
Topology-Based Optimization of Maximal Sustainable Throughput in a
Latency-Insensitive System

Rebecca L. Collins
Dept. of Computer Science

Columbia University
rlc2119@cs.columbia.edu

Luca P. Carloni
Dept. of Computer Science

Columbia University
luca@cs.columbia.edu

ABSTRACT
We consider the problem of optimizing the performance of
a latency-insensitive system (LIS) where the addition of
backpressure has caused throughput degradation. Previ-
ous works have addressed the problem of LIS performance
in different ways. In particular, the insertion of relay sta-
tions and the sizing of the input queues in the shells are
the two main optimization techniques that have been pro-
posed. We provide a unifying framework for this problem by
outlining which approaches work for different system topolo-
gies, and highlighting counterexamples where some solutions
do not work. We also observe that in the most difficult
class of topologies, instances with the greatest throughput
degradation are typically very amenable to simplifications.
The contributions of this paper include a characterization
of topologies that maintain optimal throughput with fixed-
size queues and a heuristic for sizing queues that produces
solutions close to optimal in a fraction of the time.

Categories and Subject Descriptors
B.5.2 [Register-transfer-level implementation]: [De-
sign Aids.]; F.1.2 [Computation by Abstract Devices]:
[Parallelism and Concurrency.]

Keywords
Latency-Insensitive Design, Performance Analysis.

General Terms
Algorithms, Performance.

1. INTRODUCTION
Latency-insensitive design (LID) is a design methodology

for system-on-chip (SOC) that simplifies the assembly of
IP cores and enables automatic wire pipelining up to late
stages of the design process [2]. Given a netlist of IP cores
specified in synthesizable RTL format, a latency-insensitive
system (LIS) can be automatically derived by encapsulating
each core within a shell, an automatically-synthesized block
that acts as an interface for global, i.e. inter-core, commu-
nication. The idea is to build a distributed communication
architecture that relies on a set of point-to-point, lossless,
elastic, pipelined channels instead of centralized communi-
cation resources. IP cores may be synchronous sequential
logic blocks of any complexity as long as they satisfy the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2007, June 4–8, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-627-1/07/0006 ...$5.00.

A B

rs

A B

(left) (right)

Figure 1: A simple SOC transformed into an LIS. A
and B are encapsulated in shells, and a relay station
is inserted on A’s upper channel.

component t0 t1 t2 t3
A (upper) 0 2 4 6
A (lower) 1 3 5 7

B 0 τ 1 5
Relay Station τ 0 2 4

Table 1: Output of LIS components in Fig. 1(right).

stallability requirement, i.e. their operation can be tem-
porarily stalled through clock-gating. Inter-shell channels
made of long wires can be pipelined through the insertion
of relay stations (clocked buffers with two-fold storage ca-
pacity) in order to meet the target clock period. The theory
of LID guarantees that any number of relay stations can
be distributed on these channels without requiring the re-
design of any IP core and without jeopardizing the system
behavior [3]. Essentially, this is possible because: (1) the
data exchanged by the shells are marked as either valid or
void, (2) the relay stations are initialized with void data,
(3) each shell keeps its core “unaware” of the existence of
void data by controlling it through an AND-firing policy: at
each clock cycle the shell fires the core if and only if it has
a new valid data from each input channel, and it stalls the
core otherwise. Valid data that are not consumed while the
core is stalled are buffered by input queues (a shell has a
distinct input queue per each channel). As a result, the be-
havior of the LIS is latency-equivalent to the behavior of the
original synchronous system, i.e. each channel presents the
same exact sequence of valid data modulo the void data [3].

Figure 1 shows a simple SOC and how it is transformed
into an LIS: A and B are IP Cores encapsulated in LIS
shells. We assume that the upper channel has been routed
on a path much longer than the lower channel and that this
has forced us to wire pipeline it through the insertion of a
relay station rs in order to meet the target clock period.
The output behavior of the three components is shown in
Table 1: A generates even numbers to its upper channel and
odd numbers to its lower channel and B is an adder whose
latched output is initialized to 0. We use τ to denote a void
data token as proposed in [3].

