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Algorithms used in microwave imaging for breast cancer detection require hardware acceleration to speed up
execution time and reduce power consumption. In this article, we present the hardware implementation of
two accelerators for two alternative imaging algorithms that we obtain entirely from SystemC specifications
via high-level synthesis. The two algorithms present opposite characteristics that stress the design process
and the capabilities of commercial HLS tools in different ways: the first is communication bound and
requires overlapping and pipelining of communication and computation in order to maximize the application
throughput; the second is computation bound and uses complex mathematical functions that HLS tools do
not directly support. Despite these difficulties, thanks to HLS, in the span of only 4 months we were able to
explore a large design space and derive about 100 implementations with different cost-performance profiles,
targeting both a Field-Programmable Gate Array (FPGA) platform and a 32-nm standard-cell Application
Specific Integrated Circuit (ASIC) library. In addition, we could obtain results that outperform a previous
Register-Transfer Level (RTL) implementation, which confirms the remarkable progress of HLS tools.
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1. INTRODUCTION

Innovations in medical imaging are key to increasing the effectiveness of health care
as well as to reducing its cost. New medical imaging techniques quite often involve
the solution of complex mathematical problems or the repetitive application of simple
algorithms to a multitude of data points (e.g., for 3D images). As a consequence, it is
not easy to enclose the required computational capacity in medical equipment with
a constrained form factor and/or a limited power budget. Some level of hardware
customization is then required to obtain power-efficient and high-performance im-
plementations of innovative medical imaging algorithms [Cong et al. 2011]. These
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Fig. 1. Microwave-imaging breast cancer detection system.

specialized hardware modules, commonly referred to as accelerators, speed up the
execution of the critical sections of an application, while limiting power consumption
and form factor with respect to multicore or GPU-based solutions.

One of the new promising areas of medical imaging is Microwave Imaging (MI) for
breast cancer detection. This method is considered a valid alternative to overcome
the limitations of X-ray mammography, such as the danger due to ionizing radiations,
and the high rate of false negatives and false positives [Bond et al. 2003]. MI uses
an array of antennas to irradiate the breast of a patient with microwave signals. The
corresponding reflections are sampled and processed digitally, to produce a map of
the breast with lesions highlighted. The effectiveness of the method is due to the high
dielectric contrast between tumors and surrounding tissues in the microwave spectrum.

Like in other medical imaging techniques, the execution time of a pure software
implementation of MI algorithms would be inappropriate for a clinical scenario, hence
calling for a custom hardware implementation. Figure 1 illustrates a possible embedded
architecture implementation, in which a CPU executes the noncritical parts of the
computation and offloads the critical ones to a dedicated hardware accelerator.

Thanks to High-Level Synthesis (HLS), designers can obtain an effective accelerator
implementation at Register-Transfer Level (RTL) starting from a high-level specifi-
cation (e.g., a C/C++ or SystemC description) [Coussy and Morawiec 2008; Martin
and Smith 2009]. The RTL is then the input to a standard design flow, either tar-
geting an Field-Programmable Gate Array (FPGA) or an ASIC technology. Current
commercial HLS tools allow designers to quickly explore the design space and synthe-
size in a shorter time span many more alternative microarchitectures than they could
if they started at RTL. By doing so, designers can easily obtain the Pareto frontier
in the cost/performance space of the solutions, and prune those that are not Pareto
optimal [Liu et al. 2012; Prost-Boucle et al. 2013].

In this work, which extends Jahier Pagliari et al. [2015], we examine two alternative
methods for breast cancer MI and use HLS to accelerate the critical sections of the
corresponding imaging algorithms. These algorithms stress the design process and the
capabilities of HLS tools in different ways. The first method, called MIST Beamform-
ing [Li et al. 2005], requires the execution of a set of simple operations on a massive
amount of input data. The second, MUSIC-Inspired (MUSIC-I) [Ruvio et al. 2013],
processes a relatively smaller amount of data but requires the execution of a set of
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operations that are significantly more complex. Consequently, the performance of the
corresponding accelerator-based implementations are likely communication bound for
MIST Beamforming and computation bound for MUSIC-I. Other differences include
the memory access patterns and the control logic complexity.

