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Abstract—In modern system-on-chip architectures, specialized
accelerators are increasingly used to improve performance and
energy efficiency. The growing complexity of these systems
requires the use of system-level design methodologies featuring
high-level synthesis (HLS) for generating these components effi-
ciently. Existing HLS tools, however, have limited support for
the system-level optimization of memory elements, which typi-
cally occupy most of the accelerator area. We present a complete
methodology for designing the private local memories (PLMs) of
multiple accelerators. Based on the memory requirements of each
accelerator, our methodology automatically determines an area-
efficient architecture for the PLMs to guarantee performance
and reduce the memory cost based on technology-related infor-
mation. We implemented a prototype tool, called MNEMOSYNE,
that embodies our methodology within a commercial HLS flow.
We designed 13 complex accelerators for selected applications
from two recently-released benchmark suites (PERFECT and
CORTEXSUITE). With our approach we are able to reduce the
memory cost of single accelerators by up to 45%. Moreover,
when reusing memory IPs across accelerators, we achieve area
savings that range between 17% and 55% compared to the case
where the PLMs are designed separately.

Index Terms—Hardware accelerator, high-level synthe-
sis (HLS), memory design, multibank architecture.

I. INTRODUCTION

SYSTEM-ON-CHIP (SoC) architectures increasingly
feature hardware accelerators to achieve energy-efficient

high performance [1]. Complex applications leverage these
specialized components to improve the execution of selected
computational kernels [2], [3]. For example, hardware accel-
erators for machine learning applications are increasingly
used to identify underlying relations in massive unstructured
data [4]–[6]. Many of these algorithms first build an internal
model by analyzing very large data sets; then, they leverage
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Fig. 1. Accelerator-based SoC. Memory banks can be reused across
accelerators to reduce resource requirements.

this model to perform decisions (e.g., to give suggestions
to the users). Thanks to the inherent parallelism of their
kernels, they are good candidates for hardware specialization,
especially with loosely-coupled accelerators (LCAs) [7]–[9].

The example in Fig. 1 shows a portion of an SoC, includ-
ing two LCAs and a processor core, connected to an external
memory (DRAM). Each LCA is composed of the accelera-
tor logic, which implements the computation, and the private
local memory (PLM), which stores data to be accessed with
fixed latency [7], [10]. PLMs constitute the accelerator memory
subsystem of the SoC and are composed of many units, called
PLM elements. Each of these PLM elements is used to store
a data structure of the algorithm. Although PLMs are known
to be responsible for most of the accelerator area [10], at any
given time they can contain only a portion of the entire work-
ing data set, which is entirely stored within the DRAM. The
accelerator computation is thus organized in consecutive iter-
ations, where data are progressively exchanged with DRAM
through DMA transfers [7]. So, the accelerator logic is struc-
tured with multiple hardware blocks executing concurrently,
in parallel or in pipeline (i.e., input, computek, and output).
Hardware blocks input and output manage the data transfers,
while hardware blocks computek implement the functionality
of the accelerator. The PLM management is thus totally trans-
parent to the processor core, which is responsible for preparing
the data in DRAM and controlling the accelerators’ execution.
The core runs an operating system and each accelerator is
managed by a device driver [11].
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LCAs can achieve better performance than processor cores
thanks to specialized micro-architectures for both the acceler-
ator logic and the PLM in order to execute the algorithm for
which it has been designed. The accelerator logic can exploit
spatial parallelism to execute multiple operations in parallel.
The size of each PLM element is customized with respect
to the amount of data to be stored. Additionally, while pro-
cessor memories are designed for sequential access (even in
case of memory sharing with the accelerator [12], [13]), PLMs
require multiple ports to allow the accelerator logic to perform
multiple memory operations within the same clock cycle and
increase the hardware parallelism. There are different solutions
to implement multiport memories [14]. Distributed registers,
which are completely contained into the accelerator logic,
are used for small and frequently accessed data structures.
However, the aggregated size of these registers is known to
grow exponentially with the amount of data to be stored. Large
and complex data structures require the allocation of dedi-
cated memory intellectual property (IP) blocks, which are more
resource efficient. However, since the size of these memory
elements grows quadratically with the number of ports [15],
only single- or dual-port memory IPs are usually offered by
technology providers [16]. The available memory IPs compose
the so-called memory library, where each of them is charac-
terized in terms of height, width, and resource requirements.
For example, a variable number of static random-access mem-
ories (SRAMs) are available in standard cell-based designs.
Block random-access memories (BRAMs) are used instead
when targeting FPGA technologies, which have a certain
number of such configurable blocks available in each device
(e.g., between 1500 and 4000 16 Kb BRAMs in modern Xilinx
Virtex-7 FPGAs [17]). Each PLM element is then imple-
mented with a multibank architecture, based on the combined
requirements of each hardware block accessing the corre-
sponding data structure. For example, in the first accelerator
of Fig. 1, hardware blocks input and compute1 communi-
cate through a data structure; at each clock cycle, input
updates one value with one memory-write interface, while
compute1 elaborates two values with two distinct memory-
read interfaces. To manage these three concurrent memory
operations, the corresponding PLM element must have two
dual-port banks.

Due to the growing complexity of these SoCs, system-level
design methodologies are used to increase design productivity
by optimizing the components at a level of abstraction higher
than RTL [18], [19]. There is also a trend to separate the
IP design, where optimized components are created for spe-
cific purposes, from the SoC integration of these components.
This reduces the design complexity, but may limit the opti-
mization of the design of accelerators that are integrated on
the same SoC, especially with respect to their memory ele-
ments. Fig. 2(a) shows how current methodologies work for
the design of accelerator-based SoCs. First, each algorithm is
specified in a high-level language (e.g., SystemC) to enable
the use of high-level synthesis (HLS) [20]–[22]. Then, state-
of-the-art HLS tools are used to derive multiple Pareto-optimal
implementations for the accelerator logic [23], [24]. These are
alternative tradeoffs in terms of performance versus cost (area
or power). They can be created by applying a rich set of
“knobs” (e.g., activating loop transformations or varying the
number of memory interfaces to access each data structure) to

(a) (b)

Fig. 2. (a) Traditional and (b) proposed design flow for heterogeneous SoCs.

the same SystemC code [23], [25]. To avoid the manual design
of the PLMs, multibank architectures can be specified with
source code transformations before running HLS [26], [27].
However, the possibilities for memory-related optimizations
are limited during the SoC integration. Moreover, it may be
necessary to reiterate the IP design when changing the require-
ments for the memory subsystem (e.g., the available area). This
is time consuming and error-prone. In contrast, designing the
memory subsystem during SoC integration enables additional
optimizations to reduce the memory cost.

We thus propose an alternative approach, which is shown
in Fig. 2(b), to design and optimize the memory subsystem
of multiple LCAs during their integration in the SoC. We first
explore the micro-architectures of the accelerators with HLS
tools and collect their memory requirements. Then, we gener-
ate optimized PLM micro-architectures by taking into account
also the characteristics of the memory IPs of the given target
technology. To reduce the memory cost, we enable the reuse
of memory IPs across the accelerators that are not executed
at the same time. This flexibility is achieved with a mem-
ory controller that encapsulates the actual memory IPs and
coordinates the accesses from the different LCAs. With this
methodology, we can design and optimize the entire memory
subsystem for SoCs with different requirements and without
necessarily modifying the accelerators.