The main performance metric of an LIS is the rate of pro-
duction of valid data. This data throughput depends on two
factors: the internal structure of the system and the inter-
action with the environment where it operates. The inter-

410

23.2

A B A B

(left) (right)

Figure 2: Backedges in an LIS (left). Adding a relay
station for performance (right).

nal structure determines its maximal sustainable throughput
(MST) θ as the system effectively processes data at this rate
unless the environment forces it to slow down (e.g., by not
providing enough valid data). The insertion of a relay sta-
tion on a feedback loop of the system reduces θ because its
initialization τ continues to circulate around the loop and
causes each shell on the loop to periodically stall its core [4,
12, 13]. In the example of Fig. 1 there is no feedback loop
and the τ produced by the relay station in the first timestep
passes out of the system, which therefore has θ = 1. Note,
however, that the shell of B must still buffer the first valid
value from A’s lower channel, 1, in the corresponding input
queue while the first data value from A’s upper channel, 0,
spends a cycle in the relay station.

If this simple system does not interact with the environ-
ment, a queue of size one is sufficient to avoid any data
loss. In general, however, systems are composed to derive
more complex systems: this makes it impossible to know in
advance the sequence of τ tokens that each component will
observe. For instance, if one uplink subsystem with an MST
of 3

4
feeds another downlink subsystem with an MST of 2

3
,

only a queue of infinite size could avoid loss of data. But
since infinite queues are not realizable in practice, a shell
like B may not have enough room to buffer all of the in-
coming data. Hence, it must be able to send a stop signal
back on any input channel to indicate that its queue is full
and that the uplink shell on the channel must stall. This
operation, called backpressure [3], causes an “implicit” feed-
back loop and the system will have θ < 1. We illustrate
backpressure feedback loops in Fig. 2 by adding a backward
edge (backedge) for every forward edge of our example. If
we suppose that the shells have queues with fixed capac-
ity q = 1, this system’s MST becomes 2

3
. Note that even

though B has space to store one data token from A, it still
must stall A after filling the space since B does not know
beforehand when the relay station sends valid data: if the
relay station sends a τ when B’s lower input channel queue
is already full, B may miss a valid data token from A.

MST calculation is described in Section 2. We call a graph
G with backedges, the “double” of G, d[G]. The MST of G is
denoted θ(G). It has been shown that θ(G) = θ(d[G]) when
the system theoretically has infinite queues and practically
big enough finite queues [13]. However, it is a challenge
to determine how big finite queues must be to match the
performance of a system with infinite queues.

Sometimes an alternative to increasing queue size is to in-
sert additional relay stations that would not be required for
wire pipelining but that are useful to increase the MST. For
instance, we can insert a relay station on the second channel
as shown in Fig. 2 (right). Now A’s data is delayed one cycle
along both channels, and B receives data from both chan-
nels at the same time. This approach allows more flexible
placement of the additional storage space, but the additional
relay stations can potentially impact performance elsewhere
in the system. In Section 3.2, we present a system whose
MST cannot be optimized by only adding relay stations.

Contributions. We focus on the performance optimiza-
tion of a practical LIS (with backpressure and finite queues)
so that its MST is equal to the MST of an equivalent ideal
LIS (with infinite queues and no backpressure). In Sec. 3.1,
we show that setting every queue size to one is sufficient for

shell

relay station

q

q

Figure 3: Modeling relay station and shell with
marked graphs.

graphs that do not have reconvergent paths. Sec. 3.2 ex-
plains the limitations of the method based on relay station
insertion. When fixed queues and relay station insertion
cannot improve the MST, the queues must be increased. In
Sec. 4 we discuss the complexity of the queue sizing problem
and we present a heuristic algorithm that produces solutions
close to the optimal solutions in a fraction of the time. In
Sec. 5 we evaluate it with experimental results.