For both methods, after determining the sections to accelerate, we wrote a design
specification in SystemC. We used this specification to derive a set of Pareto-optimal
RTL implementations, by means of a state-of-the-art commercial HLS tool. We com-
pleted a comprehensive design-space exploration by varying HLS knobs like paral-
lelism, pipelining, resource sharing, mapping of the memory elements and, in the case
of MUSIC-I, the implementation of complex mathematical operators. To fully leverage
the potential of the accelerators, we aimed at microarchitectures that optimize the
pipeline between communication and computation. During synthesis, we targeted both
FPGA and ASIC technologies. We verified and validated the designs on a Xilinx Zynq
board, which is the emulation platform closest to a final SoC implementation.

The following summarizes our findings and contributions:

—This is the first time that HLS is used for the acceleration of MI algorithms for breast
cancer detection. Furthermore, while a manually designed RTL implementation of
MIST Beamforming has been reported in the literature [Colonna et al. 2013; Casu
et al. 2014], this article presents the first accelerator design for MUSIC-I.

—The comparison with the manually designed RTL implementation of MIST Beam-
forming shows that the HLS design is superior, thus demonstrating both the quality
of the results that can be achieved with modern HLS tools and the quality of our
system-level design effort.

—For both MUSIC-I and MIST, our designs provide a significant acceleration over a
software implementation running on an embedded system with a limited use of area
resources and power. Thanks to the configurable degree of parallelism and the high
scalability of the microarchitectures, the acceleration benefits are ultimately limited
by either the power/area budget or the communication bandwidth.

—With HLS we could design, validate, and evaluate more than 100 implementations
of the algorithms in less than 4 months. This contrasts quite strikingly with the 3
months required for a single RTL implementation of MIST.

The article is organized as follows. In Section 2, we describe the main features of
the two MI algorithms. In Section 3, we illustrate the architecture of the accelerators.
The results of HLS and the speedup versus a software implementation are presented
in Section 4, which also analyzes the best solutions in the design space not only in
terms of sheer performance but also in terms of energy and power efficiency, and use
of hardware resources. The related work is analyzed in Section 5. Finally, Section 6
concludes the article.

2. MI BREAST CANCER DETECTION

Tomography and linear scattering are the most common approaches for MI breast can-
cer detection [Nikolova 2011]. Tomography solves an ill-posed problem to reconstruct
the entire dielectric profile of the breast. If the goal is to detect only the presence
of tumors, simpler linear-scattering (or radar) algorithms can be used to identify the
locations of the most dominant scatterers in the breast.

We focus on two linear-scattering methods: the well-established Microwave Imag-
ing via Space-Time (MIST) Beamforming [Li et al. 2005], and a new approach based
on a MUltiple SIgnal Classification-Inspired (MUSIC-I) strategy [Ruvio et al. 2013].
Both methods use Ultra Wide-Band (UWB) pulses to irradiate the breast. An array
of transceivers generates UWB pulses and then collects the corresponding reflections
to be processed. Next, we provide a succinct description of the two methods. We focus
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specifically on the computational aspects of the two algorithms that are relevant from
the point of view of their hardware acceleration. A complete theoretical treatment of
the two algorithms can be found in the original papers [Li et al. 2005; Ruvio et al.
2013].

2.1. MIST Beamforming

The bulk of the processing of MIST Beamforming consists of synthetically focusing
the reflections scattered by a particular point of a volume, called a voxel. The scattered
UWB pulse is sampled and digitized by Nant antennas. These data are first preprocessed
to eliminate clutter caused by the air-skin interface. Then, the so-obtained signals,
which we denote as (x1[n], x2[n], . . . , xNant [n]), undergo the actual beamforming step, in
which they are delayed and filtered, in order to align the scattering contributions due
to the given voxel on the signal received by different antennas.

