measurements.
Typical values of the period are between 1 and 3 minutes.
When the nodes are not transmitting data, the WSN is duty-
cycled to minimize power consumption.

The second application of interest, Firecam, is executed
much more rarely as a consequence of an emergency event.
Specifically, when a smoke detector or a security sensor goes
off in a particular zone of the building, a node (or a very
limited number of nodes) in that zone takes a series of pictures
and sends this stream of pictures to a sink node, which may
or may not coincide with the same sink node of the other
application. Thus, differently from the previous application, in
the case of Firecam we are interested in the transmission of
large amounts of data (the size of a single picture is about
76k bytes) on a point-to-point connection between two nodes
that are typically located in two distant zones of the building.
One of the purposes of Firecam is to assist emergency/security
personnel to immediately assess the gravity of the potential
problem2.

Fig. 1 illustrates the main characteristics of the two appli-
cations in terms of communication patterns across the WSN.
It also shows the choice of the protocols that are optimized
to execute each of them. In particular, the state-of-the-art
data-collection protocol CTP [9] is best suited to support
the Collection application because it achieves a delivery ratio
close to 100% while being also very power efficient. It
does so by establishing a network-tree topology and routing

1The delivery ratio is defined as the ratio of total number of received
messages over total number of sent messages.

2This is indeed a practical issue since many emergency alarms are often the
results of false positive sensor readings. It is thus helpful to have a mechanism
that can quickly confirm the occurrence of real problems through the real-time
delivery of pictures of the particular zones.

5 10 15 20 25 30 35 40 45 50
Inter-Packet Transmission Interval (ms)

0

20

40

60

80

T
h
ro
u
g
h
p
u
t
(P
a
c
k
e
ts

p
e
r
S
e
c
o
n
d
)

0

20

40

60

80

100

D
e
li
e
v
e
ry

R
a
ti
o
(%

)

Throughput

Delivery Ratio

Fig. 2. Throughput and Delivery Ratio during operation of the PNP stack.

the packets with the applications’ small messages from the
various nodes toward the sink. CTP is a multi-hop network
protocol that relies on the services provided by the MAC
and radio protocols, which focus on a single transmission
between two nodes. CTP was designed to run on top of a
CSMA MAC protocol, which attempts to avoid transmission
collisions by sensing presence of other radio communications
and introducing random transmission delays. Also, the CSMA
MAC protocol is typically augmented with a Low Power
Listening (LPL) mechanism to duty-cycle the WSN. The
quality of a single-hop transmission is further supported by
radio services that provide clear channel assessment (CCA),
auto acknowledgement, and automatic CRC error-detection.

In the case of Firecam, instead, the efficient transmission
of a stream of pictures from one particular node to the sink
requires to quickly establish a multi-hop path between them.
Assuming that a picture size is 240×320 pixels and that each
pixel is encoded as a single byte, the transmission of a single
uncompressed picture requires the transfer of 76800 bytes. We
can partition such picture in 768 packets each storing 100
bytes of picture data and a 4-byte sequence number that is
necessary to allow the picture reconstruction at the sink. The
Parasite Network Protocol (PNP) is a network protocol that
can efficiently support the Firecam application by forwarding
the packets at a constant rate over a fixed path. Similarly to the
protocols proposed by Kim et al. [15] and Österlind et al. [21],
PNP relies on the presence of another protocol that establishes
the multi-hop path and, in order to achieve a high-throughput,
assumes the absence of other network traffic. Also, PNP works
more efficiently on top of a simplified MAC protocol, where
most of the CSMA functionality is disabled, without CCA
and CRC checks, and with a radio protocol where the auto
acknowledgement is also disabled.

Next, we discuss experimental results that confirms the
following important fact about the protocol stacks shown
in Fig. 1: each of them supports well the corresponding
application, for which it has been optimized, while supporting
poorly the other application.

Experimental Setup. The School of Computing building
at the National University of Singapore is a three-floor build-
ing that has been instrumented with a WSN testbed called
Indriya [4], which consists of 119 active TelosB motes [22].
TelosB has a CC2420 radio, 8 MHz CPU, 10 KB RAM, 48 KB
of program memory, and is a widely used hardware platform
in WSN research. In the first set of experiments, which are
discussed in this section, we remotely programmed the Indriya
motes to support the Firecam and Collection applications
separately without WSN reconfiguration (the reconfiguration
experiments with Fennec Fox are discussed in Section IV.) In
all our experiments we assumed that the sink node is located

5353535353

10 20 30 40 50 60 70 80 90 100
Inter-Packet Transmission Interval (ms)

0

5

10

15

20

25

30

35

40

T
h
ro
u
g
h
p
u
t
(P
a
c
k
e
ts

p
e
r
S
e
c
o
n
d
)

Throughput Gap

Best Streaming Throughput with PNP

Throughput

Delivery Ratio

0

20

40

60

80

100

D
e
li
e
v
e
ry

R
a
ti
o
(%

)

Fig. 3. CTP with CSMA does not support high point-to-point throughput.

at the corner of the first floor. For Collection, all remaining
118 nodes send data to the sink, while in the case of Firecam,
the picture is streamed from a node located at the opposite
corner of the building, on the third floor. The path between
two opposite corners requires 7 to 9 hops. All experiments
have been completed multiple times, over a period of two-
weeks, during day and night hours, in midweek and weekend
days.

PNP Works Better than CTP to Support Firecam. Fig. 2
shows how fast a picture from Firecam application can be
streamed over a WSN with the PNP stack discussed above.
In particular, it reports the results of multiple experiments to
show how the network throughput (measured as the number of
packets received at the sink per unit of time) and the delivery
ratio (as previously defined) vary as function of the inter-
packet transmission interval, which is varied at the step of
5ms in the range [5ms, 50ms]. For inter-packet transmission
intervals equal or more than 30ms, the packets arrive with
delivery ratio close to 100%. While the delivery ratio is still
97.4% for an interval value equal to 28ms, it drops to 50%,
due to transmission collisions, for a 26ms interval value. The
network throughput values are 33.96, 35.63, and 35.32 packets
per second for 30, 28, and 27ms interval values, respectively.
In summary, we consider a 28ms inter-packet transmission
interval as the most adequate to transmit a picture as it allows
a successful transfer within 21.5 seconds.

