
Combining Retiming and Recycling to Optimize the Performance of
Synchronous Circuits

Luca P. Carloni Alberto L. Sangiovanni-Vincentelli
EECS Department, University of California at Berkeley, Berkeley, CA 94720-1772

Abstract

Recycling was recently proposed as a system-level design tech-
nique to facilitate the building of complex System-on-Chips (SOC)
by assembling pre-designed components. Recycling allows us to
model the communication patterns among the components, ana-
lyze the impact of interconnect latency on the overall data process-
ing throughput, and manage computation/communication trade-
offs to optimize the performance of the system. In this paper, we
present recycling as a circuit-level design technique for optimiz-
ing the performance of sequential circuits beyond what can be
achieved by retiming. We also provide a theoretical framework
to guide the simultaneous application of the two techniques. Our
model identifies the conditions under which an optimally-retimed
synchronous circuit can be further sped-up and determines the
amount of the resulting performance gain.

1 Introduction

Recycling, originally proposed for system-level design [6], is
a design transformation that can be applied to a class of sys-
tems called latency-insensitive systems [5]. It consists of inserting
proper sequential elements (relay stations) on the communication
channels interconnecting the system components while gauging la-
tency variations and impact on overall system performance. We
show how recycling can be used to increase the performance of a
synchronous digital circuit at the register-transfer level (RTL). In
particular, we combine recycling toretiming, a classical logic opti-
mization technique to minimize the clock period of a synchronous
circuit [12]. Recycling goes beyond what retiming offers because:

• it can be applied to a network of sequential circuits, i.e. a
circuit whose computational elements are sequential circuits,
while retiming can deal only with a single sequential circuit
whose computational elements are combinational circuits;

• it can be applied to retimed circuits to obtain further speed-up;
this is achieved by extra-pipelining the circuit through relay-
station insertion, thereby circumventing the main limiting fac-
tor in retiming, namely the presence of feedback loops.

The first item is extensively discussed in [5, 6], albeit from a differ-
ent perspective. Here, we cast the arguments in the context of RTL
design. This paper’s main contribution addresses the second item.

We discuss how to transform a synchronous circuit into a latency-
insensitive design and how to apply recycling to break the critical
paths and reduce further the clock period. We give precise criteria
on when this operation pays off from a performance viewpoint.

After providing some background material on retiming (Sec-
tion 2) and recycling (Section 3), we use a simple example to il-
lustrate the idea of jointly applying recycling and retiming (Sec-
tion 4). This allows us to introduce application criteria for recy-
cling that are only based on the circuit topology and the delay char-
acteristics of its components. Recycling does not come for free, but
implies an overhead in terms of both area and latency. In fact, there
are cases when this transformation may not be convenient even in
terms of timing optimization. Fortunately, these cases can be de-
tected in a relatively easy way. We provide a formula to estimate
the impact of recycling on the circuit speed (Section 5). Finally,
we put our contribution in perspective with previous papers that
attempt to“go beyond retiming” (Section 6). In particular, we
compare recycling toc-slow retiming, or slowdown, a technique
that was originally presented together with retiming [11] and, then
recently applied in the context of FPGA design [17, 19]. Recycling
and slowdown are strictly related, although they target different
applications. While slowdown is best applied to circuits operating
on multiple input data streams, we argue that, for the case of syn-
chronous circuits operating on a single input data stream, recycling
subsumesc-slow retiming, in the sense that the timing optimiza-
tion obtained by the latter can always be obtained by the former
but not vice versa. The relationship between retiming and software
pipelining has been studied in several works. In general it is retim-
ing that is applied to further enhance software pipelining [4, 7], but
a recent work proposed software pipelining techniques as a better
alternative to retiming for sequential circuit optimization [2, 3].
We discuss this idea with respect to our contribution, by pointing
out the theoretical similarities and the practical differences.