For each voxel location v, the first step is a coarse alignment of the Nant signals,
obtained shifting each signal in time by a different number of samples. For the a-
th signal xa[n], 1 ≤ a ≤ Nant, the shift is computed as na(v) = NA − da(v), where
da(v) is the round-trip delay between antenna a and location v rounded to the nearest
sample, and NA is a reference chosen greater than or equal to the maximum delay, that
is, NA ≥ maxa(da(v)).

In the second step, the samples with index smaller than NA are discarded, since they
surely do not contain the reflection from voxel v, given the previous alignment. This
step is conceptually equivalent to multiplying the samples with the following function:

g[n] =
{

1 if n ≥ NA

0 otherwise.
(1)

In the third step, the signal from each antenna is filtered with a Finite Impulse
Response (FIR) filter. The length L of the filter (same length for all antennas) and
the arrays of filter weights wa, with 1 ≤ a ≤ Nant are designed to compensate for
path-length-dependent dispersion and attenuation, and to isolate the frequency band
of interest. The computation of filter length and weights is not reported for brevity
reasons and because, as explained in Section 3, it is not computationally relevant from
the point of view of HW acceleration. All details can be found in Li et al. [2005].

The fourth step isolates the part of the signal in which the reflection created by point
v is expected. This is done by zeroing all the samples outside a window of length LH ,
starting before sample index NH and ending after sample index NH + LH :

h[n] =
{

1 if NH ≤ n ≤ NH + LH

0 otherwise.
(2)

Finally, all the aligned, filtered, and windowed signals are combined, and the voxel
energy is computed by squaring and accumulating the signal samples over the window
span. The entire energy evaluation phase for voxel v can then be summarized as

en(v) =
∑

n

|h[n]
Nant∑
a=1

L−1∑
l=0

wa(v, l) · g[n − l] · xa[n − l − na(v)]|2, ∀v ∈ [1, Nvox]. (3)

Thanks to alignment, contributions from the voxel of interest are added coherently
while noise and reflections due to other locations are rejected. This process is repeated
for all voxels, that is, ∀v ∈ [1, NVOX], after changing alignment and filtering coefficients.
The result is a map of reflected energy, usually a 2D slice of a 3D image. Alignment “de-
lays” and filter weights are determined voxel by voxel: they depend on the configuration
and characteristics of the antennas and of the propagating medium.
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Listing 1. MIST Beamforming computational kernel.

Listing 1 shows a simplified MATLAB implementation of the beamforming kernel.
Matrix x contains the Nant signals after clutter removal, while d and w arrays store
alignment delays and filter weights, respectively. The content of these last two arrays
is computed in a preliminary characterization phase, not reported in the code, as it only
depends on the characteristics of the system and not on the input data. Finally, array en
stores the energy values. Note that we avoid the multiplications by windowing functions
(1) and (2) by properly indexing the arrays accessed in the energy computation. A
detailed discussion on the determination of parameters (e.g., window threshold, its
length, etc.) can be found in the literature [Li et al. 2005; Colonna et al. 2013].

2.2. MUSIC-Inspired Reconstruction

MUSIC-I is a proven robust method when characterization of the antennas and of the
heterogeneity in the breast tissue is not possible. Contrarily to MIST, which works in
time domain, MUSIC-I processes the samples in frequency domain via Fast Fourier
Transform (FFT).

The first step is again clutter removal to eliminate the reflections caused by the
skin. This is obtained with a subspace-projection method [Ruvio et al. 2013]. The Nfreq
frequency-domain samples are organized in matrix B whose columns correspond to
Nant antennas. The matrix is transformed via Singular Value Decomposition (SVD),
that is, B = UDVT ; U and V contain in each column the left and right singular vectors
of B, respectively; D is a diagonal matrix with the eigenvalues (λi) on its diagonal,
sorted in decreasing order of magnitude; as usual, the dominant eigenvectors are those
associated with the eigenvalues with largest absolute value. Since skin-air reflections
are orders of magnitude larger than reflections due to possible tumors in the breast, it
is possible to isolate the clutter subspace by removing the first k singular values of B.
Therefore, the decluttered sample matrix Sd is obtained as follows:

Sd =
Nλ∑

i=k+1

λiuiv
H
i , (4)

where ui and vi represent the ith column of U and V, respectively, and H indicates the
Hermitian (conjugate) transpose operator. Nλ is the total number of the eigenvalues
obtained as Nλ = min(Nant, Nfreq). In Ruvio et al. [2013] it has been shown that a proper
value for k is 2, hence we use such value.