Next, we study how fast a picture from the Firecam
application can be streamed over a network running the CTP
stack with a CSMA MAC using 10 jiffies random backoff,
CCA, CRC, and radio’s auto acknowledgment. Notice, that
we purposely disabled the LPL mechanism because it does not
provide any help for the type of transmission that characterizes
the Firecam application. Fig. 3 shows the corresponding ex-
perimental results in terms of network throughput and delivery
ratio as the inter-packet transmission interval is varied at the
step of 10ms in the range [10ms, 100ms]. It is clear that with
this WSN configuration the Firecam application suffers a low
delivery ratio. While streaming a packet every 100ms yields a
delivery ratio close to 100%, this drops considerably to 88%
and 60% for lower inter-packet transmission intervals equal
to 50ms and 30ms, respectively. As highlighted in Fig. 3,
there is a clear throughput gap between the performance of the
two protocol stacks of Fig. 1 when running the same Firecam
application. The top line marks the best throughput achieved
by the PNP stack, which delivers over 97% of packets with
a throughput of 36.52 packets per second. The CTP stack,
instead, can only achieve 88% delivery ratio at the 50ms inter-
packet interval, with a throughput of 17.61 packets per second:
at this rate, a picture is transmitted in 38.4 seconds, which is
more than twice as long as taken when streaming it with the

CTP CTP + LPL PNP
Network Configuration

0

20

40

60

80

100

D
e
li
v
e
ry

R
a
ti
o
(%

)

96
92

25

99
92

29

97

60

28

Rate: 3min

Rate: 1min

Rate: 30sec

Fig. 4. PNP cannot support the same many-to-one delivery ratio as CTP.

PNP protocol.

In summary, based on the results of Fig. 2 and Fig. 3, we
conclude that the Firecam application clearly benefits from a
WSN deployment that uses the PNP stack. Next, it is natural
to study how well this protocol stack can support the very
different Collection application.

CTP Works Better than PNP to Support Collection.
Fig. 4 compares the packet delivery ratio for the messages
of the Collection application for three different configurations
of the WSN protocol stack: CTP with CSMA and radio
support, CTP with CSMA and Low Power Listening (LPL)
duty-cycling at 100ms, and the PNP stack discussed above
(i.e. without CSMA, CCA, CRC and acknowledgements.)
Data are reported for three different transmission rates: 3
minutes, 1 minute, and 30 seconds. As expected, CTP achieves
close to 100% delivery ratio. Even when LPL is enabled,
CTP still performs well unless the sending rate becomes too
high (the delivery ratio drops to 60% only when the 119
nodes are sending sensor measurements every 30 seconds.)
The network configuration with PNP, instead, struggles to
successfully deliver messages, as more than 70% of packets
are lost. We conclude that traditional WSN applications for
collecting sensor information cannot be effectively supported
by the PNP stack.

The Need for Dynamic Reconfiguration. The above
empirical study shows that two applications which have very
different traffic characteristics require two different protocol-
stack configurations in order to be properly supported. While
all the experiments discussed so far have been run separately,
we are interested in understanding to which extent the same
WSN can effectively support two different applications such
as Firecam and Collection. Running such heterogeneous appli-
cations with different network communication requirements is
difficult because there is no WSN system that allows switching
MAC protocols at runtime3. On the other hand, we are focusing
on a heterogeneous application scenario that does not require
simultaneous execution of the two applications. Instead, we
are interested in a WSN that can run Collection as the default
application and switch to running Firecam, which has a higher
priority, only when an emergency event occurs. In other words,
we want to deploy a WSN that: (i) can support multiple
applications at different times and (ii) at any given time
it uses the protocol stack configured to run those network,
MAC, and radio protocols that are optimized for the current
application. Since these protocols are different for different
applications, the WSN needs to dynamically reconfigure the
protocol stack to support their execution. For the case of our
building environment application, the Collection application

3pTunes [26] only allows to reconfigure MAC parameters and Deluge [13]
can change the MAC by reprogramming the whole sensor node firmware.

5454545454

����������	

	
����

���

�����

���
���� ����
����	

��� ���

���� �����

������

��
����	��� �����	���

��
����	��� �����	���

��
����	��� �����	���������������������

�����������������
�����
�

�������
����	������
���

������������������!�
��

Fig. 5. The Fennec Fox four-layer protocol stack.

runs on top of the CTP stack, but when an emergency event
occurs, the network reconfigures to the PNP stack to support
the Firecam application. When the emergency is over, the
network reconfigures back to run Collection.

III. THE FENNEC FOX FRAMEWORK

To support the dynamic reconfiguration of WSNs we
developed the Fennec Fox framework that consists of a runtime
infrastructure built around a layered protocol stack and a pro-
gramming language to specify the various WSN configurations
and the policy to switch among them.

Framework Definitions. Fig. 5 shows the four layers
of the stack: radio, MAC, network, and application. Each
layer provides a set of services that are used by the layer
immediately above. Each layer contains one or more modules.
A module is a software program that provides an implemen-
tation of the services of its layer. This implementation is
typically optimized with respect to some metric, such as power
consumption, reliability, throughput, network routing topology,
etc. Hence, depending on the particular layer, a module can
be: (1) an application such as Firecam or Collection; (2) a
network protocol such as CTP or PNP; (3) a MAC protocol
such as CSMA or TDMA; and (4) a driver of a particular
radio. A module accepts zero or more parameters, whose
values have impact on the module’s execution. A module
instance is a module with a specified set of values for its
parameters. Two module instances are equivalent when they
are both instantiated with the same parameter values.

A protocol stack configuration, or simply configuration,
is a set of four module instances executing on the four-
layer stack, one module for each layer. Each network stack
configuration of a given WSN has a static, globally unique
configuration identifier (id) defined at the WSN design time.
Two configurations are equivalent when their module instances
are equivalent.

A network reconfiguration is the process during which
the WSN switches its execution between two non-equivalent
configurations, i.e., two different stacks. A node starts this
process either in response to a reconfiguration request from
another node or by itself as a result of an internal event,
sensor readings, or an an occurrence of a periodic event.4

Once initiated, the nodes continue with reconfiguration by
requesting surrounding nodes to reconfigure as well. During
reconfiguration, a node stops all the modules running across
the layers of the stack and starts execution of the modules
defined in the new configuration.

Framework Implementation. The Fennec Fox software
running on each node is implemented in nesC [7] on top of the

4In this paper, we do not focus on how the nodes decide to initiate
reconfiguration. Fennec Fox provides mechanism to reconfigure the stack once
such a decision is made by a node or a group of nodes.

����������	
���� ��������	
����

���	��	��

����	��	��	���

���������	�
���

�
��
������
 �

�������
���

������

�������	

�������

������������

�������
����
����
��������������

����
�
���������

�
�
������

Fig. 6. A FSM model of a WSN supporting the Collection and Firecam.

TinyOS operating system [17]. The software stores information
about various protocol stack configurations, events triggering
network reconfiguration, statically linked layers’ modules and
information about parameters’ values that are passed to each
module when it starts execution. Each module has to comply
with the Fennec Fox standardized interfaces, i.e. a module must
have a management interface allowing the framework to start
and stop execution of the module and it must comply with the
interfaces of its layer.