2 Leiserson and Saxe’s Retiming

Retiming is aclassic logic optimization technique for syn-
chronous circuits. Retiming was originally introduced in [9, 10,
11], where the emphasis is put on the application to systolic sys-
tems. A subsequent paper [12] fully revisits the concept of retim-
ing and shows how generic synchronous circuits can benefit from it
under three main optimality criteria: (1) minimize the circuit clock
period by adding/removing storage elements (this is the main focus
of the present paper); (2) minimize the circuit area by reducing the

retiming

V1

3
V2

3
V3

3
V4

3

V7

7
V6

7
V5

7

V0

0

V1

3
V2

3
V3

3
V4

3

V7

7
V6

7
V5

7

V0

0

G 1

G 2

Figure 1. Retiming the correlator circuit. Top graph
has π(G1) = 24, bottom one has π(G2) = 13 (shading
highlights critical paths).

number of storage elements; and, finally, (3) minimize circuit area
under a maximum clock-period constraint. In the last two decades,
retiming has been adopted as a key optimization technique within
every major logic synthesis tool both in academia and industry.
In [15, 16], Shenoy discusses the issues that arise in practical im-
plementations of retiming and the research efforts to extend the
domain of circuits for which it can be applied. Recently, retiming
has been successfully applied to FPGA design [8, 17, 19].

To review the main concept of retiming, let’s consider Figure 1,
which reports an example from [12]. The two graphs represent
two synchronous circuits that are functionally equivalent and can
be obtained one from the other via retiming.Functional equiva-
lencemeans that the circuits have the same behavior from the host
system viewpoint, i.e. when solicited by the same input trace they
present exactly the same output trace. We define acircuit graphas
a tupleG = (V ,A ,d,w), whereV is the set of vertices (the combi-
national circuits),A is the set of arcs (the wires between combina-
tional circuits),d is a vertex labelling function (the largest combi-
national delay of the corresponding circuit) andw is an arc weight
function (the number of storage elements on the arc). LetC (G) be
the set of cycles ofG . ForG to have well-defined physical mean-
ing, the following constraints must be satisfied:∀v∈V

(
d(v)≥ 0

)
,

∀a∈ A
(
w(a)≥ 0

)
, and∀c∈ C (G),∃a∈ c s.t. w(a) > 0.

The circuit represented by the graphs of Figure 1 is a dig-
ital correlator that takes a stream of bitsxi and compares it
with a fixed-length patterna1, . . . ,aJ to produce the outputyi =
∑J

j=0 f (xi− j ,a j), where f (x,y) is the comparison function return-
ing one if x = y and zero otherwise. Circuit graphG1 is a direct
implementation of this specification forJ = 3. Its components are
instances of two kinds of combinational elements: 4 comparators
(v1,v2,v3,v4) and 3 adders (v5,v6,v7), while vertexv0 represents
the host system. This implementation has 4 storage elements (e.g.,
edge-triggered flip-flops controlled by a common clock) repre-
sented by the dark rectangles. For the delay assignment of the com-
binational elements, we initially take the same figures as in [12]: 7
time units for the adders and 4 time units for the comparators.

For any pathp ∈ G of length |p| = k, that is an alternat-
ing sequence of vertices and arcsv1,a1, . . . ,ak−1,vk, we define

the path delay d(p) and thepath weight w(p) respectively as
d(p) = ∑k

i=1d(vi) andw(p) = ∑k−1
i=1 w(ai). For instance, graphG1

in Figure 1 has a pathp from v1 to v0 passing throughv4 with
d(p) = 33 andw(p) = 4.

A combinational path pis a path that does not contain any
storage element, i.e.w(p) = 0. The longest combinational path
(critical path) in a synchronous circuit is a lower-bound on the
minimum value of the clock periodπ(G) at which the circuit can
operate. This lower-bound is strict if we assume that the clock
overhead can be neglected, otherwise we should include the value
of the expressionπoverhead= πskew+ π jitter + πlatch containing the
estimations of clock skew, clock jitter, and latch set-up time. The
critical pathpcrit of G1 is the path fromv4 to v7 with d(pcrit) = 24.

A retiming of a circuit graphG = (V ,A ,d,w) is an integer-
valued vertex-labellingr : V → Z specifying a graph transforma-
tion that returns a new graphGr = (V ,A ,d,wr) such that:

∀a = (vi ,v j) ∈ A ,
(

wr(a) = w(a)+w(v j)−w(vi)
)

We refer to [11] for the proof of correctness of retiming. GraphG2

in Figure 1 represents the result of applying retiming for optimal
clock period onG1. By comparing the two graphs, one can ver-
ify that G2 is obtained by repositioning two flip-flops and adding
one new flip-flop according to the vertex-labellingr such that
r(v0) = 0, r(v1) =−1, r(v2) =−1, r(v3) =−2, r(v4) =−2, r(v5) =
−2, r(v6) = −1, r(v7) = 0. Hence, retiming reduces the clock pe-
riod to π(G2) = 13 units. In fact, retiming enables interesting
trade-offs between area (the circuits differ by one flip-flop) and
performance (G2 gives a 45% speed-up). Circuit retiming for clock
period minimization can be casted as a linear programming prob-
lem, which can be solved efficiently in©(V3) steps with©(V ·A)-
time Bellman-Ford shortest-path algorithm. An asymptotically
faster algorithm running in©(V ·A) time is given in [12].