A. Contributions

After introducing a paradigmatic example in Section II, we
present our main contributions.

1) A methodology to automatically derive the accelerator
memory subsystem for LCAs (Section III).

2) A set of technology-unaware and technology-aware opti-
mizations to reduce the cost of the accelerator memory
subsystem (Sections IV and V, respectively).

3) A flexible controller to manage the accesses to the
generated PLM micro-architecture (Section VI).

We implemented these combined contributions in a prototype
CAD tool, called MNEMOSYNE, which we used to optimize
the memory subsystems of many complex accelerators that we
designed for applications selected from two new benchmark
suites, PERFECT [28] and CORTEXSUITE [29] (Section VII).

II. ACCELERATOR DESIGN

In this section, we introduce a relatively small example to
illustrate the main issues that must be addressed when design-
ing hardware accelerators with system-level methodologies.
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Listing 1. Synthesizable SystemC code of Debayer, an accelerator for image debayering [28].

Fig. 3. Graphical representation of the Debayer accelerator presented in
Listing 1, along with associated Pareto-set implementations.

Listing 1 reports a portion of the synthesizable SystemC code
of Debayer, an accelerator for image debayering [28]. This
accelerator has been designed with three concurrent processes
(input, compute, and output) that are connected as shown
in the upper part of Fig. 3. They execute in pipeline on a
2048×2048-pixel image, which is stored in DRAM, to pro-
duce the corresponding debayered version. The accelerator is
connected to the rest of the system as shown in Fig. 1.

Example. Process compute elaborates each row of the input
image (lines 46–54). It uses a mask around each pixel and
thus requires four additional rows, two above and two below
the current one. Three data structures are used to store

the data: one for the input rows (i.e., array A0) and two for
the results (i.e., arrays B0 and B1). Array A0 (line 6) is imple-
mented as a circular buffer with the capacity of storing 6×2048
pixels. In fact, an additional row is stored to overlap commu-
nication and computation. So, after reading the first five rows,
process input fetches one new row at each iteration through
the DMA controller (lines 26–30), discarding the oldest one.
Arrays B0 and B1 (lines 7 and 8) are used, instead, to form a
ping-pong buffer. Each array stores one row (i.e., 2048 pixels).
In this way, process output can send one row back to DRAM
(lines 67–71), while process compute is producing the next one
into the other array. The three processes work in pipeline and
synchronize their execution through explicit protocol signals
(valid, ready) such that one process cannot start its compu-
tation before the previous one has produced the required amount
of data (lines 32 and 47, and lines 55 and 66). By using such
latency-insensitive protocol [30], it is possible to vary the exe-
cution time of one process without affecting the execution of
the others. �

The circular buffer and the ping-pong buffer are mecha-
nisms widely used in high-throughput accelerators to optimize
communication and computation at the cost of increasing
the PLM size [7]. The former allows the reuse of local
data, thus minimizing the amount of data transfers with
DRAM. The latter allows the overlapping of computation and
communication.

A. Design Space Exploration

HLS tools allow the design of accelerators at a higher level
of abstraction. The designer can generate many alternative
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RTL implementations by applying multiple knobs to trade-
off performance metrics (e.g., latency) and area/power costs.
In the set of resulting designs, it is possible to identify
Pareto-optimal choices, as shown in the lower part of Fig. 3.

Example. Consider the implementations of process compute.
Implementation E is obtained by unrolling L3 for two itera-
tions, which requires two concurrent memory-read operations.
Implementation F is obtained by unrolling L3 for four iterations
to maximize performance at the cost of more area, but with only
two memory-read interfaces; this creates a bottleneck because
the four memory operations cannot be all scheduled in the
same clock cycle. Implementation G, which Pareto-dominates
implementation F, is obtained by unrolling L3 for four itera-
tions and having four memory-read interfaces to allow the four
memory-read operations to execute concurrently. �

B. Accelerator Logic Design

Based on the overall requirements of the SoC architecture,
the designer then selects an implementation for each process
to create the final system (i.e., compositional HLS [23], [24]).
Compositional HLS allows IP designers to optimize the dif-
ferent hardware blocks separately and more efficiently, but
requires that selecting an implementation for one block does
not imply any changes to the others. This is critical for shared
resources, such as memory elements. In fact, changing the
number of concurrent memory operations on a data struc-
ture shared between two components may impact the memory
operations of the other components.

Example. Assume that implementations A and E are selected
for processes input and compute, respectively; then, array A0
must be stored in a PLM with one memory-write interface and
two memory-read interfaces. Instead, if implementation G is
selected for process compute, the PLM for storing the same
array requires four memory-read interfaces. �

C. System-Level Memory Optimization

We aim at generating an optimized memory subsystem for
one or more accelerators. The designer provides information
on the data structures to be stored in the PLMs, along with
additional information on the number of memory interfaces
for each accelerator and the compatibilities between the data
structures. This information is used to share the memory IPs
across accelerators whenever it is possible. Our approach is
motivated by the following observations. First, when a data
structure is not used, the associated PLM does not contain
any useful data; the corresponding memory IPs can be reused
for storing another data structure, thus reducing the total size
of the memory subsystem [10]. Second, in some technologies,
the area of a single memory IP is smaller than the aggregated
area of smaller IPs. For example, in an industrial 32 nm CMOS
technology, we experimented that a 1024×32 SRAM is almost
40% smaller than the area of two 512×32 SRAMs, due to
the replicated logic for address decoding. In these cases, it is
possible to store two data structures in the same memory IP
provided that there are not conflicts on the memory interfaces,
i.e., the data structures are never accessed at the same time
with the same memory operation. Next, we formalize these
situations.

Fig. 4. Methodology overview for accelerator memory design.

To understand when two data structures can share the same
memory IPs, we recall the definition of data structure lifetime.

Definition. The lifetime of a data structure b is the interval
time between the first memory-write and the last memory-read
operations to the data structure [31]. �
Having two data structures with no overlapping lifetimes

means that while operating on one data structure the other
remains unused. Hence, we can use the same memory IPs to
store both of them. On the other hand, even when two data
structures have overlapping lifetimes, it is still possible to share
memory interfaces to potentially reduce the accelerator area.

Definition. Two data structures bi and bj are address-space com-
patible when their lifetimes are not overlapping for the entire
execution of the accelerator. They are memory-interface com-
patible when it is possible to define a total temporal ordering of
the memory operations so that two read (resp., write) accesses
to bi and bj never happen at the same time. �
When two data structures are memory-interface compatible,

memory-read and memory-write operations are never executed
at the same time on the same data structure.