The network protocol stack is implemented as a set of
switch statements, which direct function calls and transfer
packets among the modules based on the configuration id,
as shown in Fig. 5. The id determines every function call
made outside of the module’s layer. To allow a radio driver to
dispatch packets to the appropriate MACs, each radio defines
location in a packet where it stores the configuration id, e.g.
CC2420 radio driver stores the id’s value in the Personal Area
Network field of the IEEE 802.15.4 header [14]. The value of
the packet’s id is set to the id of the configuration of the stack
in which that packet was created.

Modeling Reconfigurations with FSMs. The evolution
of the behavior of a WSN that can dynamically reconfigure
itself through the Fennec Fox framework can be captured in a
simple way by using the Finite State Machine (FSM) model of
computation. In particular, each protocol stack configuration
can be modeled with a distinct state of the FSM and the
process of reconfiguring the WSN between two particular
configurations can be modeled with a transition between the
corresponding states.

For example, Fig. 6 shows the FSM that models the
reconfiguration of a WSN supporting the two applications
as discussed in Section II with the optimized stacks shown
in Fig. 1. The FSM has two states. The Monitoring state,
which is also the initialization state, models the execution of
the Collection application on top of the CTP stack, with the
MAC and radio configured to minimize power dissipation and
to avoid packet collisions. The Emergency state models the
execution of the Firecam application on top of the PNP stack,
with the MAC and radio configuration aimed at minimizing
transmission delay and maximizing throughput. Further, the
state transitions model the conditions that govern the recon-
figuration of the WSN. The transition from Monitoring to
Emergency specifies that this reconfiguration must occur when
the smoke detector of a WSN node goes off so that the Firecam
can start streaming a picture from the corresponding zone in
the building. The transition from Emergency to Monitoring
specifies that the opposite reconfiguration must occur when a
certain time period has passed since the network has switched
to the Emergency state: in this example, after a period of 30
seconds the network is brought back to execute the Collection
application.

High-Level Programming of WSN Reconfigurations.
To simplify the deployment of reconfigurable WSNs, we

5555555555

 1 # Definition of network configurations

 2 # configuration <conf_d> [priority level] {<app> <net> <mac> <radio>}

 3 configuration Monitoring {collection(2000, 300, 1024, NODE, 107)

 4 ctp(107) lpl(100, 100, 10, 10) cc2420(1, 1, 1)}

 5 configuration Emergency L3 {firecam(1000, 28) parasite()

 6 csma(0, 0) cc2420(0, 0, 0)}

 7 # Events: event-condition <event_id> {<source> <condition> [scale]}

 8 event-condition fire {smoke = YES}

 9 event-condition check_if_safe {timer = 30 sec}

10

11 # Policies: from <conf_id> to <conf_id> when <event_id>

12 from Monitoring goto Emergency when fire

13 from Emergency goto Monitoring when check_if_safe

14

15 # Definition of the initial state: start <conf_id>

16 start Monitoring

Fig. 7. Swift Fox program reconfiguring WSN between two applications.

developed Swift Fox, a new domain-specific high-level pro-
gramming language that has its formal foundation on the
simple FSM model described above. Using Swift Fox, it is
possible to specify at design time the behavior of a self-
reconfiguring WSN, by scheduling the execution of each
application and indicating the corresponding supporting stack
configurations. A Swift Fox program allows us to control
the four stack layers for each configuration by instantiating
modules, initializing module parameters, and assigning unique
ids to each configuration. Further, for each configuration we
declare a configuration priority level, which plays an important
role when multiple distinct reconfigurations occur at the same
time in the network, as discussed below.

The semantics of the Swift Fox language supports the
declaration of the sources of reconfiguration events and the
threshold values that must be matched for an event to fire. The
source of an event may come from a timer or a sensor. Boolean
predicates can be specified using the basic relational operators
(e.g. ==, <, >) to compare sensor measurements and timer
values with particular threshold values. The event-condition
predicates are compiled into code that at runtime periodically
evaluates the expression value. When the value is true, the
occurrence of the event is signaled. The network FSM model
is programmed by combining network state declarations with
the event-conditions to form policy statements. Each policy
statement specifies two network configurations and an event
triggering network reconfiguration from one configuration to
another. A Swift Fox program is concluded with a statement
that specifies the initial configuration of the WSN.

The Fennec Fox software infrastructure relies on the defi-
nitions of the network configurations written in the Swift Fox
program. This includes not only the logic to capture possible
reconfigurations but also the list of modules that are executed
across the layers of the stack for each particular configuration,
i.e. which application and which network, MAC, and radio
modules together with the values of their parameters. The Swift
Fox programs are compiled into nesC code that links together
all the modules that are specified for a given configuration
and generates switch statements that direct function calls and
signals among the modules.

As an example, Fig. 7 shows a Swift Fox program for a
WSN that reconfigures between the Monitoring and Emergency
states according to the state transition diagram of the FSM of
Fig. 6 in order to support the execution of the Collection and
Firecam applications, respectively. Lines 3-6 declare the two
network configurations with ids Monitoring and Emergency.

The Monitoring configuration consists of the Collection ap-
plication module that starts sensing after 2000ms since the
moment it receives the start command on the management
interface. From every NODE, the module sends messages with
the sensors’ measurements at the rate of 300 seconds (1024ms).
The messages are sent to a sink node whose address is 107.
Indeed, the configuration uses the ctp module, which runs the
CTP network protocol with a root node at the address 107. The
Collection configuration runs also a MAC protocol with Low-
Power Listening (lpl), a 100ms wakeup period and stay-awake
interval, together with 10jiffies random backoff, and 10jiffies
minimum backoff CSMA’s parameters. The configuration is
supported by a radio driver enabling all three services: auto-
acknowledgements, CCA and CRC. The specification of the
Emergency configuration is similar but it is characterized by
a higher priority level (set to 3 while the default is 1) and
by the use of PNP with all MAC and radio services disabled.
Lines 8-9 declare two reconfiguration events. The first event,
fire, occurs when a sensor detects the presence of smoke. The
second event, check if safe takes place 30 seconds after it is
initiated. Lines 12-13 declare the network state reconfigura-
tion policies: the network reconfigures from Monitoring to
Emergency when fire occurs; similarly, it reconfigures from
Emergency back to Monitoring when the check if safe occurs.
Line 16 sets Monitoring to be the initial state.

The same Swift Fox program is deployed on every node
of the given WSN. While Swift Fox allows us to program a
reconfigurable WSN, the language does not allow program-
mers to specify how a particular node detects an event, how it
reconfigures itself, and how it can trigger the reconfiguration of
all the other nodes in the network. Indeed, Swift Fox is meant
to provide a high-level abstraction that intentionally hides the
underlying mechanisms governing the WSN reconfiguration.