It is easy to see that graph cycles (i.e. circuits feedback loops)
are a limiting factor of retiming. As proven in [12], all the possible
retimed versions of a circuit must satisfy the followinginvariant
rule: the number of storage elements that lie on any given cyclec
in the graphG remains constant through retiming, or, formally:

∀c∈ G
(

wr(c) = w(c)
)

(1)

Further, as proven by M. Papaefthymiou [14], there exists a theo-
retical lower-bound on the minimum clock period achievable via
retiming and this is a function of themaximum delay-to-register
cycle ratio. This is defined as the maximum value (over all cycles)
of the ratio between the sum of combinational delays on the cycle
and the sum of storage elements on the cycle, or, formally:

πlb(G) =

⌈
max

c∈C (G)
π(c)

⌉
=

⌈
max

c∈C (G)

(∑v∈cd(v)
∑a∈cw(a)

)⌉
(2)

We callcritical cycleany cyclec∈ C (G) such thatπ(c) = πlb(G).
The lower-bound is theoretical because it may not be reached by a
retiming transformation. For instance, the minimum clock period
achievable via retiming for the circuit of Figure 1 isπ(G) = 13,
while the theoretical lower-bound isπlb(G) = 10, as it can be ver-
ified by computingπ(c) for the 4 cycles of the circuit. Finally, as
proven in [14], it exists also a corresponding upper-bound that is
given byπub(G) = πlb(G)+dmax−1, wheredmax= maxv∈G d(v).

Relay
station

Relay
station

Relay
station

Relay
station

Relay
station

Relay
station

Pearl 1

Shell 1

Pearl 4

Shell 4

Pearl 2

Shell 2

Pearl 5

Shell 5

Pearl 3

Shell 3

Figure 2. Recycling a latency-insensitive system.

3 Latency-Insensitive Protocols and Recycling

Recyclingwas recently proposed as the basis of a correct-by-
construction methodology to quickly assemble Intellectual Proper-
ties (IP) cores for building complex System-on-Chips (SOC) while
reducing the number of iterations in the design process [6]. Its
foundations lie on thetheory of latency-insensitive design[5]. La-
tency insensitive systems are synchronous distributed systems re-
alized by composing functional modules that exchange data on
point-to-point communication channels according to a specific
protocol. This latency-insensitive protocol guarantees that each
module works independently of the channel latencies, thereby
making the overall system functionality robust with respect to
those insidious arbitrary variations in interconnect delay that are
proper of SOCs fabricated with deep sub-micron technologies [1,
13, 18]. The protocol works on the assumption that the modules are
stallable, a weak condition to ask them to obey. Figure 2 illustrates
a latency-insensitive system. Following the jargon of [5], we have
that the system modules (thepearls) are encapsulated by interface
modules (theshells) thatspeakthe latency-insensitive protocol. A
latency-insensitive system can berecycledby addingrelay stations
on its channels. A relay station is a sequential circuit (a little bit
more complex than a normal flip-flop) that effectively pipelines the
interconnect wire on which it is placed.

A recyclingof a circuit graphG = (V ,A ,d,w) is an integer-
valued arc-labellings : A → Z∗ that returns a recycled graphGr =
(V ,A ,d,w,s) wheres(a) denotes the number of relay stations on
arca. Observe thatG now represents a latency-insensitive system,
i.e. each vertex inG is associated to a pearl/shell pair. For the
purposes of SOC design, the recycling transformation consists in
pipelining long and slow communication channels in shorter and
faster stages to make sure that they can be driven at the same clock
frequency of the rest of the system (dictated by the slowest pearl).
More generally, recycling is a technique to re-organize the system
structure while efficiently exploring the design space and the trade-
offs between computation delay and communication latency. In the
next section we study how to apply these ideas at the circuit level,
but, before, we need to clarify two important points:

• As long as they are stallable, the pearl modules can be arbi-
trary sequential circuits and, therefore, contain various stor-
age elements, and implement complex finite state machines
(FSM). This is an important difference with respect to retim-
ing, which operates on sequential elements acrosscombina-
tional circuits. In other words, retiming can be applied only
to a graphG whose vertices are combinational circuits.