Example. Processes compute and output of the Debayer acceler-
ator in listing 1 use arrays B0 and B1 to exchange data. When
process compute is writing into B0, process output is reading
from B1 and vice versa. Hence, the two arrays are never written
(read) at the same clock cycle. �

III. PROPOSED METHODOLOGY

To assist the system-level optimization of the memory sub-
system for K accelerators, we propose the methodology shown
in Fig. 4. Our methodology takes as input the SystemC
descriptions of the accelerators (Accelerator Design1...k) and
the information about compatibilities among their data struc-
tures (Compatibility Information). We first use a commercial
HLS tool to perform design space exploration and generate
many alternative micro-architectures of each accelerator logic
in order to optimize the performance (HLS and DSE). Each
implementation is characterized by a set of data structures
to be stored in the PLM and the corresponding requirements
in terms of memory interfaces (Memory Requirements1...k).
After selecting an implementation for each component, we
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determine the combined requirements in terms of memory
interfaces to access each data structure in order to guarantee
performance and functional correctness (Technology-unaware
Transformations1...k). We combine the information on all
data structures (Memory Requirements1...k), the information
on compatibilities (Compatibility Information), and the char-
acteristics of the memory IPs in the Memory Library to
determine an optimized architecture for each PLM. First, we
apply transformations for each accelerator (Local Technology-
aware Transformations1...k). Then, we consider all accelerators
at the same time and identify when the memory IPs can be
reused across different data structures to minimize the cost
of the entire memory subsystem (Global Technology-aware
Transformations). As output, we produce the RTL description
of the memory subsystem (Generation of RTL Architecture)
that can be directly integrated with the RTL descriptions of
the accelerator logic generated by the HLS tool.

We implemented the steps related to memory optimiza-
tion (from 2 to 5 of Fig. 4) in a prototype tool, called
MNEMOSYNE. We interfaced MNEMOSYNE with a commer-
cial HLS tool to automatically derive the memory requirements
based on the knobs’ configuration. In the following sections,
we describe each of the memory-optimization steps, based on
the notations reported in Table I.

IV. TECHNOLOGY-UNAWARE TRANSFORMATIONS

In the HLS phase, the designer applies a set of micro-
architectural optimization knobs to tradeoff performance and
cost for the accelerator logic. The corresponding PLM archi-
tecture has then to be designed so that the accelerator behaves
correctly and achieves the desired performance. Specifically,
the PLM must provide each data to the accelerator logic in
the number of cycles (usually one) assumed by the HLS
scheduling phase. For functional correctness, no more than
one operation must be executed on each port of the memory
IP at the same time (i.e., conflict-free accesses to the banks).
It is thus necessary to determine the number of concurrent
memory operations required to access each data structure and
the corresponding number of memory interfaces. These com-
bined memory requirements determine the number of parallel
blocks required by each data structure to avoid conflicts when
accessing the banks. To reduce the cost of the entire memory
subsystem, we identify data structures that can be assigned
to the same PLM element and share the same memory IPs.
So, this logical organization of the physical memory IPs into
parallel blocks can vary from one data structure to the other
of the same PLM element.

Example. Consider two address-space compatible data struc-
tures bi and bj. Each requires one memory-write interface, while
they require four and two memory-read interfaces, respectively.
The PLM element is organized in four parallel blocks for bi;
this requires at least four memory IPs, which can be logically
reorganized in two parallel blocks for bj. �

To identify the minimum number of memory interfaces that
can access the data at the same time allows us to minimize
the number of parallel blocks and, in turn, of memory IPs.

Example. Assume a 512×32 array to be stored in the PLM.
Process input produces the data. Processes compute1 and
compute2 need access to the data with two memory-read
interfaces each. Without any additional information, the array

TABLE I
SUMMARY OF THE NOTATIONS USED IN THIS PAPER

requires four parallel blocks, two for compute1 and two for
compute2. The designer may specify that, by construction,
processes compute1 and compute2 never access the data at the
same time (e.g., they execute serially). If so, two parallel blocks
are sufficient since the two available memory-read interfaces can
be used alternatively by compute1 and compute2. �

We propose the following approach to identify the minimum
number of parallel blocks. During HLS, the designer speci-
fies the read and write interfaces (Rb and Wb, respectively) to
access each data structure b. Multiple write operations from
one process can be supported only if they write consecutive
addresses. This defines the number Wb of write blocks. Write
operations from different processes can be supported only if
they can share the same interfaces (i.e., only one process writes
the data at each time). To identify the minimum number of
read interfaces, we apply graph coloring to a conflict graph
of the read interfaces based on compatibility information pro-
vided by the designer. Each node represents a read interface
rb ∈ Rb, while an edge is added between two interfaces rb

i
and rb

j if the designer specifies that they may access the data
at the same time. Let proc(·) be a function that returns the
process associated with the corresponding interface rb ∈ Rb.
A conflict edge is added when: 1) the two interfaces refer to
the same process, i.e., proc(rb

i ) = proc(rb
j ) and 2) processes

proc(rb
i ) and proc(rb

j ) execute concurrently. We use a greedy
heuristic to assign a color to each node of a graph such that
two connected nodes have different colors. The resulting num-
ber of colors corresponds to the number |Lb| of memory-read
interfaces needed to access the data structure.

To determine the final number and capacity of the parallel
blocks Pb for a data structure b of size Height, we analyze its
access patterns and determine how to allocate the data. If the
read patterns are deterministic and can be statically analyzed,
we can distribute the data structure across many blocks; this
cyclic partitioning technique [26] assigns consecutive values
of the data structure to different blocks, as shown in the upper
part of Fig. 5 (here, the number of parallel blocks is the least
common multiple between Wb and |Lb| [Pb = lcm(Wb, |Lb|)]
and each block has capacity CPB = �Height/Pb�). Otherwise,
we must create identical copies of the data in the write blocks
(Pb = Wb × |Lb|), each with capacity CPB = Height, as
shown in the lower part of Fig. 5; in this way, each memory-
read interface is assigned to a distinct parallel block and is
guaranteed to access the data without conflicts [9] as long as
the corresponding memory-write operations create consistent
copies of the data in each bank.

Example. Consider array A0 of the Debayer accelerator in
Listing 1 (6×2048 integer values). Assume that process input
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Fig. 5. Examples for the identification of parallel blocks in case of cyclic
partitioning (top) and data duplication (bottom).

produces the data with four memory-write interfaces (writ-
ing consecutive elements of the array), while process compute
reads the data with six memory-ready interfaces (|Lb| = 6).
The write block is composed of four parallel blocks (each of
3072×32 bits) to allow the four parallel memory-write oper-
ations (Wb = 4). If the six memory-read operations also
access consecutive addresses, array A0 can be implemented
with cyclic partitioning. In this case, only 12 banks are suf-
ficient [Pb = lcm(4, 6) = 12] to store the data, and the data
will be distributed over the entire set of banks, as shown in the
upper part of Fig. 5. The size of each bank is 1027×32 bits. On
the contrary, if array A0 is implemented with data duplication,
the write block (and the corresponding data) must be replicated
six times (Pb = 4 × 6 = 24 parallel blocks, each of 3072×32
bits) so that the six memory-read interfaces can access the data
independently (see lower part of Fig. 5). �

V. TECHNOLOGY-AWARE TRANSFORMATIONS

Based on the technology information in the memory library,
we can determine the composition of each parallel block in
terms of memory IPs. Specifically, the capacity of the parallel
block CPB may be larger than the capacity of the selected
memory IP (Size). In this case, the data must be partitioned
into multiple consecutive memory IPs. This technique is called
block partitioning [26] and determines the number of memory
IPs into each parallel block, which is equal to �CPB/Size�.