Runtime Network Reconfiguration. A node decides to
reconfigure when the result of an event matches the recon-
figuration policy in the Swift Fox program. Then, the node
requests other nodes to reconfigure by broadcasting a Control
Messages (CM), a single 4-byte packets that contains the
id and the sequence number of the new configuration. The
sequence number is incremented by one after each network
reconfiguration. Based on the sequence number, nodes can
distinguish a new configuration from an old one. As a result of
the nodes re-broadcasting CM packets to other nodes during
reconfiguration, the whole WSN reconfigures itself.

The network reconfiguration process requires dissemination
of CM packets in the presence of various MAC protocols
scheduled to run on the stack at a given time. CM packets are
distinguished from other packets by their own configuration id,
which allows radio drivers to dispatch CM packets to Fennec
Fox. To enable transmission of CM packets during operation
of other MACs or radio duty-cycling, Fennec Fox monitors the
radio status together with function calls and packets crossing
the layers of the stack, making decision on when CMs should
be transmitted such that other nodes will receive the message,
i.e. the CM broadcasts are suspended when a radio is turned
off or other transmissions are ongoing.

The CM dissemination process has been successfully tested
to reconfigure the network among TDMA, CSMA, and duty-
cycling versions of these protocols However, TDMA to TDMA
reconfigurations may not be successful when both MACs duty-
cycle with the same period but end up at different offset. This

5656565656

Algorithm 1 Broadcast Control Process (BCP)

1: retry ← r

2: while retry > 0 do

3: counter ← 0

4: WAIT(d)

5: if counter < t then

6: BROADCAST CM

7: end if

8: retry ← retry − 1;

9: end while

Algorithm 2 Processing Received Control Message

1: Input: msg
2: if !CRC(msg) || msg.state /∈ ALL STATES then

3: EXIT

4: end if

5: msg version ← concat(msg.sequence, PRIORITY(msg.state))

6: node version ← concat(node.sequence, PRIORITY(node.state))

7: if msg version < node version then

8: BCP ; EXIT

9: end if

10: if msg version > node version then

11: RECONFIGURE ; EXIT

12: end if

13: if msg.state = node.state then

14: counter++

15: else

16: node.sequence += RANDOM

17: BCP

18: end if

problem is mitigated by introducing a transition configuration
with a CSMA MAC that runs between the two TDMA-based
configurations.

The CM broadcast functionality, which co-existing with
other MACs, supports network reconfiguration operating on
a modified Trickle [18] algorithm. First, no messages are
disseminated when network reconfiguration does not take place
and all nodes in the network run the same configuration.
Second, to ensure that all nodes run the same stack after
switching their state, not only the sequence number but also
the content of the CM is used during network reconfiguration.

To distribute CMs a node follows the Broadcast Control
Process (BCP), which is specified as Algorithm 1. In particular,
the node attempts to broadcast the CM every d ms (line 4,6).
A node abstains from broadcasting when it receives t identical
CMs sent by other nodes within the last d ms (lines 5-7)5. The
BCP terminates after r broadcasts attempts (lines 1-2, 8-9).

A node enters the BCP as a result of one of three possible
situations. First, after a node has completed a stack recon-
figuration it enters BCP to request other nodes to switch to
the same configuration. Second, when a node receives a data
packet with a configuration id that is different from its current
configuration, it assumes that it either missed the last network
reconfiguration or the node transmitting the packet has missed
it; to resolve this situation the node enters BCP6. Third, the
reception of a CM may lead also to the execution of BCP,
depending on the values of the configuration id of the new
state and sequence number in the control message as well as
the corresponding current values stored in the node; all these
values are processed by the node executing Algorithm 2.

Algorithm 2 specifies the decision process followed by a
node after receiving a new CM. First, this message is validated
by checking its CRC code and the value of the configuration
id that it carries. If either CRC fails or the configuration id

5This transmission suppression avoids unnecessary radio broadcasts, in a
way similar to the Trickle protocol [18].

6Recall that every packet carries its configuration id and therefore every
packet can be used to detect network configuration inconsistency.

C1

����
����

����
����

�
��������

����

����
��������

��������
��������

��������
��������

(1) (2) (3)

C1

C1
C1

C1

C1
C2

C3

C2

C3
C2

C3

(a) Two events

��������
��������

��������
��������

��������
��������

��������
��������

(4) (5)

C2

C3

C3

C3
C3

C3

C3
C3

(b) Definite

�

��������
��������

�������	
��������

�������	
�������	

�������	
�������	

(4) (5)

C2

C2
C3

C3

C2
C2

C2
C2

(c) Random

Fig. 8. Network synchronization: (b) deterministic and (c) non-deterministic.

value is different from all known configuration ids, which are
specified at design time, then CM is ignored (lines 2-4). The
algorithm decides to run BCP or trigger node reconfiguration
by comparing CM’s configuration version with node’s con-
figuration version, which are computed by concatenating the
sequence number and priority of the configuration id from
the CM and node, respectively (lines 5-6). The comparison
of both CM and node configuration versions leads to the
following decisions. If CM has a sequence number less than
the node’s sequence number or the sequence numbers are equal
but the CM’s configuration has lower priority than the node’s
configuration, then the node enters BCP (lines 7-9). If CM has
a sequence number higher than the node’s sequence number,
or the sequence numbers are equal but the CM’s configuration
has higher priority than the node’s configuration, then the node
switches to the new configuration (lines 10-12). If a node has
the same sequence number and configuration id as CM has,
then the node increases counter by 1 (line 14).

When CM and a node have equal sequence numbers but
different configuration ids then the network is unsynchronized.
This situation occurs when two nodes simultaneously decide to
run different configurations. Then these nodes start BCP with
the same sequence number, but different configuration ids. This
is illustrated in Fig. 8(a) showing two nodes in the corners of
the network reconfiguring from a configuration with id C1 and
sequence number n to two different configurations C2 and C3,
both with sequence n+1. The nodes in the middle of the net-
work detect reconfiguration inconsistency. If the configuration
ids of the conflicting CMs have different priorities, then the
network is deterministically synchronized to the configuration
with the higher priority (lines 7-12). This is shown in Fig. 8(b)
where the conflict between C2 and C3 is solved by synchro-
nizing to C3 because Priority(C3) > Priority(C2). When the
network is unsynchronized among states with undefined7 or
equal priorities then the nodes that detect the conflict increase
their sequence numbers by a random value and start BCP while
keeping their current configuration (lines 16-17). As shown on
Fig. 8(c) where Priority(C2) = Priority(C3), after randomly
increasing sequence number (+5 and +3, for C2 and C3

respectively), the node that broadcasts CMs with the highest
sequence (5 > 3) will synchronize the rest of the network to
its own configuration, i.e. C2.