• The theory of latency-insensitive protocols guarantees that af-
ter performing shell encapsulation on a systemS, the resulting
latency-insensitive systemS′ is functionally equivalent to the
original one modulostuttering. This means that ifS′ is so-
licited with the same input traces asS, it produces an output
trace that presents exactly the same ordered sequence of data
asS, but where two consecutive valid data may be interleaved
by one or more stalling events (a.k.a.τ-symbol events, or
bubbles). Naturally, the stalling events can be easily filtered
out to obtainexactlythe same output trace. The nature of the
stalling events goes back to the idea of shells and relay sta-
tions. The simplest way to insert extra sequential elements
into a synchronous circuit without jeopardizing its functional
behavior, is to make sure that they are initialized with val-
ues that do not disrupt the state of the down-link sequential
processes. Hence, each relay station is initialized with aτ
symbol (this can be done via special encoding or by adding
an extra wire to a given bus). Then, the interface logic of a
shell simply operates according to anAND firing rulemean-
ing that ifall the input channels present valid data, then it lets
the pearl to receive them, progress its computation, and pro-
duce valid output data, but ifeven a singlechannel presents
a τ, then the shell stalls the pearl and puts newτ symbols on
the output channels instead of valid data. For more details on
how the latency-insensitive protocol operates and the role of
back-pressurewe refer to the original work [5, 6].

4 Combining Recycling And Retiming

From the previous section we understand that recycling and
latency-insensitive protocols allow us to insert sequential elements
(relay stations) on any wire of a latency-insensitive system. Now,
our idea is based on the following considerations: (1) any stand-
alone combinational circuit can be made sequential by inserting
one storage element on each of its outputs, and (2) the resulting
sequential circuit is a stallable circuit that can be made patient by
synthesizing a shell around it. Hence, we can transform a retimed
circuit into a latency-insensitive system so that we can pipeline its
critical paths via relay station insertion, and, ultimately, reduce the
overall clock period. In other words, we use the theory of recycling
and latency-insensitive protocols tobreak the retiming invariant
rule expressed by Equation (1).

Let’s consider the circuit graphG3 pictured at the top of Fig-
ure 3, a recycled version of the correlator that can be derived with
the following procedure: (1) apply a new retimed transformation
to the optimally-retimed graph circuit graphG2 of Figure 3 by us-
ing a vertex-labelingr ′ such thatr ′(v5) = 1 andr ′(v6) = 1 while
r ′(v j) = 0 for j 6= 5,6 (notice that the critical path of the resulting
circuit is the path connectingv6 to v1 for a delay of 17 time units);
(2) partition the circuit in sub-circuits whose outputs are delimited
by storage elements and create a shell around each sub-circuit; (3)
insert a relay station between verticesv6 andv7 to break the crit-
ical path. Knowing that relay stations are sequential elements, it
is easy to verify that the critical path of the resulting graphG3 is
the path connectingv7 to v1 for a length of 10 time units. Hence,
in first approximation,G3 can nominally run with a clock period
π(G3) = 10, a 23% speed-up with respect toG2. We can push this

idea to its limits by considering circuit graphG4 at the bottom of
Figure 3. Here, by inserting a new relay station betweenv7 andv8,
we break further the critical path to reach the minimum possible
length. This coincides with the delay of the slowest circuit com-
ponent, in this case the adder, which is 7 time units. Hence,G4

can run with a nominal clock period as small asπ(G4) = 7, a 46%
speed-up with respect toG2.