Example. In the Debayer accelerator of Listing 1, the bi-
dimensional array A0 contains 6×2048 integer elements (12 288
integer values) to be stored in the PLM. If only one memory-
write and one memory-read interfaces are required to access A0,
then a parallel block of capacity CPB = 12 288 is sufficient. The
array can be implemented with three 4096×32 SRAMs in case
of standard-cell technology and 24 512×32 BRAMs in case of
FPGA devices. �

A. Local Transformations

After defining the parallel blocks, we apply more optimiza-
tions on the bank architecture to obtain a data layout that
maximizes the use of memories, while minimizing their cost.

1) Data Merging: When a process has multiple memory-
write interfaces that produce consecutive values, it is possible
to write them in a single clock cycle. Additionally, if the aggre-
gated bitwidth of these memory-write operations is supported
by the memory IPs in the technology libraries, it is possible
to write them with a single memory operation.

Example. Assume that the Debayer accelerator of Listing 1 is
configured to process 128×128-pixel images. Array A0 thus
stores 768 values (6×128). Assume also that process input is
implemented with implementation b (two memory-write opera-
tions) and connected to a 32-bit data bus and array A0 can be
represented with 16 bits. This implementation corresponds to
two 16-bit write blocks (each of 384×16 bits) that need to be
stored into two BRAMs. However, these parallel write blocks
can be merged into a single 384×32-bit write block, where the
two values are concatenated and written in the same clock cycle.
The read interface will simply select the proper part of data
obtained from the block based on the given address (i.e., signal
slicing). The resulting write block can be completely contained
into a single BRAM, thus reducing the resource requirements
for the implementation of the array. �

The input data to the memory IP is obtained by con-
catenating the values from the memory-write interfaces. For
memory-read operations, the interface reads the entire memory
line and provides only the part that is effectively requested.

2) Data Splitting: This transformation can optimize the
implementation of data structures whose bitwidth is differ-
ent from the one of the memory IPs available in the library.
Specifically, the data structure is split into smaller data tokens
and written into different parallel blocks. When a memory-
read operation is performed, all parts are read from the parallel
blocks and concatenated to recompose the data.

Example. Consider the implementation of a 12 264×35 array
on FPGA, where the available BRAMs have a maximum
width of 32 bits. We thus need at least two parallel
blocks to store this array. Using the 512×32 configura-
tion of the BRAMs requires 24 BRAMs to store the array
(�12 264/512�) with two parallel blocks. The resulting imple-
mentation consists of 48 BRAMs. Alternatively, we can use
the 4096×4 configuration, splitting each input value into
nine parallel blocks. This corresponds to three parallel blocks
(�12 264/4096�) replicated nine times, for a total of 27
BRAMs. �

Each memory-write operation corresponds to multiple
writes to each parallel block (at the same address). Similarly,
a memory-read operation gets the different parts from the
proper banks and recomposes the data by concatenating
the values.

3) Optimization Algorithm: To identify the proper combi-
nation of merge and split factors, we developed Algorithm 1.
We first determine all candidates for block merging
(MergeCandidates, line 3), which capture all the pos-
sibilities to combine the current number of parallel blocks
Pb. For each of these candidates, we compare the resulting
data structure with all memory IPs in the library (lines 4–11)
in order to determine whether split (lines 6–8) or merge
(lines 10 and 11) operations are possible. The resulting config-
uration of the blocks (obtained with the function GetCfg) is
generated by considering the hypothetical implementation of
the data structure with the current bank mem (lines 8 or 11).
Finally, these configurations are sorted in ascending order,
starting from the one with the minimal memory cost (line 12).
This configuration determines which operation must be per-
formed on the banks (split or merge); width and num-
ber of blocks are updated accordingly (lines 13 and 14,
respectively).
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Algorithm 1: Algorithm to Determine Merge/Split
Operations to be Performed on the Parallel Blocks

1 Procedure DetermineBlockOptimization (b, Pb, width)
Data: b is the buffer to be implemented
Data: w is the current width of the write block
Data: Pb is the current configuration of the write block
Result: ŵ is the updated width of the write block
Result: P̂b is the updated configuration of the write block

2 L← ∅
3 foreach m ∈MergeCandidates(Pb) do
4 foreach mem ∈ MemoryLibrary do
5 if m == 1 then
6 if w > Width(mem) then
7 split← �w/Width(mem)�
8 L← L ∪ GetCfg(b, Pb, mem, w, 1, split)

9 else
10 if w ∗ m ≥ Width(mem) then
11 L← L ∪ GetCfg(b, Pb, mem, w, merge, 1)

12 cfg← GetFirst(OrderByTotalArea(L))
13 ŵ← w ∗ cfg.merge / cfg.split
14 P̂b ← Pb ∗ cfg.split / cfg.merge
15 return {w, P̂b}

B. Analysis of Compatibility Information

The compatibility information provided by the designer is
combined into a memory compatibility graph (MCG), which
captures the sharing opportunities among the data structures.

Definition. The MCG is a graph MCG = (B, E) where each
node b ∈ B represents a data structure to be stored in the entire
memory subsystem; an edge e ∈ E connects two nodes when
the corresponding data structures can be assigned to the same
physical memory IPs. Each edge e ∈ E is also annotated with
the corresponding type of compatibility (e.g., address-space or
memory-interface). �
MCG is the dual of the memory exclusion graph presented

by Desnos et al. [32], which instead contains information
on the data structures that cannot be allocated at the same
address space in an MPSoC. An MCG with no compatibility
edges corresponds to implementing each data structure in a
dedicated PLM element. Increasing the number of edges into
the MCG corresponds to increasing the number of compati-
ble data structures. This can potentially increase the number
of banks that can be reused across different data structures.
An accurate compatibility graph is the key to optimize the
memory subsystem of the accelerators. In most cases, the
designer has to analyze the application’s behavior or mod-
ify the interconnection topology of the accelerator to increase
sharing possibilities.

1) Identification of Compatibilities: Control signals
between the processes can be used to synchronize their
execution and vary the lifetime of the data structures, thus
increasing the situations in which it is possible to identify
compatibilities.