Related Work. Carloni et al. have proposed latency-
insensitive design [2, 3] and analyzed the throughput per-
formance assuming that the system has infinite queues [4].
Lu and Koh showed that the performance of an LIS with
finite queues can match the performance of an LIS with in-
finite queues if the queues are big enough [12, 13]. They
presented a mixed integer linear programming solution to
queue sizing. We share the same scope, but focus instead
on topology and the simplifications and assumptions that
can be made when something is known about the structure
of a system. Casu and Macchiarulo avoided queue sizing is-
sues by scheduling the activation of blocks and eliminating
backpressure [6, 7]. A limitation of their work is that build-
ing schedules requires that each block has knowledge about
the global system behavior.

2. LIS AS A MARKED GRAPH
The components of a latency-insensitive system produce

data or τ tokens synchronously according to a global clock.
Marked graphs are a natural model for data movement, and
we use them to evaluate throughput performance of LISs.

A marked graph is a bipartite directed graph with two
kinds of vertices: places, and transitions. By definition, each
place has exactly one incoming edge and one outgoing edge
that both go to transitions. Places have the ability to hold
0 or more tokens. Transitions cannot hold tokens, but they
can fire and move tokens around in the graph. Each in-
coming edge to a transition comes from a place, and each
outgoing edge goes to a place. A transition is enabled to fire
when the place on each of its incoming edges has at least one
token. When a transition fires, it takes a token from each
of its incoming places and puts a new token into each of its
outgoing places [9].

While the overall number of tokens in a marked graph can
change, the number of tokens in the edges of a cycle never
changes [14]. For a complete description of marked graph
properties, the reader can consult [14, 15]. For our purposes
we slightly restrict marked graphs from their original form
and we assume that they are both synchronous and deter-
ministic. The deterministic assumption forces each enabled
transition to fire (in the original definition, an enabled tran-
sition may fire nondeterministically and independently of
other transitions). The synchronous assumption forces the
firing of all “simultaneously-enabled” transitions to occur
concurrently according to a “global clock”.

Figure 3 shows the marked graph representation of a relay
station and a shell with backpressure where q = 1 (ie. shell
queues are size 1). The large white circles represent places,
the small black circles represent tokens, and the rectangles

411

Core

Shell

Core
Logic

 CTRL

Core

Shell

Core
Logic

Core

Shell

Core
Logic

 CTRL

Relay
Station

Relay
Station

Figure 4: Marked-graph model (with q = 2) of a path across multiple shells and relay stations in a LIS.

A Brelay station

Figure 5: Marked-graph model of the LIS of Fig. 1,
with q = 1.

represent transitions. Initially, the relay station’s incoming
forward edge has no token since the relay station must pro-
duce a τ in the first timestep, and its outgoing backedge
has 2 tokens corresponding to the 2 available slots in the
queue. The shell’s incoming forward edges each have one
token since the shell must produce a valid data token in
the first timestep, and its backedges have q tokens (shown
with the symbol q). Using a marked graph representation,
informative data tokens are represented by marked graph
tokens on the forward edges. The tokens on the backedges
(shown as dashed lines in the figure) instead represent avail-
able space in the queue.

Figure 4 shows a path across multiple shells and relay
stations in an RTL implementation of a LIS and the cor-
responding path in a marked-graph model with q = 2. To
avoid cluttering in the RTL diagram we do not show the
backpressure signals and we only show the single relevant
input channel in the shells. Recall that compared with a
simple edge-triggered flip-flop, which can be similarly used
to pipeline channels without backpressure, a relay station
presents the characteristic twofold buffering capability (to-
gether with the necessary control logic), thereby a secondary
(or auxiliary) register is coupled to a main register. Also, a
shell relies on the stallable core logic to latch the output sig-
nals and features by-passable input queues to avoid adding
any cycle to the original latency of a core when stalling is
not necessary. In the best case, i.e. in the absence of any
stalling, the latency to traverse either a shell-core pair or a
relay station is one clock period. In the marked-graph model
the various data storage elements in each module are ab-
stracted and a place can hold multiple tokens when stalling
occurs. When the marked graph is initialized, we place the
data tokens that will be transferred during the first clock
period behind the transition corresponding to the shell that
is initialized with this data.

The initial marking of a graph, G, specifies how many to-
kens each place has at initialization. Based on this, we can
compute the MST θ(G) of the graph by finding the cycle
with the lowest ratio of tokens to places [1]. Figure 5 shows
the marked graph representation of the LIS in Figure 1 as-
suming q = 1. The cycle {A, relay station,B,A} has 3
places but only 2 tokens, and so the system has MST of 2

3
.