Besides having such considerable nominal speed-ups with re-
spect to the optimally-retimed circuits, it would appear that the
ability of inserting extra storage elements, thus overcoming the re-
timing invariant rule, allows us to beat even the theoretical lower-
bound expressed by the maximum delay-to-register cycle ratio of
Equation (2). But, before making such claims, more considera-
tions need to be done. First, it is not realistic to assume that the
insertion of shell logic does not cause some timing overhead. To
take this into account, we should include an additional termπshell

to the other components of the clock overheadπoverhead. More im-
portantly, even if we could neglect the impact ofπshell with respect
to the critical path delay, it is the presence of theτ symbols that
affects negatively the amount of speed-up achievable with recy-
cling. In fact, after initializing each relay station with aτ symbol,
the latency-insensitive protocol’sAND firing rule implies that the
number ofτ symbols in a cycle of the circuit remains constant
during its operations. Hence,τ symbols are periodically detected
at the circuit outputs and, since we cannot consider them as valid
results, they must be discounted from the assessment of the cir-
cuit performance. Let’s define the circuit throughputϑ(G) as the
ratio of valid data over the sum of valid data plusτ symbols (as
observed at the circuit’s outputs). Since the recycled circuit is a
latency-insensitive system, this ratio can be statically computed as
the minimum value (over all cycles) of the ratio between the sum
of storage elements (that are not relay stations) and the sum of all
storage elements (including also the relay stations) or, formally:

ϑ(G) = min
c∈C (G)

(∑a∈cw(a)
∑a∈cw(a)+s(a)

)
(3)

Notice thatϑ(G) is a rational number between zero and one. Then,
We define theeffective clock periodπe f f(G) of a recycled circuit
as the ratio of the nominal clock period over the circuit throughput:

πe f f(G) =
π(G)
ϑ(G)

(4)

Hence, if we consider the effective clock period instead of the
nominal one, we see that, even if we neglectπshell, recycling
does not really pay off for the examples of Figure 3. In partic-
ular, circuit π(G3) hasϑ(G3) = 2/3, and, therefore,πe f f(G3) =
10· (3/2) = 15, while circuitπ(G4) hasϑ(G4) = 1/2, and, there-
fore,πe f f(G4) = 7·(2/1) = 14. The effective performance of both
circuits is beaten by the optimally-retimed circuitπ(G2) having
clock periodπ(G2) = 13.

In summary, we saw that we succeeded in using recycling to
overcome theretiming invariant rulejust to find ourselves in the
position of dealing with something like a “recycling invariant rule”
that has canceled all the gain. Does this mean that recycling can
never give us a circuit implementation whose performance is bet-
ter than the optimally-retimed version? It is easy to prove that

G 4

V1

3
V2

3
V3

3
V4

3

V7

7
V6

7
V5

7

V0

0

G 3

V1

3
V2

3
V3

3
V4

3

V7

7
V6

7
V5

7

V0

0

Figure 3. Two recycled versions of the correlator
(shading shows the shell wrapping; light rectangles
are relay stations initialized to τ).

this is not the case. A counter-example is given by the same cor-
relator circuit with a different delay assignment. For instance, if
assume that all vertices have the same delayδ but for d(v0) = 0,
then we can prove that the recycled circuit graphG4 has an ef-
fective clock periodπe f f(G4) = (2/1) · δ = 2 · δ, which is strictly
smaller than the clock period of the optimally-retimed graph for
every possible value ofδ. In fact, since retiming cannot change the
number of flip-flops on a cycle, each cyclec of any retimed correla-
tor will present a sequenceσm(c) of m consecutive vertices whose
connecting arcs have zero weight (i.e. the arcs do not present a
storage element) wherem = d |c|

w(c)e. In particular, while cycles
c0 = v0,v1,v2 andc4 = v0,v1,v2,v3,v4,v5,v6,v7 present sequences
σm(ci) of at most length 2, both cyclesc1 = v0,v1,v2,v6,v7 and
c2 = v0,v1,v2,v3,v5,v6,v7 present a sequenceσm(ci) of length 3.
Hence, under this delay assignment, any optimally-retimed circuit
G will have a critical path of 3 vertices for a minimum clock period
π(G) = 3 · δ, which is 33% worse than the effective clock period
πe f f(G4) of the corresponding optimally-recycled circuit. Observe
that the 33% gain that we obtain with recycling remains constant
if we extend the length of the correlator by considering any im-
plementation withJ > 3. In fact, notice that the extension would
create new cycles presenting critical path of 3 vertices, while the
effective clock period of the recycled circuit depends only onδ.

In conclusion, there are cases when recycling does not produce
any gain with respect to an optimally-retimed circuit and cases
where a relevant gain is guaranteed. This depends on the circuit
topology and its delay assignment. Next we give a general model
to analyze when combining recycling and retiming pays off.