According to the original MUSIC theory [Schmidt 1986], the location of the points
that scatter most of the incident electromagnetic field can be obtained from the
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correlation matrix of the decluttered samples, which is computed in the first step of
the actual image reconstruction, for each frequency f from 1 to Nfreq. Let S f

d be the
f th row of Sd; then the f th correlation matrix is computed as follows:

R f = S f
d · S f H

d . (5)

Similarly to SVD decluttering, MUSIC is a subspace projection method and consists
in separating the so-called signal subspace from the noise subspace. Therefore, the
second step of the reconstruction aims to obtain the signal subspace, and consists in
computing eigenvalues and eigenvectors of R f ,∀ f . Since the rank of R f is proven to
be one, the MUSIC theory proposes to consider as signal subspace the singular vector
corresponding to the only nonnull eigenvalue.

The third step is the evaluation of the propagator that maps each possible scat-
terer, which in this case corresponds to each trial location in the image that is being
reconstructed, to the scattered field. The propagator is a vector of the form

W(ro, r, f ) = (
G2(ro1, r, f ), G2(ro2, r, f ), . . . , G2(roNant

, r, f )
)
. (6)

In this equation, roa = (xoa, yoa) represents the position of the ath antenna, and
r = (x, y) is the position of the trial location. G is a scalar Green’s function:

G(roa, r, f ) = e− jkb( f )·‖roa−r‖, (7)

where kb( f ) is the wave number at frequency f in the breast, in turn computed as

kb( f ) = 2π f
√

εb

c
. (8)

In Equation (8), c stands for the light speed and εb is the breast average dielectric
permittivity, which can be computed by averaging the data of breast tissues from a
large database [Burfeindt et al. 2012]. The propagator actually contains the square of
the Green’s function because the signal propagates from one antenna in roa to location
r, it gets reflected, and travels back to roa following the same path.

In the fourth step the propagator W(ro, r, f ) is normalized and multiplied by u1( f ),
the nonnull dominant eigenvector of R f , as follows:

F(ro, r, f ) =
〈

W(ro, r, f )
‖W(ro, r, f )‖ , u1( f )

〉
, (9)

where 〈·, ·〉 is the Hermitian Inner Product. The fifth step is the evaluation for each
frequency of a detection function:

D(ro, r, f ) = 1
1 − |F(ro, r, f )|2 . (10)

Theoretically, function D(ro, r, f ) should have a peak when the trial location r corre-
sponds to one of the scatterers. However, due to the low rank of R f , spurious artifacts
may appear in the image in the presence of noise [Solimene et al. 2012]. To reduce
the artifacts, data at multiple frequencies are mixed in the last step, by computing the
product of all the individual detection functions:

P(ro, r) =
Nf∏

m=1

D(ro, r, fm). (11)

In the final image, for each location r, the value of P(ro, r) is plotted. Since the peaks
corresponding to real scatterers are found in the same position for all frequencies,
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Listing 2. MUSIC-Inspired computational kernel.

multiplying the various indicator functions will amplify them, while leaving artifacts
untouched, hence ultimately increasing the signal to noise ratio.

More details on MUSIC-I are available in the literature [Ruvio et al. 2013].
The MATLAB code in Listing 2 shows the steps of MUSIC-I image reconstruction

for a 2D image. In Listing 2, nx and ny represent the image size in pixels; x(nx) and
y(ny) store the horizontal and vertical coordinates (assuming the origin is the center
of the observation domain) of the location under examination; xo and yo contain the
positions of the antennas; kb is the wave number; Wn is the propagator array; F stores
the Hermitian inner products. Finally, matrix P contains the detection function.