To restate the problem of queue sizing, adding backpressure
may create new cycles that have lower token-to-place ratio.
But the number of tokens in backedges can be altered by
increasing the queues, so if enough tokens are added to the

A Brelay station

Figure 6: Queue sizing solution to the throughput
degradation shown in Figure 5.

doubled graph, the MST of the graph will match the lowest
ratio t : p in the undoubled graph. In Figure 6, the queue
for B’s lower channel is increased to 2, and now the system
has optimal MST. We call this problem the Token Deficit
Problem (TDP), since we must decide which places in the
marked graph should have more tokens. Section 4 formalizes
the TDP and presents a heuristic for solving it.

3. WILL FIXED QUEUE SIZING WORK?
Fixed queue sizing is setting all queues in a system to the

same length. In the example illustrated in Figure 5, the
queue sizes are fixed with q = 1. There are some classes
of LISs for which fixing q = 1 is sufficient to maintain the
optimal MST. To describe their topologies, we introduce
some graph terminology. A path p = (v0, v1, . . . , vk) is a
sequence of vertices connected by edges. The length |p| of
a path is equal to the number of its edges (k − 1). A path
(v0, v1, . . . , vk) is simple if it has no cycles. A group of simple
paths is reconvergent if they would form a cycle if the graph
were undirected. The strongly connected components (SCCs)
of a directed graph are partitions of the vertices such that
all sets of vertices in an SCC are mutually reachable. An
articulation point is a vertex without which the graph will
be disconnected [10].

3.1 SCC and No Reconvergent Paths
Claim: A practical LIS made up of SCCs with no recon-

vergent paths maintains the MST of the equivalent ideal LIS
if it has queues of size one.
Proof: Given a graph G that is strongly connected with no
reconvergent paths, let u and v be two vertices of G. Since
G is strongly connected, there is a path from u to v and a
path from v to u. If the path from u to v is p1 and the
path from v to u is p2, there can’t be any path from a node
(not u or v) in p1 to a node in p2 that does not go through
v. Otherwise there are reconvergent paths. Suppose there
is some other vertex w in G that does not lie on the paths
between u and v. There must be paths between u and w
and between v and w. Without a loss of generality, suppose
the path from w to u does not contain v. It must also be the
case that the path from u to w does not contain v (otherwise
there are reconvergent paths from w to u).

From these observations, it follows that a graph G that
is strongly connected with no reconvergent paths will be
made up of cycles such that any vertex that belongs to more
than one cycle is an articulation point. Since cycles are only

412

connected to each other through articulation points, the only
new cycles (with more than two vertices) that can result
from doubling G are the inverses of G’s original cycles, where
the inverse of cycle c is the cycle formed by the backedges
of all of c’s edges. All backedges have at least one token.
Thus, we are guaranteed that the inverse of cycle c has at
least as many tokens as c has, and the inverse does not have
a smaller ratio of tokens to places than the original cycle. So
the MST of the graph with backedges will not be less than
the MST of the graph without backedges. Cycles between
an edge and its backedge will also be added to d[G], but by
construction, they always have two tokens. 2

Likewise, an LIS with many SCCs (each without recon-
vergent paths) can also maintain optimal MST with q = 1
as long as those edges connecting its SCCs do not when dou-
bled form a cycle that has some backedges and some forward
edges - all cycles must be made of either all forward edges
or all backedges. This is true when the SCCs are connected
by a directed acyclic graph with no reconvergent paths.

3.2 Limitations of Relay Station Insertion
Relay stations can be added to LISs for two reasons. The

first is a functional reason: to break up long wire delays
so that the clock rate can be reduced. The second reason
is performance optimization: Casu and Macchiarulo suggest
“equalizing” all reconvergent paths by inserting enough relay
stations to make them have the same latency [5].