5 Recycling Benefit Analysis

From the analysis of the combination of retiming and recycling
for the correlator circuit it should be clear that the key point is to
understand the structure of the cycles of a circuit. After all, Equa-
tions (1), (2), and (3) are all related to circuit cycles. Hence, in the
attempt of providing an analytical model for the combined appli-
cation of recycling and retiming, let’s consider the two circuits of

Figure 4. Both circuits present a single cycle on whichN vertices
sit. The top circuit,G5, hasN− 1 registers while in the bottom
circuit, G6, there is only 1 register. These represent two extreme
cases for this circuit structure, which, generally, can haveK reg-
isters withK ∈ [1,N−1]. Notice that the caseK = 0 is ruled out
because we assume the absence of combinational loops. Also case
K ≥ N is not interesting because the application of either retim-
ing or recycling would not produce any benefit from the timing
optimization viewpoint (the circuit would run with a clock period
equal to the maximum combinational delay among all its compo-
nents anyway).

Now, for K ∈ [1,N− 1] we know that the theoretical lower
bound on the minimum clock period achievable via retiming is

πlb(G) = d∑N
i=1 d(vi)

K e. In Figure 4, this givesπlb(G5) = d∑N
i=1 d(vi)
N−1 e

and πlb(G6) = ∑N
i=1d(vi). Also, we know that the optimally-

retimed graph presents a sequenceσ?
m of m consecutive vertices

without registers in between, wherem= dN
K e and the ’?’ symbol

denotes that this sequence is the one with the smallestdelay sum
among theN possible ones. We write this delay sum asd(σ?

m) (it
coincides with the circuit clock period if no single vertex has delay
greater than this). Hence,πret(G5) = max{dmax,(d(vx)+d(vy))},
wherevx,vy are the two consecutive vertices with the smallest com-
pound delay, whileπret(G6) = ∑N

i=1d(vi). Now, let’s denote with
H-recycling the insertion ofH relay stations on the circuit. The
value of H depends on bothN and K, as well as the vertex de-
lay assignment, but, in any case, it is useless to haveH > N−K.
Now, it is easy to see that the nominal clock period of aH-recycled
circuit is πH(G) = max{dmax,d(σ?

m′)} with m′ = d N
K+H e. For in-

stance, we have thatπ1(G5) = dmax. In general, the nominal clock
period πH(G) is smaller than the correspondingπret(G), but, to
find the effective clock period we must divided it by the recycled
circuit throughputϑ = K

K+H , Putting all together, we conclude that
recycling returns a gain over optimal retiming if and only if

max{dmax,d(σ?
m′)} ·

K +H
K

< d(σ?
m) (5)

The gain percentage is given by the following:

gain(%) =
(

1−
max{dmax,d(σ?

m′)} · K+H
K

d(σ?
m)

)
·100 (6)

If we want to take into account also the clock overhead due to the
shell logic then we simply need to add the termπshell · K+H

K to the
left-hand side of the inequality.

For the special case of delay-homogeneous circuits (where
∀i,d(vi) = δ) the previous condition can be simplified as follows:⌈ N

K +H

⌉
·δ · K +H

K
<

⌈N
K

⌉
·δ ⇔

⌈ N
K +H

⌉
· K +H

K
<

⌈N
K

⌉
(7)

From this, it is easy to see that recycling never pays off for cir-
cuit G6 while, as long asN > 2, it always does for circuitG5. In
the latter case the gain percentage is given byN−2

2·N−2 ·100, which
varies from 25% for(N = 3) up to a maximum of 50%. Also,
notice that for circuitG5 recycling technicallybeats the theoreti-
cal lower bound of Equation (2) as it allows to match exactly the
ratio N

N−1 · δ, instead of its integer ceiling. Finally, observe that
the model presented in this section can be used to efficiently an-
alyze more complex circuits containing many intersecting cycles
because Equation (5) still applies for each potential critical cycle.

V1 V2 VN-1 VNV0 V3

V1 V2 VN-1 VNV0 V3

G 5

G 6

Figure 4. Case studies: N-1 FFs (top), 1 FF (bottom).