Example. Assume two computational processes C1 and C2,
each having a local 512×32 data structure to store tempo-
rary results. The standard implementation requires two memory
blocks (e.g., two 512×32 BRAMs) for storing the two data
structures because the two processes may access them at the
same clock cycle. However, we can introduce additional signals
between C1 and C2 to serialize the execution so that process
C2 can start only when process C1 terminates and process C1
can restart only after process C2 ends. As a result, the two local

data structures have nonoverlapping lifetimes and can be stored
in the same memory block (e.g., a single 512×32 BRAM). �

Two data structures can also share the memory banks when
they are always accessed by mutually exclusive parts of the
accelerator’s code. The analyses of the code to be synthesized
can also identify local data structures of a process that are
never active at the same time, as well as the exact dependences
between input and output ones. For example, when different
computations are performed based on control conditions, dif-
ferent data structures may be read/written; in this case, they
can share the same storage resources because these are always
accessed in mutual exclusion. To identify such compatibilities,
the designer has to perform an accurate dataflow analysis at
different levels, i.e., both on the accelerator’s interconnection
topology and on the code of each process. On the other
hand, it is also possible to use the following conservative
assumptions.

1) The lifetime of a data structure shared between two
processes spans from the beginning of the producer exe-
cution to the end of the consumer execution; if there
are multiple consumer processes, the termination of the
last consumer process determines the end of the data
structure lifetime.

2) Local data structures are alive from the beginning to the
end of the process, when they store temporary local data,
or from the beginning to the end of the entire accelerator
execution, when they are used to maintain the state.

Moreover, when accelerators are never executed simultane-
ously, all data structures belonging to different accelerators
are address-space compatible with each other. This allows the
reuse of memory IPs across multiple accelerators.

Based on the characteristics of the available memory IPs,
the designer can decide to implement the data structures in a
larger memory IP.

Example. The two memory-interface compatible arrays B0 and
B1 of the Debayer accelerator in Listing 1 (each having the size
of 2048×32 bits) can be implemented in standard-cell technol-
ogy with a single 4096×32 SRAM (with array B1 starting in
the second half of the memory block), instead of two 2048×32
SRAMs. In our industrial 32 nm CMOS technology, this reduces
the memory area by almost 20%. Conversely, in FPGA tech-
nologies, BRAMs have a maximum capacity of 512×32 bits and
we need multiple instances to virtually increase the size. Since
both implementations require 10 BRAMs there is no difference
in using one or the other. �

Memory-interface compatibilities can be also enabled by the
different representations used by the designer who implements
the communication mechanisms in the SystemC design. For
example, the same ping-pong buffer can be represented as a
single data structure with an offset or as two distinct arrays.

Example. Consider again the Debayer accelerator of listing 1.
The ping-pong buffer between processes compute and output
is implemented with two distinct arrays B0 and B1 (each
containing 2048 integer values) to be accessed independently.
However, it can be also represented as a single array, whose
size is 2×2048 integer values since it needs to contain both
parts at different offsets. Even if the two solutions are func-
tionally equivalent and the total amount of data to be stored is
the same, the first implementation requires two distinct PLM
elements. �
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Algorithm 2: Algorithm to Determine the Physical Banks
Required to Implement Each Clique

1 Procedure DeterminePhysicalBanks(Ci)
Data: Ci is the clique to be implemented
Result: N is number of memory IPs required to implement the clique
Result: Size is the size of each memory IP

2 Pi ← GetMinParallelBlocks(Ci)
3 b← GetFirst(OrderByNumBlocks(Nodes(Ci),Pi))
4 N ← GetMinParallelBlocks(b) // current bank number
5 Size← 0 // current capacity of each bank
6 if IsPartitioned(b) then
7 Size← GetDataSize(b) / N
8 else
9 Size← GetDataSize(b)

10 foreach b ∈ OrderByNumBlocks(Nodes(Ci),Pi) do
11 S← Floor(N/ GetBanks(b))
12 if IsPartitioned(b) then
13 if GetDataSize(b) / GetBanks(b) > Size ∗ S then
14 Size← GetDataSize(b) / (GetBanks(b) ∗S)

15 else
16 if GetDataSize(b) > Size ∗ S then
17 Size← GetDataSize(b) /S

18 〈N, Size〉 ← SplitBanks(N, Size)
19 return 〈N, Size〉

With our approach, we use technology-aware information
to determine the best implementation for the data structures
rather than being limited by the way in which the designer
defines them before HLS.

C. Global Transformations

1) Definition of Memory Subsystem: We target the problem
of optimizing the memory subsystem at the system level by
identifying possibilities for reusing banks across different data
structures, even from different accelerators. For doing this, let
us first recall the definition of clique.

Definition. A clique Ci of a graph G = (V, E) is a nonempty
subset of nodes (i.e., Ci ⊆ V) inducing a complete subgraph
(not necessarily maximal) of G. �
In our context, each clique Ci of the MCG represents a set

of data structures that can share the same physical banks (i.e., a
PLM element). Given a clique Ci, each data structure b ∈ Ci
is characterized by the minimum number of parallel blocks
Pb needed to satisfy its combined requirements of read and
write interfaces, as described in Section IV. This information
is used to compute the organization of the memory architec-
ture (in terms of number and characteristics of the physical
banks) for the clique Ci and its cost Ai. We can thus formu-
late the system-level memory allocation problem as a graph
partitioning problem.

Definition. Let MCG = (B, E) be the MCG associated with
the set of data structures B. The optimal memory allocation
consists in finding a partition of B into n disjoint cliques C =
(C1, . . . , Cn) of minimum cost. The cost A of a partition is

A =
n∑

i=1

Ai (1)

where Ai is the cost of clique Ci. The cost A of the entire
memory subsystem is the value to be minimized. �
Algorithm 2 determines the number of banks and their size

to efficiently implement each clique Ci. In our implemen-
tation, each clique has a homogeneous organization, where

all physical banks have the same size. This has multiple
advantages: it eases the reorganization of the banks to
store different data structures; it benefits the floorplanning
of the modules by enforcing a regular design [33]; and it
simplifies the logic to create the associated memory con-
troller. Specifically, for each data structure contained into the
clique, we compute its minimum number of parallel blocks
(GetMinParallelBlocks) with the approach discussed in
Section IV. We sort the data structures in a descending order
(OrderByNumBlock), from the one that requires the maxi-
mum number of parallel blocks to the one with the minimum
number. This determines the maximum number of parallel
blocks and, thus, the minimum number of banks that are
required to provide this bandwidth (lines 3–5). We also deter-
mine an initial size for these banks based on the data allocation
strategy to be implemented (lines 6–9).

Then, we analyze all data structures following the same
descending order and we seek for opportunities to reuse the
banks. In particular, when a data structure requires a lower
number of parallel blocks, it can reuse the exceeding ones in
series to virtually increase the capacity of the parallel blocks
(lines 11–17). We also check if the data structure can fit into
this new configuration (line 12). If not, the size of the banks
is updated accordingly to the data allocation strategy.

Example. Let us assume that the current number of banks is
four (each having size of 128 words) and that we need to store
a data structure which has size of 900 integer values, parti-
tioned in three parallel blocks. The existing four banks cannot
be redistributed into the parallel blocks and for this reason S = 1
(line 11). Since this organization is not sufficient to store the
entire data structure (line 13), each of the four banks is expanded
to store 300 integer values (line 14). �

On the other hand, if the banks can be rearranged and
reused, it is not necessary to change their size.