However, there are some systems for which no assignment
of additional relay stations can optimize performance. Fig-
ure 7 illustrates an example. Observe that the system’s opti-
mal MST is determined by the cycle {A,relay station, E, D,
C, B, A}, whose token-to-place ratio is 5

6
. When backpres-

sure edges are considered, the cycle {A, relay station, E, C,
A} reduces the overall system’s MST to 3

4
. To improve the

MST using relay-station insertion, a relay station must be
added to either edge (A,C) or edge (C,E). But this ends up
reducing the system’s optimal MST since these edges belong
to small cycles. For instance, if a relay station is inserted on
edge (A,C), then the cycle {A, new relay station, C, B,A}
has a token-to-place ratio of 3

4
.

In the cases where relay station insertion is not enough to
solve our throughput problems, and where we cannot avoid
reconvergent paths, we turn to queue sizing techniques.

4. SIZING QUEUES
In this section, we describe our algorithms for sizing queues

in an LIS. We approach the problem of sizing queues by ab-
stracting away the edges. In this form, the problem becomes
NP-complete. Previous approaches [12] solved the problem
with mixed integer linear programming (also NP-hard). In
general, no easy solution is known for the problem of queue
sizing.

4.1 Token Deficit Problem (TDP)
We call our abstraction of queue sizing the Token Deficit

Problem. The TDP is the problem of filling the token deficits
of cycles in an LIS graph. Let the cycles be partitioned into
sets si such that if cx, cy ∈ si, then cx and cy share edge ei
in the LIS graph. We formalize the TDP below and sketch
its proof of NP-completeness. Creating an instance of TDP
from an instance of queue sizing requires a listing of the
cycles of the graph. This step is potentially exponential,
though in many practical cases the number of cycles is not
large. We mitigate these costs by simplifying the LIS graphs
where possible: e.g., if a graph is a DAG of SCCs, possibly
with reconvergent paths, but we know that relay stations
are only inserted on the edges between SCCs, then we can
collapse each SCC to a single vertex and solve the simplified
graph - greatly reducing the number of cycles that must be

A
E

D

C

B

relay station

Figure 7: An LIS where relay-station insertion is
not enough.

enumerated. This particular case is discussed in more detail
in Section 5.1, and we show in Section 5.3 that our heuristic
solution performs well for larger graphs of this type.

Token Deficit Problem:
Instance: Set S = (s1, s2, s3, ..) where each si ∈ S is a set
{ci, cj , ...} whose elements each have a non-negative deficit
d(c) ∈ Z∗, positive integer K.
Question: Is there a weight assignment w(si) ∈ Z∗ to each
si ∈ S such that

P
si∈S w(si) ≤ K and

P
si∈X w(si) ≥

d(ci) ∀ ci ∈ si, where X is the set of all si such that ci ∈ si?

There always exists a K for which the Token Deficit Prob-
lem can be solved [12]. An easy way to look at this is to
consider that every relay station can insert at most one τ ,
or bubble into the system, and if there are R relay stations,
no cycle can be deficient more than R tokens. Adding R
extra tokens to one edge in every cycle of the graph that
has backedges guarantees that no cycle with backedges will
have a cycle mean less than 1.

The Dominating Set Problem [11] is the problem of choos-
ing vertices in a graph such that every vertex is either in
the Dominating Set or a neighbor of a vertex in the Dom-
inating Set. Dominating Set is NP-complete and can be
reduced to Token Deficit with the following construction:
Given an instance of the Dominating Set problem, i.e. a
graph G = (V,E), let S be a set of size |V |, such that each
element si corresponds to a vertex vi ∈ V , and si = vi∪{all
vertices vj that are adjacent to vi in G}. Assign each vi a
deficit d(vi) = 1. For each si, its weight assignment w(si) is
equal to 1 if vi ∈ Dominating Set and to 0 otherwise. The
proof that there is Dominating Set of size K if and only if
there is a Token Deficit Solution whose overall weight as-
signments are K is given in [8].

4.2 Solving Token Deficit
We propose a heuristic algorithm that produces a solution

in 0(|S|2|V ||C|) time, where |C| is the number of cycles and
|V | is the number of vertices in the original LIS graph. We
evaluate the heuristic in Section 5.