3. HIGH-LEVEL DESIGN OF HARDWARE ACCELERATORS

3.1. Software Profiling

The profiling and hardware acceleration of MIST Beamforming have been studied be-
fore in the literature [Casu et al. 2014; Colonna et al. 2013]. These works showed that
filter weights and alignment delays can be computed offline and that the air-skin de-
cluttering step can be implemented sufficiently fast in software. Based on these results
we focused our effort on accelerating the beamforming step, which is computationally
the heaviest [Casu et al. 2014]. In contrast with prior works, however, we designed our
accelerator at a level of abstraction higher than RTL.

To identify the critical sections of MUSIC-I, we wrote an optimized version of the
original MATLAB code in C language and profiled a software execution divided in
five steps: FFT, declutter (SVD), eigenvalues extraction, Hermitian Product (matrix F
in Listing 2), and computation of the detection function (matrix P in Listing 2). We
evaluated the execution time for reconstructing a 2D image with 200 × 200 pixels,
starting from samples obtained at 20 different frequencies from 18 antennas.

Table I reports the execution times obtained with a single-thread version of the C code
on an Intel Xeon E5-2630 CPU (2.40GHz, 16 cores, 32 threads, 128-GB RAM, Linux
kernel 2.6.32-624). The loop over all voxels that computes F (lines 8–23 of Listing 2) is
the obvious target for hardware acceleration. Even though this section completes in a
few seconds on a small 2D image, the loop over a 3D image with 200×200×200 voxels
would require about 12 minutes for each of the two breasts of a patient,1 a time that

13D images in MUSIC-I, like in MIST, are obtained by combining multiple 2D “slices.” Hence, the execution
time of each phase scales linearly with the number of slices.
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Table I. Profiling of MUSIC-Inspired Algorithm

Subtask Runtime (s)
FFT 0.0003322
Declutter (SVD) 0.0008422
Computation of Eigenvalues 0.0026025
Computation of F 3.4667474
Computation of P 0.0028863

is not acceptable for a clinical scenario. When 20 threads compute in parallel (using
PThreads), each a different frequency component of F, we obtain a speedup around
10.5×. Thus, the computation of F remains the bottleneck of the execution time.2

3.2. Comparison Between MIST and MUSIC-I Critical Sections

Having identified the critical sections in the two algorithms, it is interesting to compare
them, by pointing out the issues that each of them raises for the design of the corre-
sponding hardware accelerator. In particular, we analyze the complexity of datapath
implementations and the storage requirements.

3.2.1. Datapath Complexity. From the viewpoint of designing a HW datapath, the critical
section of MIST can be reduced to an advanced filter, and only requires additions and
multiplications on real numbers, as is clear from Listing 1. Once an appropriate data
representation is chosen, commercial HLS tools support these operations natively, and
can automatically synthesize an optimal datapath for a given target technology.

A first remarkable difference between the two algorithms is that MUSIC-I requires
operations on complex numbers rather than on real numbers. This approximately
requires a duplication of the hardware resources necessary to represent real and imag-
inary parts. Other than multiplications and additions on complex numbers, as shown
in Listing 2, MUSIC-I also performs the following operations:

—exponential function;
—sine and cosine (required for the complex part of the exponential);
—division;
—square root.

Many algorithms have been reported in the literature for these functions [Koren
2002], with different characteristics in terms of the performance-complexity trade-
off to be considered for their implementation. For instance, some of these internally
require multiplications; others only use additions and shifts, but pay the reduction
in complexity with a larger number of clock cycles to obtain a result. Even though
commercial HLS tools do not support these functions natively, the large number of
possibilities for their implementation fits perfectly the characteristics of these tools.

In summary, the design of a datapath for the critical section of MUSIC-I is definitely
more complex than the one for MIST and is expected to result in a more costly hardware
implementation.