6 Recycling vs. Alternative Approaches

In this section we briefly discuss the relationship between re-
cycling and two other techniques that have been proposed to over-
come the retiming invariant rule. Slowdown, orc-slow retiming,
was proposed together with retiming in [12], where the main goal
is to establish format techniques to transform a synchronous cir-
cuit into a functionally-equivalent systolic circuit, i.e. a circuit
that presents at least one register on every arc of its circuit graph.
Slowdown is performed in two steps: (1) replace each register in
the original circuit by a sequence ofc registers, thus producing the
c-slow equivalent circuit; (2) retime thec-slow circuit to minimize
its clock period. While slowdown is obviously defined forc be-
ing an integer greater than one, it should be noticed that for any
given circuitG , there is an integerγ(G) such thatc-slow retiming
produces a clock period reduction if and only ifc ≥ γ(G). Fur-
thermore, slowdown does not come for free, but, besides the extra
area due to additional registers, it implies a performance overhead,
somewhat similar to recycling. In particular, as suggested by its
very name, ac-slow circuit, while running with a potentially higher
frequency clocks, processes a single input data at the throughput
of 1/c. In fact, at any given clock iteration, only 1/c of the reg-
isters in thec-slow circuit contains valid data. Hence, ifπc is the
clock period achievable via slowdown, the effective clock period is
πc

e f f = πc/c. It should not be a surprise, then, that slowdown was
proposed with the idea of contemporaneously processingc input
data streams by properly multiplexing and demultiplexing the I/O
ports of thec-slow circuit. By doing so, the processing through-
put can be raised back (up to one in the optimal case, where each
computation thread operates with periodπc

e f f).

For the purpose of this paper, we want to clarify how, besides
the obvious similarities, recycling and slowdown differ and, par-
ticularly, how the former subsumes the latter when one considers
only the processing of single input data stream. In this case, re-
cycling can always mimic slowdown, because the same results ob-
tained with ac-slow retiming can be obtained via recycling by in-
serting relay stations (up toc−1 per cycle) instead of duplicating
registers. In both cases, the resulting circuit throughput is given
by 1/c. On the other side, it is not difficult to find an example
of a case where a slowdown can not achieve the same performance
that recycling offers due to the coarser granularity of the slowdown

transformation. For instance, consider again circuitG5 of Figure 4
representing a feedback loop withN verticesvi , each with a delay
d(vi) = δ, andN−1 registers. The insertion of one single relay sta-
tion produces a recycled circuit with a nominal clock period equal
to δ and a circuit throughput equal toN−1

N for an effective clock pe-
riod πe f f = N

N−1 ·δ. Instead, the simplest slowdown transformation
produces a 2-slow circuit that has the same clock periodδ as the
recycled circuit, but a smaller throughput equal to1

2 (which effec-
tively cancels the benefits of the transformation because 2·δ is the
clock period of the original circuit). Hence, as long asN > 2, the
performance of the recycled circuit is better than the performance
of the corresponding 2-slow circuit by a percentage equal toN−2

2·N−2,
that, in the smallest case ofN = 3, corresponds to a gain of 25%.

A different attempt to overcome the retiming invariant rule of
Equation (1) is given in [2, 3], where the authors propose soft-
ware pipelining techniques as a better alternative to retiming for
sequential circuit optimization. Their goal is to derive an optimum
placement of the registers such that the clock period is close (or, in
the best case, equal) to the lower-bound of Equation (2). From the
optimal schedule found with software pipelining, new registers are
placed in the circuit regardless of the number and the position of
the original ones. The resulting circuit is a multi-phase clocked cir-
cuit, where all clocks have the same period and the phases are auto-
matically determined by the algorithm. Then, edge-triggered flip-
flops are used where the combinational delays exactly match that
period, whereas level-sensitive latches are used elsewhere, thereby
improving the circuit area. In the case of the correlator of Fig-
ure 1, the authors can claim to reach the theoretical lower bound
of the clock period equal to 10 time units, thereby beating both
the best optimally-retimed circuit and the optimally-recycled one.
To compare this approach with recycling, the following consider-
ations must be done. First, the two approaches are similar in the
sense that they both reduce the circuit critical path by inserting
new sequential elements, while making sure that all sequential el-
ements are notsampledat every clock iteration. This is achieved
physicallyby this approach as different latches are controlled with
clock signals with different phases, while recycling does itvirtu-
ally by letting all flip-flops be sampled at every clock iteration to
discard then those sampled data coinciding with aτ symbol. Sec-
ondly, this approach gives a faster circuit with simpler components
(edge-triggered FFs and level-sensitive latches instead of shells
and relay stations) at the price of the higher complexity of hav-
ing to deal with a multi-phase clocked circuit. Finally, while the
register initialization issue is not discussed in [2, 3], it is clear that,
to guarantee functional equivalence, the multi-phase circuit must
operate according to a pre-defined schedule which makes sure that
no spurious data are ever sampled by/from a latch. Conversely, as it
is also the case with respect to slowdown, the attractiveness of the
recycling alternative is that the underlying latency-insensitive pro-
tocol implicitly and automatically encodes the scheduling logic.