Example. Let us assume that we now have four banks, which
have a size of 300 words, and we need to store a data structure of
512 integer values, which requires two parallel banks (P = 2)
but with data duplication. The four banks can be rearranged
in two blocks of two banks each (S = 2); the two serial banks
provides a virtual capacity of 600 words for each parallel block.
Here, we can store the data with a serial reorganization of the
banks without any changes to their size (line 16). �

Finally, if the current size is greater than the largest memory
IP of the library, the banks are implemented with the necessary
number of serial memory IPs (SplitBanks, line 18).

2) Memory Footprint Minimization: To obtain an efficient
system-level allocation of the memory elements, we partition
the MCG in cliques such that the total cost is minimized
[see (1)]. The cost of each clique is computed as the aggre-
gated requirement of resources (either silicon area or number
of BRAMs) for its implementation. Specifically, we enumerate
all admissible cliques and compute the bank organization for
each of them with the above procedure. Based on the infor-
mation in the technology library, we associate the resulting
cost to each clique, which is expressed as µm2 for standard-
cell technologies and as a number of BRAMs for FPGA
technologies.

Selecting the best MCG partition can be formulated as a
clique partitioning problem, which is NP-hard. The goal is to
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minimize the memory cost of the system, defined as

MEM =
N∑

i=1

Ai ∗ ci (2)

where N is the total number of admissible cliques, Ai is the
resource requirement of the clique Ci, while ci is a Boolean
variable that specifies whether the clique is included in the
final solution or not.

Given each data structure bi and assuming that Ci represents
the set of cliques that contains bi, we need to ensure that the
data structure is contained into only one clique. Hence, for
each data structure bi, we impose the following constraint:

∀bi :
∑

n∈Ci

cn = 1. (3)

Each of the resulting cliques requires the generation of the
logic to convert the requests from the memory interfaces into
the proper requests to the actual physical banks.

VI. GENERATION OF THE PLM CONTROLLER

This section describes the architecture and the design of
the flexible memory controller that we use to coordinate
accesses between the accelerator logic and the PLM element
architectures that we generate. From the accelerator logic’s
viewpoint, each data structure b has a certain number of mem-
ory interfaces, based on the requirements of the processes that
need to access it. An active request performed by the acceler-
ator logic on one of these interfaces corresponds to a memory
operation on the data structure b. The physical implementa-
tion of the PLM is transparent to the accelerator logic, which
simply specifies an offset (logical address) with respect to the
beginning of the data structure.

Based on the organization of the PLM element, where the
data structure is stored, two steps must be performed for each
memory operation: 1) identify which physical bank effectively
contains the requested data and activate the memory operation
only on that one and 2) translate the logical address into the
corresponding physical address of the bank.

Example. Let us consider array A0 of the Debayer accelera-
tor of listing 1. Let us assume that process compute needs to
read the sixth element of this array. The corresponding read
interface will have an active request with logical address set
to 5 (i.e., A0[5]). If array A0 is implemented with cyclic
partitioning over two banks (e.g., implementation E with two
parallel reads), this corresponds to reading the third element of
the second bank. If cyclic partitioning is performed instead over
four banks (e.g., implementation G with four parallel reads),
this corresponds to reading the third element of the second
bank. Conversely, if array A0 is implemented with data dupli-
cation, the access will refer to the sixth element of any of the
banks. �

Each memory interface provides five main signals.
1) Chip Enable (CE): It indicates the presence of an active

request on the associated interface.
2) Address (A): For processes, it represents the logical

address to be accessed, while, for memories, it corre-
sponds to the physical address to be accessed. In case
of processes, the bitwidth of A corresponds to the size of

the data to be accessed, since they have no information
about the memory organization. In case of memories, the
bitwidth of A corresponds to the size of the memory IP.

3) Input Data (D): It represents the data to be written
into the memory and thus it is present only in write
interfaces.

4) Output Data (Q): It represents the data read from the
memory and thus it is present only in read interfaces.

5) Write Enable (WE): When active, the request is a write
operation and the corresponding input data D is valid.

In case of cyclic partitioning over P parallel blocks, the func-
tion to translate a logical address into the corresponding block
address is: block(i) = logical(i)/P. The logic to implement the
translation is greatly simplified if P is a power of two because
the operation can be transformed into a hardware-friendly shift
operation. In case of data duplication, all banks contain the
same copy of the data structure and the corresponding func-
tion is: block(i) = logical(i). When the address block(i) is
larger than the bank capacity Size, the physical address of the
actual bank is determined as: physical(i) = block(i) mod Size.
Again, this operation is greatly simplified if the bank capacity
is a power of two.

With this approach, we need to synthesize the accelerators
only once and we can combine them in multiple scenarios
without any changes. For this, we use a flexible memory con-
troller with an address translation unit (ATU) that we generate
directly in RTL from a high-level template. The ATU is gen-
erated for each port of the memory banks and is composed
of two parts: 1) the activation unit determines if the mem-
ory interface is accessing a value that is effectively stored
in the bank and 2) the translation unit translates the logical
address from the accelerator logic into the physical address
of the bank. Specifically, each bank has tags assigned during
the controller generation, based on the configuration of the
data structures. The activation unit then analyzes the memory
request corresponding to a data structure (i.e., Chip Enable
and Address) to determine whether it matches with the related
tags. By construction, in each clique only one request is active
during the same clock cycle time on any given bank port.
Since no more than one activation unit is active at each clock
cycle, the CE signal of one port is the output of an OR gate
with the results of all corresponding activation units as input
(Fig. 6). This signal is also used to control the multiplexing
of the translation units and the values connected to the Input
Data port of the memory when writing.

Example. The PLM controller of Fig. 6 accesses two banks for
two different data structures (A and B) that are never accessed
at the same time. In the upper part, array A is accessed with
two memory-read interfaces and it is thus allocated with cyclic
partitioning over the two banks (tag P). The less significant bit
of the address is used to identify which bank is accessed by each
operation. In the lower part, array B is larger than the single
bank and it is thus stored with block partitioning over the two
banks (tag S). The most significant bit of the address identifies
which bank is accessed by the memory-read operation. �

The ATU is a specialized component similar to the mem-
ory management unit (MMU) for processor cores. Differently
from the MMU that uses a TLB to convert the addresses, the
ATU design is customized for the specific data structure [34]
and to guarantee that the translation does not introduce any
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Fig. 6. Architecture of the ATU proposed in this paper and address
decomposition.

additional cycle. The ATU architecture is greatly simplified
if both the number of parallel blocks Pb and the size of each
physical bank are a power of two. In this case, the logical
address to access a data structure b of size Hb is composed
of �log2(H

b)� bits that can be decomposed as follows:
⌈

log2

(
Hb

)⌉
=

{⌈
log2(S)

⌉
, log2(Size), log2

(
Pb

)}
.

Hence, the translation unit simply implements signal slicing.