Heuristic Algorithm. Given an instance of the Token Deficit
Problem, assign to each element si ∈ S a weight equal to
the maximal deficit among its elements. By construction,
this initial assignment is a solution. Now,

1. For each si ∈ S whose weight is not yet fixed, decre-
ment w(si) and check that the weight assignment is
still a solution. If it is a solution, leave the new weight
of si, if not increment and fix w(si) back to its value
at the beginning of the step.

413

0 5 10 15 20
Relay Stations

0.0

0.2

0.4

0.6

0.8

1.0

T
hr

ou
gh

pu
t

v=50 s=5 c=5 rp=1

"any" infinite queue
"any" q=1
"scc" infinite queue
"scc" q=1

Figure 8: MST of graph (v=50,s=5,c=5,rp=1) given
infinite and finite (q = 1) queues.

2. If any w(si) remains unfixed, repeat Step 1. Other-
wise, stop.

To check that the weight assignment is correct costs©(|S||C|),
and

P
si∈S w(si) can be at most |S||V |, therefore the overall

complexity of this algorithm is ©(|S|2|V ||C|).
Exact Algorithm. For comparison purposes, we also de-

velop an algorithm that produces the optimal solutions to
TDP. First, the graph instance is expanded by replicating
the sets sx so that if D is the largest deficit of the ele-
ments of si, then si will be replicated D times. This sim-
plifies the problem since for all weights, w(sx) ∈ {0, 1}.
Then, we perform a binary search on K from K = 1 to
K = the heuristic solution. For each round of the binary
search, we build a K-depth search tree that branches by
choosing one of the edges to have w(sx) = 1. In the worst
case (a “no” answer), the search tree takes O((|S|D)K) time.

Preprocessing Optimizations. Before running the heuris-
tic, the following preprocessing optimizations can greatly
reduce the problem size. First, if set s′ is a subset of an-
other set s, delete set s′. Recall that the set s corresponds to
an edge, es in the LIS, and the elements of s are the cycles
that go through that edge. If s′ is a subset of s, then the
edge es is already on all of the cycles that es′ is on. We can
assume for simplicity that the extra queue space is all added
to the es, and ignore es′ . Next, if a cycle c only occurs in
a set s, the queue of the edge that corresponds to s can be
incremented by a quantity equal to the deficit of c.

5. EXPERIMENTS
To evaluate our heuristic algorithm we made a set of

experiments with LISs that were derived through random
graph generation. We built a graph generator that takes
as inputs: v (number of vertices), s (number of strongly-
connected components), c (number of cycles within each
SCC), rs (number of relay stations), whether or not recon-
vergent paths are allowed between SCCs (rp = 1 for yes, 0
for no) and a policy for relay-station insertion (either any
or scc). Graphs are generated with the following steps:

1. partition v nodes into scc partitions;

2. for each strongly-connected component, s′

(a) make a cycle that visits all of the vertices in s′;

(b) choose u, v ∈ s′ s.t. (u, v) has not already been
added to the graph, and add (u, v) to the graph;

(c) repeat step 2b (cycles - 1) times; this guarantees
that at least cycles cycles are added to s′ as long
as there are enough possible edges in s′ so that
an unused (u, v) can always be chosen;

0 2 4 6 8 10
Fixed Queue Size (q)

0.0

0.2

0.4

0.6

0.8

1.0

T
hr

ou
gh

pu
t

v=50 s=5 c=5 rp=1

5 relay stations
10 relay stations
15 relay stations

Figure 9: MST Improvement using Fixed Queues.

3. create a connected auxiliary graph whose vertices cor-
respond to SCCs in the generated graph and whose
edges are randomly chosen avoiding to create cycles be-
tween SCCs (reconvergent paths are allowed if rp = 1);

4. for each edge (s1, s2) between SCCs s1 and s2, in the
connected temporary graph, choose vertices vs1 ∈ s1

and vs2 ∈ s2, and add edge (vs1 , vs2) to the graph;

5. insert relay stations randomly on edges that satisfy the
chosen policy: with policy any they may be inserted
on any edge while with policy scc they may be inserted
only on edges that connect SCCs.

The results presented are the average of 50 trials where
graph topology and the specific locations of relay stations
are selected randomly.