In summary, the Fennec Fox network reconfiguration
mechanism has the following properties: (1) it controls the
execution of the four-layer stack and applies the specification
of the network behavior given in the Swift Fox program; (2) it
has zero overhead when no reconfiguration takes place; (3)
the network reconfiguration does not require any hardware
support; and (4) it is guaranteed to resolve any possible
reconfiguration conflict that may arise given the distributed
nature of the mechanism.

7Recall that the Swift Fox language allows, but not mandates, program-
mers to specify the network configuration’s priority level. By default each
configuration priority level is set to the lowest possible value.

5757575757

0 20 40 60 80 100
Time (minutes)

0

100

200

300

400

500

600
T
h
ro
u
g
h
p
u
t
(P
a
c
k
e
ts

p
e
r
M
in
u
te
)

Collecting Climate Data

Image Transmission

0 20 40 60 80 100
Time (minutes)

100

80

60

40

20

0

P
e
rc
e
n
ta
g
e
o
f
N
o
d
e
s

R
u
n
n
in
g
C
o
ll
e
c
ti
o
n
(%

)

Network supports Firecam Network supports Firecam

Network supports Collection Network supports Collection
0

20

40

60

80

100

P
e
rc
e
n
ta
g
e
o
f
N
o
d
e
s

R
u
n
n
in
g
F
ir
e
c
a
m

(%
)

2809300 +200 +400
Time (ms)

0
20
40
60
80
100
Switch to Firecam

4789400 +200 +400
Time (ms)

0
20
40
60
80
100
Switch to Collection

Fig. 9. A 100 minute run of a network reconfiguring between the Collection and Firecam applications.

����� � � � �

���	
���������
�����
���������
�		��������
���		�

��	
������
	�������
���		�
�	�
���
	�������
���		�

������
�����
���		�

�������
����
�������

������
�����
������
�����
������
�����

������
�		��������
������

	�	
������
	�������
������

����
���
	�������
������

Fig. 10. Protocol stack reconfiguration from Collection to Firecam.

IV. EVALUATION

The goal of our experiments is to study the feasibility
and performance of dynamic WSN reconfiguration. We show
the memory overhead and time that it takes to reconfigure
the protocol stack on a single node. We present network
reconfiguration experiments with the setup as described in
Section II. We demonstrate the feasibility of our approach
and measure the overhead of reconfiguration between stacks
running different MACs. We also study BCP algorithm con-
figurations that successfully disseminate CM packets.

Code and Memory Overhead. On TelosB, the reconfig-
uration protocols and mechanisms introduce an overhead of
4.7 KB of ROM and 0.2 KB of RAM. The Swift Fox program
with both Collection and Firecam requires 28.9 KB of ROM
and 5.6 KB of RAM.

Single-node Reconfiguration Delay. Fig. 10 shows all the
events and their timings when a node switches from running
Collection to running Firecam. Once reconfiguration is initi-
ated, Fennec Fox first stops the currently running Collection
application module and then stops the CTP network protocol,
LPL MAC, and CC2420 radio modules. This process requires
a total of 1.969ms. Next, the reconfiguration engine is reset,
which takes 3.469ms, of which 2.9375ms is spent resetting
the radio device. Finally, Fennec Fox starts the CC2420 radio,
CSMA MAC, PNP network protocol, and Firecam application,
which takes a total of 2.686ms. The whole network stack
reconfiguration takes 8.125ms. We observe similar reconfig-
uration delays among other WSN configurations.

WSN Switching between Collection and Firecam. We
first determine if it is feasible to reconfigure a network between
Collection and Firecam applications correctly, quickly, and
efficiently using the proposed Fennec Fox framework. In
these experiments, the BCP algorithm (Algorithm 1) runs with
d = 18, t = 2 and r = 1. We set node 107 located at one
corner of the testbed building to be the sink node.

Feasibility of Reconfiguration. First, we run repeatedly
(36 times) the following experiment: after Collection has

executed for 5 minutes, a random node on the network triggers
reconfiguration to Firecam. The results show that on average
99.98% of the nodes complete reconfiguration by successfully
switching from Collection to Firecam. This demonstrates the
feasibility of our approach. In fact, as discussed below, even
in a duty-cycled network, 99.5% of the nodes are successfully
reconfigured.

Multiple Reconfigurations. The next question is whether
our system is robust enough to perform multiple reconfigura-
tions. We performed the following sequence of tasks for 100
minutes: run Collection for 15 minutes before letting a node
trigger reconfiguration to Firecam; then, after 1 minute, the
network is reconfigured back to run Collection and the process
is repeated. The lower graph in Fig. 9 shows the percentage
of nodes executing Firecam at a given time: except during the
transition between the configurations, all the nodes are running
either Collection or Firecam. This transition occurs 12 times as
shown in Fig. 9. As the network transitions between execution
of Collection and Firecam, we expect to see the network
throughput observed from the sink to transition between low
and high throughput. This is confirmed by the results shown
in the upper graph of Fig. 9. reporting the throughput sam-
pled every minute. The timing of these transitions match the
timing of reconfigurations. This provides additional evidence
that the reconfigurations indeed make the network transition
between two completely different applications; furthermore,
the applications and their protocol stack are not impaired by
the proposed reconfiguration mechanism.

Network-wide Reconfiguration Delay. The graphs that are
embedded in the lower graph of Fig. 9 show the network
reconfiguration at time scale of milliseconds, thereby high-
lighting how much time it takes for the network to transi-
tion between two configurations. The first embedded graph
shows the number of nodes executing Collection just before
the reconfiguration: a rapid reconfiguration of 80% of nodes
occurs within less than 100ms, while the rest of the nodes
transition in the next 200ms to start Firecam. Similarly, the
second embedded graph shows that close to 80% of the nodes
reconfigure quickly, while the remaining 20% of transitions
happen with the next 200ms, to switch from Firecam back to
Collection.

The reconfiguration delay depends on the network distance
between the nodes being reconfigured. Fig. 11(a) shows aver-
age results from 50 experiments where a node, located in a

5858585858

0 20 40 60 80 100 120 140
0

25
50
75

100

P
e
rc
.
%

0 20 40 60 80 100 120 140
0

25
50
75

100

P
e
rc
.
%

0 20 40 60 80 100 120 140
0

25
50
75

100

P
e
rc
.
%

0 20 40 60 80 100 120 140
Time (ms)

0
25
50
75

100

P
e
rc
.
%

Floor 3

Floor 2

Floor 1

Whole Building

(a) Building Reconfiguration

500 450 400 350 300 250 200 150 100 50
Network Reconfiguration Delay (ms)

40

50

60

70

80

90

100

N
o
d
e
s
S
u
c
c
e
s
s
fu
ll
y
R
e
c
o
n
fi
g
u
re
d
(%

)

(b) Transition Rate

Fig. 11. Reconfiguration performance with radio duty-cycled.