VII. EXPERIMENTAL RESULTS

We implemented our methodology in MNEMOSYNE1,
a C++ prototype tool where the problem described in
Section V-C has been formulated as an integer linear pro-
gramming problem and solved with COIN-OR [35].

A. Experimental Setup

We selected and analyzed several computational
kernels from two recently-released benchmark suites,
i.e., PERFECT [28] and CORTEXSUITE [29]. These suites
contain kernels of various domains of interest, ranging
from computer vision to machine learning. The selected
benchmarks, shown in Table II, represent a variety of
memory-access patterns and are suitable for memory-
related optimizations. We designed synthesizable SystemC
descriptions of these accelerators starting from the C-based
implementations provided in the benchmark suites. The
structure of all accelerators follows the template described in
Section II, with multiple communicating processes.

In our experiments, we targeted two different technologies.
1) CMOS: An industrial 32 nm CMOS process with the

corresponding memory generator to create SRAMs of
different sizes. For this, we generated a library of 18
SRAMs, ranging from 128×16 to 2048×64. Synopsys
Design Compiler J-2014.09-SP2 is used for logic syn-
thesis, with a target frequency of 1 GHz.

2) FPGA: A Xilinx Virtex-7 FPGA device. For this, we
used dual-port 16 Kb BRAMs as memory blocks (in

1Mnemosyne was the personification of memory in Greek mythology.

TABLE II
DETAILS OF THE APPLICATIONS CONSIDERED IN THIS PAPER

TABLE III
DETAILS OF ACCELERATORS’ IMPLEMENTATIONS

the six available configurations that have different port
aspect ratios [17]). Xilinx Vivado 2015.2 is used for
logic synthesis, with a target frequency of 100 MHz.

We used Cadence C-to-Silicon 14.2 to generate implementa-
tions for the accelerator logic. Table III reports the number of
data structures to be stored in the PLM of each accelerator
and their total size. It also reports the resource requirements
for the Baseline versions of the accelerators (i.e., without
any proposed optimizations). We report information for the
accelerator logic (LOGIC) and the memory (PLM) for both
technologies (CMOS and FPGA). We then used MNEMOSYNE

to design the memory subsystem for these accelerators
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Fig. 7. Normalized area (with respect to Baseline) for each memory
subsystem when the accelerators are designed separately (CMOS technology).

Fig. 8. Normalized area (with respect to Baseline) for each memory
subsystem when the accelerators are designed separately (FPGA technology).

in different experiments. As part of each experiment, we
performed RTL simulation with Mentor ModelSim 10.1 to
evaluate the functional correctness and performance of the
resulting accelerators. This analysis confirmed that all acceler-
ator designs work correctly without any possible performance
overhead due to the PLM controller. In case of CMOS technol-
ogy, we used these simulations also to collect the switching
activity of the generated netlists in order to perform power
analysis with SAIF back-annotations. We also tested our accel-
erators in an FPGA-based full-system prototype, where the
processor core running a complete Linux OS executes soft-
ware applications that invoke the accelerators through device
drivers [7]. The accelerators that share memory IPs are seri-
alized by their device driver so that they never execute at the
same time. They also share the same interface with the rest of
the system (i.e., DMA controller and configuration registers
in Fig. 1).

B. Single-Accelerator Optimization

In the first set of experiments, we used MNEMOSYNE

to analyze the impact of the proposed optimizations on the
accelerator PLMs. We performed four experiments for each
accelerator: Baseline with no optimizations; Compatibility
where we use compatibility information to share memory IPs
and the computation of the parallel blocks is performed with
a conservative approach; Coloring where the computation of
parallel blocks is performed with our graph coloring-based
approach (Section IV); and Final with all our optimizations
active at the same time. Figs. 7 and 8 show the results for
the two target technologies, respectively. Each bar represents
the cost of the corresponding memory subsystem (either in
terms of µm2 for CMOS or number of BRAMs for FPGA),
normalized with respect to the Baseline one.

Baseline results show that our methodology can fully auto-
mate the design of accelerators’ memory subsystems. In these
cases, the designer does not provide any information about
compatibilities and MNEMOSYNE generates a conservative
memory subsystem, at the cost of more area.

Compatibility results show that compatibility information
about data structures can be used to reduce the area of the
memory subsystem. For example, we obtain almost a 20%
area reduction in CMOS technology for Sort, FFT-1D, and
Lucas Kanade. However, there is no area reduction when
targeting FPGA for the same benchmarks because the data
structures are larger than the capacity of the BRAMs. Note that
these accelerators were designed for high-throughput process-
ing. Since all data structures are used for the entire execution
of the accelerator, there is no potential for address-space com-
patibility. Hence, all area savings are obtained by exploiting
memory-interface compatibilities on ping-pong buffers.

Coloring results show that the proper identification of par-
allel blocks effectively reduces the area of the memory IPs by
20% on average, especially when the same data structure is
accessed by multiple processes. This optimization is particu-
larly efficient for Change Detection (up to 45% of area saving)
and most of CORTEXSUITE accelerators. Indeed, in these
accelerators, we avoid unnecessary duplication of the paral-
lel blocks (and data) by properly sharing memory interfaces
between the different processes.

Final results show that the combined optimizations can
reduce the memory area by around 20% and in some cases up
to 50% (e.g., Change Detection). Similar results are obtained
in terms of power consumption, which is proportional to the
amount of memory required to implement the PLM.

C. Multi-Accelerator Optimization

1) Case Study (RBM Application): The implementation
of the restricted Boltzmann machine algorithm in the
CORTEXSUITE is used for predicting movie ratings based on
a data set of previous users. To analyze the possibilities of
sharing memory IPs among accelerators, we redesigned the
RBM accelerator previously used by splitting it into two dis-
tinct ones to be optimized separately. The TRAIN accelerator
analyzes the training data to build the underlying model (i.e., a
bipartite neural network), while the PREDICT accelerator uses
this model to make predictions on new users. For each accel-
erator, we created three different versions, each capable of
locally storing a variable number of movie ratings and the cor-
reponding part of the RBM model (from 10 to 100 movies).
The memory footprint of these data structures ranges from 64
to 256 KB. This affects the size of the PLMs and changes the
number of DMA data transfers. The resulting speed-up varies
between 10× and 20×. Since, however, the same computa-
tional kernel is repeated over the entire set of data just with
a different number of iterations proportional to the PLM size,
to vary the PLM size has almost no impact on the area of the
accelerator logic.

First, we used MNEMOSYNE to generate distinct PLMs for
each accelerator. This is the baseline for the following exper-
iments. Then, we combined the different versions of the two
accelerators and we used MNEMOSYNE to generate the mem-
ory subsystem of each of these combinations, allowing the
possibility to share memory IPs. As reported in Table IV,
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TABLE IV
AREA SAVINGS FOR THE RBM CASE STUDY

the sharing of the memory IPs yields area savings ranging
from 18% to more than 45%. Better results are obtained when
the data structures of the two accelerators have similar amount
of data to be stored. In the other cases, the accelerator with
the largest data structures dominates the cost of the mem-
ory subsystem. Results show that MNEMOSYNE can derive
an optimal PLM organization for the given target technology
and memory library. For CMOS technology, the configura-
tion with TRAIN V0 and PREDICT V1 is the one with the
biggest area improvement (−39.25%), while, for FPGA tech-
nology, we achieve the best results (−45.39%) with TRAIN

V0 and PREDICT V2. This area saving can be used to imple-
ment bigger PLMs for each accelerator (improving the overall
performance of the RBM application) at the same total mem-
ory cost. Note that the performance of the RBM application
is not affected because the two phases are always executed
serially even without the reuse of memory IPs.