5.1 MST Degradation
Backpressure causes a degradation of maximal sustainable

throughput in cases where a graph contains a cycle that is
made up of both backedges and forward edges and one or
more of the forward edges in the cycle has had relay station
insertions, and where there are more relay stations than the
amount of extra queue space on the backedges. Figure 8
contrasts the change in MST when we move from infinite
to finite queues. Clearly to make topology restrictions on
where relay stations may be inserted has a large impact on
MST. When relay stations are restricted to edges between
SCCs (scc insertion), the MST with infinite queues is opti-
mum at 1.0. The MST over finite size queues (q = 1) for
scc insertion does degrade between 15% and 30%; however,
it is still significantly higher than the MST when relay sta-
tions can be inserted within SCCs, no matter how large the
queues are. When relay stations are inserted anywhere in
the graph (any insertion), there is not much difference in
MST as the queue sizes increase. This is simply because
new cycles introduced in the graph when backedges are con-
sidered usually do not introduce lower token-to-place ratios
than the cycles without backedges. In the case of scc inser-
tion, there are no cycles with relay stations until after the
backedges are added into consideration. In the rest of the
paper, we will focus on graphs that use scc insertion since
this is where the most improvement is possible.

5.2 Fixed Size Queues
Figure 2 is an example of LIS where optimal MST cannot

be maintained with q = 1. There is no fixed queue size
that will provide optimal MST in arbitrary graph topologies.
To construct an LIS that does not have optimal MST with
fixed queues of size q, take Figure 2 and add (q − 1) more
relay stations to the upper channel between A and B. In
extreme cases, fixed queue sizing will not work; however, in
average and typical cases, fixing the queues can be a fast and

414

(V,E) # SCC # Edges Cycles RS Exact Heuristic % Exact Unfinished Heuristic
(inter-SCC) (inter-SCC) Soln. Soln. finished cycles Soln. - no Exact

(50,82.00) 10 12.00 26.25 10 3.44 3.69 0.96 245.00 10.50
(100,122.06) 10 12.06 41.15 10 3.48 3.65 0.96 328.00 9.00
(100,144.71) 20 24.71 171.14 10 3.79 4.07 0.56 32032.09 9.73
(200,222.10) 10 12.10 40.76 10 3.20 3.31 0.98 802.00 8.00

Table 2: How good are the heuristic solutions?

effective approach. Figure 9 shows the MST improvements
that are gained in LIS derived with our graph generator
as the fixed queue size q increases. On average, with q = 1,
MST can be as low as 65% of the optimal, but when q >= 5,
MST is above 90% of the optimal.

5.3 Exact vs. Heuristic Solution
Table 2 lists the results of several experiments using LIS

with the following topology: SCCs connected with recon-
vergent paths, where ten relay stations are inserted only on
the edges between SCCs. This topology allows us to use
some optimization steps to greatly reduce the graph size be-
fore adjusting queue sizes. Since no relay stations are added
within SCCs, and since there are no cycles between SCCs,
any cycle that degrades the MST after backpressure is added
must have inter-SCC backedges. So we can optimize MST
by adding tokens to the inter-SCC edges only. Second, since
there are no cycles with relay stations without backedges, we
know that the optimal MST is equal to 1. This means that
we simply need to add extra queue tokens to the backedges
so that every cycle has at least as many tokens as places.
With these observations, we can collapse the SCCs to single
nodes and solve the queue-sizing problem considering only
the inter-SCC edges and far fewer cycles.

Each experiment shows the average values over 50 differ-
ent graphs. (V,E) gives a characterization of the graph in
terms of the number of vertices and edges. #Edges(inter−
SCC) is the number of edges between SCC. Exact Soln.
lists the average number of additional queue space (tokens
added to the marked graph representation) that are nec-
essary to optimize performance using the exact algorithm.
Heuristic Soln. shows the average number of queue space
needed using the heuristic. In some cases, the exact pro-
gram was halted after running for more than an hour. %
Exact finished refers to the percent of 50 trials that it com-
pleted in under an hour. For these cases unfinished cycles
and Heuristic Soln - no Exact tell the number of cycles and
the heuristic solution.