��

���

�� ��

��

���	

�
 �� ��

(a) FSM

� ��� ��� ��� ���
��	
�� � ������� ��� ����������� ���

��

��

��

��

��

���

�

�
�
�
�
�
��
�
��
��
���

�
�
�
�
��
�
�
��
�
�
!

"������ ��������� �� ����������� ��# ��$��%�

����

(b) 1000 Reconfigurations

Fig. 12. Network reconfiguration firing every 500ms.

corner of the 3rd floor, initiates a reconfiguration every minute.
For each floor, reconfigurations occur in bursts: this is due
to a single broadcast packet initiating the process and being
able to trigger reconfiguration on all the nodes that receive
that broadcast. After running multiple experiments with nodes
initiating reconfiguration placed all over the building, we found
that those located on the same floor as the node that starts the
process switch to the new configuration within 49.81-71.54ms;
instead, the nodes in the adjacent floor take a time within
95.67-153.67ms, and the nodes that are two floors away need
134.41-141.01ms.

Maximum Reconfiguration Rate. Fig. 11(b) shows the
percentage of nodes that successfully reconfigure as function
of the network reconfiguration delay, varies between 50ms and
500ms. With the reconfiguration delay not less than 350ms,
almost 100% of the nodes reconfigure on time. However,
as the reconfiguration delay decreases further, the percentage
of nodes that successfully reconfigure also decreases. These
results demonstrate that it is feasible to reconfigure a network
successfully, if necessary, multiple times, and quickly.

Beyond Two Applications. We wrote a Swift Fox program
with 10 configurations of simple functionality to emulate
10 different applications. Fig. 12(a) shows the model of the
network with a reconfiguration event fired every 500ms. We
ran an 8-hour experiment from which the first 1000 network re-
configurations are shown in Fig. 12(b), marking the percentage
of nodes successfully reconfigured at particular transition. On
average, 99.91% of network reconfigurations are successful. In
another experiment we let the same network reconfigure at the
rate of 350ms for 5289 times. In that experiment, 99.68% of
nodes successfully follow each network configuration, sending
0.4 messages per configuration transition.

Factors Impacting Reconfiguration. The network-
reconfiguration success rate and overhead, which is the number
of CM broadcasts and the time reconfiguration delay, depend
on multiple-factors: network density, BCP’s parameters and
the MAC protocols that are scheduled to run at a given
configuration. We evaluate the network reconfiguration perfor-
mance with various MAC protocols: IEEE 802.15.4-complaint
CSMA, LPL duty-cycling with a sleep interval of 100ms, a
TDMA duty-cycling MAC protocol, and a NULL MAC that

0 -1 -3 -5 -7 -10 -15
Radio Transmission Power (dB)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
v
g
.
N
u
m
.
o
f
S
e
n
t
M
s
g
s

d=10

d=15

d=20

d=25

(a) CM Broadcasts

0 -1 -3 -5 -7 -10 -15
Radio Transmission Power (dB)

150

200

250

300

350

400

N
e
tw

o
rk

R
e
c
o
n
f.
T
im

e
(m

s
)

d=10

d=15

d=20

d=25

(b) State Transition Delay

Fig. 13. Radio TX power impact on reconfiguration overhead and delay.

1 2 3 4 5 6 7 8
Number of CM Retransmission Attempts (r)

0

20

40

60

80

100

N
o
d
e
s
S
u
c
c
e
s
s
fu
ll
y
R
e
c
o
n
fi
g
u
re
d
(%

)

BCP+CCA, d=18

BCP, d=18

BCP, d=0

(a) Successful Reconfigurations

1 2 3 4 5 6 7 8
Number of CM Retransmission Attempts (r)

0

1

2

3

4

5

6

A
v
e
ra
g
e
N
u
m
b
e
r
o
f
S
e
n
t
M
e
s
s
a
g
e
s

BCP+CCA, d=18

BCP, d=18

BCP, d=0

(b) CM Broadcasts

Fig. 14. Reconfiguration from a network with duty-cycling MAC protocol.

transmits without regard to other possible transmissions in
the network. In particular, TDMA presents characteristics that
match the most challenging aspects that one encounters in
the Fennec Fox framework: specifically, the fact that outside
the designated time slots packets cannot be received (e.g.,
CM packets) complicates the operations of the Fennec Fox
network-reconfiguration mechanism. Still, in the sequel we
present experiments showing how Fennec Fox can handle the
presence of the TDMA-style packet timing and, indeed, allow a
network to switch between CSMA and TDMA and vice versa.

Network Density. To emulate networks with different
densities, we set the CC2420 radio on TelosB motes to transmit
at power of 0dB to −15dB. We found that the reconfiguration
is uniformly successful across all the densities, i.e., experi-
ments spanning the entire range of transmission power, except
with large values of reconfiguration delay. Network density,
however, has a more visible impact on other metrics. Fig. 13(a)
shows that the efficiency of reconfiguration increases at higher
density. This is because at higher densities the reconfiguration
algorithm suppresses more CM broadcasts in a way similar
to the Trickle protocol. Depending on the d value, at the
highest density there are 42.1% fewer broadcast transmissions
compared to the experiment with the lowest density. Fig. 13(b)
shows that a network with higher density (but the same number
of nodes) reconfigures faster. This trend, however, is not
observed across all density values.

CM Broadcast delay - d. By delaying the CM broadcast
by d ms, we allow nodes to suppress their transmission in
case other nodes in the neighborhood are already transmit-
ting the reconfiguration information. As expected, we found
that a longer broadcast delay leads to reconfiguration with
less CM transmissions. Depending on the density, with a
broadcast delay of 10ms, there are on average 0.32 to 0.45
fewer transmissions than with a broadcast delay of 25ms as
shown in Fig. 13(a). Smaller broadcast delays increase network
reconfiguration by as much as 178ms due to the higher prob-
ability of transmission collisions. This result, however, is not
conclusive for the experiment with the lowest density having
lower packet collision probability. The higher CM broadcast
rate and the longer reconfiguration time impact positively the
success reconfiguration rate, which for d =10ms, 15ms, 20ms
and 25ms is on average 99.9%, 99.39%, 98.54%, and 97.94%,

5959595959

0 50 100 150 200 250 300 350 400
0

25
50
75

100

P
e
rc
.
%

0 50 100 150 200 250 300 350 400
0

25
50
75

100

P
e
rc
.
%

0 50 100 150 200 250 300 350 400
0

25
50
75

100

P
e
rc
.
%

0 50 100 150 200 250 300 350 400
Time (ms)

0
25
50
75

100

P
e
rc
.
%

Floor 3

Floor 2

Floor 1

Whole Building

Duty-

Cycle

Retry

(r)

CM

TXs

Delay

(ms)

0 1 0.4 80

100 8 6.4 209

200 14 9.2 278

300 15 9.9 387

400 21 13.1 449

500 25 15.1 559

Fig. 15. LPL impact on network reconfiguration.

respectively. In actual deployments we set d = 18. Fig. 14(a),
shows that with d = 18 and while using CCA before CM
transmission, we can reconfigure almost 100% of the nodes
for r greater than 5. With d = 0, the success rate is 94-99%
for the same range of r. On the other hand, Fig. 14(b) suggests
to avoid CCA and setting d = 18 as such CM dissemination
consistently requires less CM broadcasts. Because we favor
reconfiguration success rate over the reconfiguration transmis-
sion overhead, in actual deployments we use CCA.