2) Resource-Oriented SoCs: To further evaluate the impact
of memory sharing across accelerators for reducing the
resource requirements, we designed four additional sys-
tems: Required, WAMI, SAR, and Cortex. In each system,
multiple accelerators are combined as follows: Required con-
tains accelerators Sort, FFT-1D, and FFT-2D. WAMI contains
accelerators Debayer, Lucas Kanade, and Change Detection.
SAR contains accelerators Interpolation 1, Interpolation
2, and Backprojection. Finally, Cortex contains the four
CORTEXSUITE accelerators.

For each of these scenarios, we reused the accelerator
logic that we synthesized for the previous experiments with
no modifications. The memory subsystem is generated with
MNEMOSYNE both with and without activating the sharing
of the memory IPs across accelerators (SHARING and NO
SHARING, respectively). Our flexible memory controller is
used to coordinate the memory requests between the accel-
erator logic and the different PLM elements. Specifically, to
synthesize the accelerators independently (NO SHARING),
we used MNEMOSYNE with no address-space compatibilities
between data structures from different accelerators. For each
accelerator of each scenario, this generates the same PLMs
obtained in the single-accelerator scenarios. To share memory
IPs between accelerators, we apply all proposed optimiza-
tions and we specified address-space compatibilities between
data structures of different accelerators. In this case, we cre-
ate a single memory subsystem for each scenario, where
MNEMOSYNE identifies the best configuration of the banks.
The experiments are replicated for the two target technologies,
e.g., CMOS and FPGA. Table V shows the results for these
experiments. We report the total number of data structures

and the corresponding memory footprint in KB. Then, for each
scenario, we report the number of PLM elements (i.e., cliques)
that have been generated (#Ctrl), along with the size (in KB)
and the cost of the entire memory subsystem. Clearly, when no
sharing is activated, each data structure is implemented with
its own PLM element. Hence, the number of resulting PLM
elements corresponds to the number of initial data structures.
Activating sharing across accelerators allows us to reduce the
number of PLM elements and their total size by implementing
more data structures with the same physical banks. Moreover,
the total area and power are generally reduced by more than
30% and 20%, respectively. Best results are obtained for appli-
cations that have similar data structures in terms of width and
height (e.g., SAR and WAMI). In these cases, the same config-
uration of the banks can be instantiated only once and reused
with almost no modifications (i.e., no area overhead).

VIII. RELATED WORK

The specialization of the memory subsystem has been
widely studied since it critical to improve performance, while
reducing both area and power [27], [36]. Recently, many
approaches have been proposed to promote the use of HLS
in the design of specialized accelerators, but memory aspects
are often ignored. Liu et al. [23] composed precharacter-
ized components to create a Pareto set of the entire system.
Li et al. [24], [37] extended a method to compose prechar-
acterized IPs through a predefined architectural template to
the design of the memory subsystem, but without consider-
ing design parameters like the number of memory interfaces.
Panda et al. [36] studied how to create custom architectures
and improve the system’s performance, both in terms of mem-
ory organization and data layout. Benini et al. [38] proposed
a technique to customize the memory subsystem given an
application profiling while accounting for layout information
to minimize power consumption. These approaches can be
extended to hardware accelerators. Baradaran and Diniz [39]
proposed data duplication and data distribution to improve
performance while considering the capacity and bandwidth
constraints of the storage resources of the accelerators. Their
compiler-based approach has been extended with a theory
for data partitioning to support more complex data access
patterns [26], [27]. All these approaches are complementary
to this paper and can be used to improve our ATU design.
However, in these cases, varying the PLM micro-architecture
to share the memory IPs across many accelerators would
require multiple iterations through the HLS steps. In our
methodology, instead, the global optimization of the memory
subsystem is independent from the optimization of each accel-
erator (see Fig. 2). In fact, as shown in Section VII, the logic
of each accelerator is reused without any modifications when
creating multiaccelerator scenarios.

Abdelhadi and Lemieux [14] analyzed various techniques to
perform multiple memory operations in the same clock cycle.
Among these, raising the memory frequency is usually limited
by the technology, while bank arbitration affects the acceler-
ator performance. Hence, we focus on register-based RAM
(created by HLS tools) and conflict-free banking (created by
MNEMOSYNE). Similar architectures are created by combin-
ing data reuse, memory partitioning, and memory merging
for FPGA [40]. Zuo et al. [41] extended this approach to
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TABLE V
SCENARIOS WITH MULTIPLE ACCELERATORS SHARING THE MEMORY IPS

the concurrent optimization of multiple processes but only
to optimize fine-grained communication, not the memory ele-
ments. Desnos et al. [32] explored the sharing and reusing
of memory elements in MPSoCs to minimize memory allo-
cation, but do not consider multibank architectures and the
constraints imposed by the limited number of the physical
ports. Vasiljevic and Chow [42] explored the possibilities to
store multiple data structures in the same BRAM through
buffer packing. All these solutions are applied before HLS.
This is efficient and elegant, but it has limitations in case of
multiple accelerators to be jointly designed and optimized.
Our approach, instead, decouples the design of the compo-
nents from their PLMs. Hence, it enables the system-level
optimization of the memory subsystem with multiple memory
IPs, eventually shared among different data structures.

Some architectures are aimed at sharing memory IPs across
many accelerators. Lyons et al. [10] proposed the Accelerator
Store, where a predefined set of memory IPs are dynamically
assigned to the accelerators. This requires the memories to
be latency insensitive [30] since their controller may intro-
duce an overhead. Cong et al. [43] proposed an NoC-based
architecture, where each tile contains small blocks that are
dynamically composed to create larger accelerators and mem-
ory blocks are shared in each tile. Instead, we generate the
memory subsystem for large accelerators with multiple mem-
ory interfaces. This paper is more similar to the work by
Cong and Xiao [44], who design a crossbar to connect the
accelerators to a set of memory banks so that each accel-
erator can access multiple ports. However, our specialized
PLM micro-architecture guarantees no performance overhead.
It also allows designers to tailor the memory IPs to the data
structures and to apply technology-related optimizations to this
micro-architecture.

IX. CONCLUSION

We presented a methodology for the system-level design of
accelerator local memory and a supporting CAD flow which
combines a new tool, MNEMOSYNE, with commercial HLS
tools. With our approach we can design and optimize the local
memory of multiple accelerators at the system level, by iden-
tifying possibilities to share physical memory IPs across many
data structures. This allows us to achieve area savings up to
55% compared to the case, where the accelerators are designed
separately.
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