7 Conclusions

We applied the ideas of recycling and latency-insensitive pro-
tocols, which were originally proposed for system-level design, to
the timing optimization of synchronous circuits. We showed how
recycling can be combined with retiming to get circuit speed-ups

that are not achievable by using stand-alone retiming orc-slow
retiming. We provided an analytical formulation to detect when
recycling is advantageous and determine the size of the reachable
speed-up. Finally, we compared our approach to the application of
software pipelining techniques to sequential circuit optimization.

References

[1] M. Bohr. Interconnect Scaling - The Real Limiter to High Perfor-
mance ULSI.IEEE International Electron Devices Meeting, pages
241–244, Dec. 1995.

[2] F.-R. Boyer, E. M. Aboulhamid, Y. Savaria, and I.-E. Bennour. Op-
timal design of synchronous circuits using software pipelining tech-
niques. InProc. Intl. Conf. on Computer Design, pages 62–67, 1998.

[3] F.-R. Boyer, E. M. Aboulhamid, Y. Savaria, and M. Boyer. Opti-
mal design of synchronous circuits using software pipelining tech-
niques. ACM Trans. on Design Automation of Electronic Systems,
6(4), 2001.

[4] P.-Y. Calland, A. Darte, and Y. Robert. Circuit retiming applied
to decomposed software pipelining.IEEE Transactions on Parallel
and Distributed Systems, 9(1):24–35, 1998.

[5] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
20(9):1059–1076, Sept. 2001.

[6] L. P. Carloni and A. L. Sangiovanni-Vincentelli. Performance anal-
ysis and optimization of latency insensitive systems. InProc. of the
Design Automation Conf., pages 361–367. IEEE, June 2000.

[7] L. F. Chao and E. H. M. Sha. Scheduling data-flow graphs via retim-
ing and unfolding.IEEE Transactions on Parallel and Distributed
Systems, 8(12):1259–1267, 1997.

[8] J. Cong and C. Wu. Optimal FPGA mapping and retiming with
efficient initial state computation. InProc. of the Design Automation
Conf., pages 330–335, June 1998.

[9] C. E. Leiserson.Area-Efficient VLSI Computation. PhD thesis, Mas-
sachusetts Institute of Technology, 1983. MIT Press.

[10] C. E. Leiserson, F. M. Rose, and J. B. Saxe. Optimizing Syn-
chronous Circuitry by Retiming. InAdvanced Research in VLSI:
Proc. of the Third Caltech Conf., pages 86–116. Computer Science
Press, 1983.

[11] C. E. Leiserson and J. B. Saxe. Optimizing Synchronous Systems.
Journal of VLSI and Computer Systems, 1(1):41–67, Spring 1983.

[12] C. E. Leiserson and J. B. Saxe. Retiming Synchronous Circuitry.
Algorithmica, 6:5–35, 1991.

[13] D. Matzke. Will Physical Scalability Sabotage Performance Gains?
IEEE Computer, 8(9):37–39, Sept. 1997.

[14] M. C. Papaefthymiou. Understanding retiming through maximum
average-weight cycles. InACM Symposium on Parallel Algorithms
and Architectures, pages 338–348, 1991.

[15] N. Shenoy. Retiming: Theory and Practice.Integration, the VLSI
Journal, 22:1–21, 1997.

[16] N. Shenoy and R. Rudell. Efficient Implementation of Retiming. In
Proc. Intl. Conf. on Computer-Aided Design, pages 226–233, Nov.
1994.

[17] G. Snider. Performance-constrained pipelining of software loops
onto reconfigurable hardware. InProc. Intl. Conf. Symp. on FPGAs,
pages 177–186. ACM, Feb. 2002.

[18] D. Sylvester and K. Keutzer. Impact of Small Process Geometries on
Microarchitecture in System on A Chip.Proceedings of the IEEE,
89(4):467–489, Apr. 2001.

[19] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek. Post-
Placement C-slow Retiming for the Xilinx Virtex FPGA. InProc.
Intl. Conf. Symp. on FPGAs, pages 177–186. ACM, Feb. 2003.