The heuristic performs very well in these experiments,
producing solutions within 8% of the exact algorithm in ev-
ery case. In addition, it can handle much larger problems.
One limitation is that the initial listing of all the cycles, a
necessary step in the heuristic solution, may blow up fairly
quickly. Using our topology-based optimization of collaps-
ing SCCs, the number of vertices can actually scale much
higher than the experiments shown here, provided that the
number of SCCs remains relatively low and it is possible to
only add relay stations between SCCs.

6. CONCLUDING REMARKS
Adding backpressure to a latency-insensitive system can

cause a degradation of its maximal sustainable throughput
(MST). This degradation can be corrected by increasing the
shell queues on communication channels that are a bot-
tleneck for performance and/or by inserting relay stations
along channels that have some slack. We study how the
topology of a system can impact the MST degradation, and
how it is related to the different solutions. When a system
is made up of SCCs with no reconvergent paths, or a tree of
SCCs with no reconvergent paths, using fixed queues with
size q = 1 achieves optimal MST. In more general topologies,

using relatively small fixed size queues can often bring per-
formance within 90% of the optimal. We present a heuristic
that is guaranteed to produce a performance-wise optimal
solution that may require slightly more queue space than
the exact solution. Interestingly enough, we show that the
class of graphs with the worst MST degradation, i.e. the
class of directed acyclic graphs of SCCs that only have re-
lay stations between SCCs, can be easily simplified with a
straightforward optimization.

Acknowledgments
This work has been partially sponsored by an NDSEG fel-
lowship and the GSRC.

7. REFERENCES
[1] S. M. Burns. Performance analysis and optimization of

asynchronous circuits. PhD thesis, California Institute of
Technology, Pasadena, CA, USA, 1991.

[2] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L.
Sangiovanni-Vincentelli. A methodology for
“correct-by-construction” latency insensitive design. In
Proc. Intl. Conf. on Computer-Aided Design, pages
309–315, San Jose, CA, Nov. 1999. IEEE.

[3] L. P. Carloni, K. L. McMillan, and A. L.
Sangiovanni-Vincentelli. Theory of latency-insensitive
design. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 20(9):1059–1076, Sept.
2001.

[4] L. P. Carloni and A. L. Sangiovanni-Vincentelli.
Performance analysis and optimization of latency
insensitive systems. In Proc. of the Design Automation
Conf., pages 361–367. ACM, 2000.

[5] M. R. Casu and L. Macchiarulo. Issues in implementing
latency insensitive protocols. In Proc. of the Conf. on
Design, Automation and Test in Europe, pages 1390–1391.
IEEE, 2004.

[6] M. R. Casu and L. Macchiarulo. A new approach to latency
insensitive design. In Proc. of the Design Automation
Conf., pages 576–581. ACM, 2004.

[7] M. R. Casu and L. Macchiarulo. Throughput-driven
floorplanning with wire pipelining. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 24(5):663–675, May 2005.

[8] R. L. Collins and L. P. Carloni. Topology-based
optimization of maximal sustainable throughput in a
latency-insensitive system. Technical Report CUCS-008-07,
Columbia University, New York, New York, February 2007.

[9] F. Commoner, A. W. Holt, S. Even, and A. Pnueli. Marked
directed graphs. J. Comput. Syst. Sci., 5(5):511–523, 1971.

[10] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.
Introduction to Algorithms. McGraw-Hill, 2001.

[11] M. R. Garey and D. S. Johnson. Computers and
Intractability. W. H. Freeman & Co., New York, 1979.

[12] R. Lu and C. Koh. Performance optimization of latency
insensitive systems through buffer queue sizing of
communication channels. In Proc. Intl. Conf. on
Computer-Aided Design, pages 227–231, Washington, DC,
USA, 2003. IEEE Computer Society.

[13] R. Lu and C. Koh. Performance analysis of latency
insensitive systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, pages 469–483, March 2006.

[14] T. Murata. Circuit theoretic analysis and synthesis of
marked graphs. IEEE Transactions on Circuit and
Systems, 24(7), July 1977.

[15] T. Murata. Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, 77(4):541–580, 1989.

415