Impact of Radio Duty-Cycling on the Number of Broad-
cast Attempts - r. Fig. 14 shows that to reconfigure WSN
between CTP stack and PNP stack, BCP should be set with
r = 5 and d = 18 while using CCA. Without CCA and d = 0,
setting r = 8 successfully reconfigures the network. When
r = 1 at most 6.06% of the network successfully reconfigures.
As r increases, the number of nodes that successfully switch
between two configurations also increases. Not surprisingly, as
the number of CM broadcast attempts grows, the actual number
of radio transmissions grows as well (Fig. 14(b)): from close
to 0 for r = 0 to about 2-4 transmissions per node for r = 6.
In this case, however, larger values of r are still desirable
because these additional transmissions contribute to reach a
success rate close to 100%.

In many experiments where the radio is always turned
on we notice that setting r = 1 is sufficient to achieve
reconfiguration rate close to 100%. This shows that the pres-
ence of other MAC protocols, i.e. MAC protocols that duty-
cycle radio operation, has a significant impact on the network
reconfiguration. In Fig. 15 we show how BCP with d = 18,
r = 6 and CCA8 reconfigures the network across the floors
of the testbed building in the presence of a stack configu-
ration with LPL MAC. Examining this graph together with
Fig. 11(a) shows how duty-cycling impacts the latency. With
duty-cycling, the complete network reconfiguration takes more
than twice as long. Fig. 15 shows how the network reconfigures
progressively, instead of in bursts as in the experiment without
LPL. The linear progress of network reconfiguration is the
results of radio’s LPL with unsynchronized wakeup interval.

We further explore the reconfiguration performance in the
presence of LPL MAC with sleep interval beyond 100ms.
Fig. 15 shows the results for the case of a network that switches
between two configurations every 5 minutes while using duty-
cycling with different sleep intervals. The table reports the
minimum values of r required for high success rate. The results
show that longer sleep intervals require more retransmission
attempts, up to r = 25 when radio periodically sleeps for
500ms. As the number of CP broadcasts attempts grows, the
actual transmission count stays around 60-66% of r. As the
sleep period increases, the WSN reconfiguration takes longer.

8With those parameters we are optimizing for WSN success reconfiguration
rate over the number of CM broadcasts and the WSN reconfiguration delay.

0

70

139

R
a
d
io

O
n

zoomed Delayed Reconfiguration

0

70

139

C
S
M
A

CSMA

0

70

139

L
P
L

LPL

0

70

139

N
U
L
L

NULL

30 60 90 120

Time (minutes)

0

70

139

T
D
M
A

56 57 58 59 60 61 62

Time (minutes)

TDMA

0

70

139

0

70

139

0

70

139

0

70

139

0

70

139

Fig. 16. Reconfiguration among various MACs.

The delay more than doubles between 200 and 500ms.

Multiple MAC protocols. The presence of other MAC
protocols have a large impact on the performance of WSN
reconfiguration. We have already discussed how protocols such
as LPL complicate network reconfiguration. Therefore, we
conclude the evaluation section with the presentation of an
8-hour experiment, where the network is reconfigured among
four network stacks: one using CSMA, one LPL (200ms), one
Null MAC, which simply forwards traffic between the network
and the radio layer, and the final one, which uses duty-cycling
TDMA MAC9. Fig. 16 reports results from the run with the
network reconfigured among these four MACs. The left side of
the figure shows a sample part of the experiment while the right
side shows zoomed-in green section of the left side. The red
vertical lines mark moments when events triggering a network
reconfiguration take place. The 4-bottom graphs show how
many nodes are running with each MAC protocol. Specifically,
the upper graph shows how many nodes at the given time
have their radio turned on. When CSMA is scheduled to run,
all nodes keep their radio on, as expected. When LPL is
scheduled, the nodes turn the radio on only periodically and
their periods are not synchronized. When TDMA is running,
the nodes stay on for a while to synchronize their global time
and then periodically turn the radio off and on, according to
the time schedule.

Fig. 16 (right) shows how the reconfiguration mechanism
handles the situation when the network is in a synchronized
sleep mode. The figure starts with all the nodes in the TDMA
configuration and their radios turned off. Then, an event occurs
that triggers network reconfiguration. Instead, of starting CM
broadcast immediately after the event, sending a packet that
no other node would receive, the CM broadcast transmission
is delayed until the TDMA protocol starts radio again. This
delay prevents the broadcasting of CM messages when not a
single node would receive CM because the whole network is
synchronously shutdown. These experiments show that Fennec
Fox can reconfigure a WSN among the four MAC protocols
(CSMA, LPL, Null, TDMA), which by themselves could not
co-exist in the same WSN.

V. RELATED WORK

A major approach to WSN reconfiguration is based on
distributing fragments of code that are loaded and executed on
the sensor nodes. TinyCubes [19], Enix [3], BASE [11], and
ViRe [1] are examples of such systems. Works such as Deluge
can perform full-program update on the nodes [13]. Some
systems allow users to program WSNs at run-time. Maté [16]
allows dissemination of code to be executed in a virtual
machine. Tenet [8] allows sending data-flow programs to be
executed in the network. Our approach does not send code

9This experiment is performed on the same testbed described in Section II
but after its expansion to 139 nodes.

6060606060

updates at runtime. Instead, the Fennec Fox framework allows
users to specify many applications, each with a dedicated
protocol stack, and the conditions under which the WSN self-
reconfigures from one application to another.

While previous works show that it is possible to perform
incremental or wholesale code updates in the network, these
updates must still be disseminated efficiently among the nodes.
Efficiency can be achieved by: selecting the subset for update
(as in FiGaRo [20]), using a shared infrastructure [24], or
minimizing redundant broadcast transmissions as done by
Trickle [18]. Fennec Fox uses an approach similar to Trickle
to perform efficient network-wide self-reconfiguration.

In the early days of WSN research, most of the protocols
were cross-layered, making them difficult to reuse across the
applications. Nowadays, there are many sensor network stacks
such as Rime [6], uIP [5], and TinyOS IP stack [12] that try
to follow the layered protocol model. Besides these complete
stacks, there are now layer-specific protocols (e.g., CTP [9],
XMAC [2]) that are designed to allow different protocols at the
higher or lower layers of the stack. We leverage the design and
implementation of these protocols and provide a framework
that allows applications to compose their own stack using
protocols of their choice at each layer.

MultiMAC [25] shows that different MACs can be im-
plemented on top of the same radio driver. The pTunes
project [26] shows the need for runtime MAC’s parameters
adjustment and demonstrate it on one protocol. Fennec Fox
takes these concepts further by scheduling execution of differ-
ent MACs that can be initialized with various parameters.

Fennec Fox has been demonstrated to work with other
radios than CC2420, i.e. CC1000 [10] and UWB-IR [23].

VI. CONCLUSIONS

We study the problem of executing a set of heterogeneous
applications with different communication requirements on
a single WSN. Our solution consists in the dynamic self-
reconfiguration of the WSN such that it runs the combination
of network and MAC protocols that suits well a given appli-
cation. To do so, we developed the Fennec Fox framework
composed of a runtime infrastructure built around a layered
protocol stack and a programming language to specify the
various WSN configurations and the policy to switch among
these in response to various events. Our experimental evalua-
tion showed that our approach can successfully reconfigure a
large WSN in few hundreds of milliseconds while incurring
little control overhead.

While we demonstrated that is possible to have the WSN
self-reconfigure between different MAC protocols such as a
CSMA MAC and a TDMA-like MAC, future work needs to
address the challenge of switching effectively large WSNs
between multiple TDMA protocols which may disable the
radio for periods of time that may never overlap. Supporting
frequency-hopping and nodes with multiple radios are other
research venues to be pursued with Fennec Fox. To truly
support a large number of complex applications operating on
a single WSN supported with multiple protocols, we need
WSN nodes with larger RAM and ROM memories than those
available in current mote-class platforms. As more resourceful
platforms are already on the horizon, we believe that our
approach offers a new path to investigate a new generation
of heterogeneous WSN applications.

Acknowledgements: We thank Prof. Ping Ji from John Jay
College of Criminal Justice (CUNY) for early discussion on recon-
figurable network protocols. We thank Manjunath Doddavenkatappa
from the National University of Singapore for providing support with
the Indriya testbed. This project is partially supported by the National
Science Foundation under Awards #644202 and #931870 and by an
ONR Young Investigator Award.

REFERENCES

[1] R. Balani et al. Vire: Virtual reconfiguration framework for embedded
processing in distributed image sensors. In APRES Work., Apr. 2008.

[2] M. Buettner et al. X-MAC: a short preamble MAC protocol for duty-
cycled wireless sensor networks. In Proc. of the ACM SenSys Conf.,
pages 307–320, Nov. 2006.

[3] Y.-T. Chen, T.-c. Chien, and P. H. Chou. Enix: a lightweight dynamic
operating system for tightly constrained wireless sensor platforms. In
Proc. of the ACM SenSys Conf., pages 183–196, Nov. 2010.

[4] M. Doddavenkatappa, M. C. Chan, and A. Ananda. Indriya: A low-cost,
3D wireless sensor network testbed. In TRIDENTCOM, pages 302–316,
Apr. 2011.

[5] A. Dunkels. Full TCP/IP for 8 bit architectures. In Proc. of the MobiSys

Conf., pages 85–98, May 2003.
[6] A. Dunkels, F. Österlind, and Z. He. An adaptive communication

architecture for wireless sensor networks. In Proc. of the ACM SenSys

Conf., pages 335–349, Nov. 2007.
[7] D. Gay et al. The nesC language: A holistic approach to networked

embedded systems. In Proc. of the PLDI, pages 1–11, May 2003.
[8] O. Gnawali et al. The Tenet architecture for tiered sensor networks.

pages 153–166, Nov. 2006.
[9] O. Gnawali et al. Collection tree protocol. In Proc. of the ACM SenSys

Conf., pages 1–14, Nov. 2009.
[10] M. Gorlatova et al. Prototyping energy harvesting active networked

tags: Phase II mica mote-based devices. In MobiCom10, Sept. 2010.
[11] M. Handte et al. The BASE plug-in architecture - composable

communication support for pervasive systems. In Proc. of the ICPS

Conf., page 443, July 2010.
[12] J. Hui and D. Culler. IPv6 in low-power wireless networks. Proc. of

the IEEE, 98(11):1865–1878, Nov. 2010.
[13] J. W. Hui and D. Culler. The dynamic behavior of a data dissemination

protocol for network programming at scale. In Proc. of the ACM SenSys

Conf., pages 81–94, Nov. 2004.
[14] Institute of Electrical and Electronics Engineers. IEEE 802.15: Wireless

Personal Area Networks (PANs). [Online] http://standards.ieee.org/
about/get/802/802.15.html.

[15] S. Kim et al. Flush: a reliable bulk transport protocol for multihop
wireless networks. In Proc. of the ACM SenSys Conf., pages 351–365,
Nov. 2007.

[16] P. Levis and D. Culler. Maté: A tiny virtual machine for sensor
networks. In Proc. of the ASPLOS Conf., pages 85–95, Oct. 2002.

[17] P. Levis et al. TinyOS: An operating system for sensor networks. In
Ambient Intelligence, pages 115–144, Nov. 2004.

[18] P. Levis et al. Trickle: A self-regulating algorithm for code propagation
and maintenance in wireless sensor networks. In Proc. of the NSDI

Symp., pages 15–28, Mar. 2004.
[19] P. J. Marrón et al. TinyCubus: a flexible and adaptive framework sensor

networks. In Proc. of the EWSN Conf., pages 278–289, Jan. 2005.
[20] L. Mottola, G. P. Picco, and A. A. Sheikh. FiGaRo: Fine-grained

software reconfiguration in wireless sensor networks. In Proc. of the

EWSN Conf., pages 286–304, Jan. 2008.
[21] F. Österlind and A. Dunkels. Approaching the maximum 802.15.4

multi-hop throughput. In Proc. of the HotEmNets, June 2008.
[22] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power

wireless research. In Proc. of the IPSN Conf., pages 364–369, Apr.
2005.

[23] G. Stanje et al. Demo: Organic solar cell-equipped energy harvesting
active networked tag (EnHANT) prototypes. In Proc. of the ACM

SenSys Conf., pages 385–386, Apr. 2011.
[24] A. Tavakoli, A. Kansal, and S. Nath. On-line sensing task optimization

for shared sensors. In Proc. of the IPSN Conf., pages 47–57, Apr. 2010.
[25] D. van den Akker and C. Blondia. MultiMAC: A multiple MAC

network stack architecture for TinyOS. In Proc. in the ICCCN Conf.,
pages 1–5, Aug. 2012.

[26] M. Zimmerling et al. pTunes: Runtime parameter adaptation for low-
power MAC protocols. In Proc. of the IPSN Conf., pages 173–184,
Apr. 2012.

6161616161