3.2.2. Storage Requirements. The exact amount of storage elements required by the two
accelerators cannot be determined before completing the architecture definition. For a
preliminary comparison, however, we consider the case of an image that is processed
atomically, that is, under the hypothesis that the entire input and output datasets
are stored in the accelerator internal memories. Even if, as we shall see, this is not

2Notice that these results refer to a server-class processor, whose power consumption and form factor may
be unsuitable for medical equipment. A better reference would probably be an embedded processor, which is
inevitably slower due to the limited number of cores/threads and the slower clock frequency.
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Table II. Input Requirements for the Accelerated Sections of the Two
Reconstruction Algorithms, and Example in Bytes for a 200 x 200 Image

MIST
Input No. of Elements Example
x Ns · Nant 4,608
w Nvox · Nant · L 39,600,000
d Nvox · Nant 720,000
Total 40,324,608 (≈ 8MB)
MUSIC
Input No. of Elements Example
(xo, yo) 2 · Nant 36
(x, y) NX + NY 400
kb 2 · Nfreq 40
u1 2 · Nant · Nfreq 720
Total 1,196 (≈ 4KB)

Table III. Output Requirements for the Accelerated Sections of the Two
Reconstruction Algorithms, and Example for a 200 x 200 Image

MIST
Output No. of Elements Example
en Nvox 40,000 (≈ 320KB)
MUSIC
Output No. of Elements Example
F NX · NY · Nfreq 800,000 (≈ 3.2MB)

a realistic scenario, it simplifies the understanding of some of the key architectural
choices that we made, as described in the following sections. Tables II and III report
input and output requirements of the two accelerated sections. For each variable, the
number of elements is expressed as a function of the system parameters. We consider
the case of a 2D image with 200 × 200 pixels, under the following realistic conditions:

—number of antennas (for both algorithms): Nant = 18;
—number of frequencies (for MUSIC): Nfreq = 20;
—number of samples per channel (for MIST): Ns = 256;
—filter tap length (for MIST): L = 55;
—number of voxels (pixels for a 2D image): Nvox = NX · NY = 200 · 200.

Values in bytes in Tables II and III refer to a fixed-point representation that we
present later in Section 3.3. The multiplication by a factor 2 in kb and u1 of MUSIC-I
is due to the fact that they are complex numbers. Tables II and III show that MIST
Beamforming requires a much larger input than MUSIC-I needs, greater than three
orders of magnitude (≈2000 : 1). On the other hand, MUSIC-I produces more output
data, but in this case the difference is less (≈10 : 1).

The total input requirements of MIST and the output requirements of MUSIC-I are
relatively large even for this small 2D example. Due to the dependency on system
parameters, these storage requirements increase significantly when a larger (or 3D)
image is generated. Since the size of on-chip memories in accelerators has some inher-
ent limitations [Cota et al. 2015], the processing must be decomposed in a sequence of
computations performed on many smaller portions of the image.

To summarize, the critical section of MIST is much simpler than that of MUSIC-
I in terms of complexity of the involved operations, but it manages a much larger
dataset. As a result, the two kernels have a very different ratio of computation and
communication. These differences are reflected in our hardware implementations of
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the two critical sections. As we shall see, the execution time of our MIST accelerator
is limited by the I/O bandwidth, whereas that of the MUSIC-I accelerator is limited
by the actual parallelism obtained given a constraint on the number of synthesizable
hardware resources.

3.3. Fixed-Point Approximation

While software versions of the two algorithms operate on double-precision floating-
point values, a fixed-point representation is more convenient for a custom hardware
implementation.3 To determine the best data representation for the two algorithms, we
ported the MATLAB code of Listings 1 and 2 to SystemC, and we built a flexible sim-
ulation environment in which all data widths of the two models could be set by means
of C++ traits. With this framework, we performed an accuracy study, experimenting
with various data widths and fractional point positions. As input data, we used a set
of numerical breast models obtained from electromagnetic simulations.

We selected the minimum data widths that produce an error less than 1% in all pixels
of output images, with respect to references obtained with 64-bit floating-point opera-
tions. This approximation is acceptable because radar imaging just aims to highlight
the points that scatter the incident electromagnetic field the most. The value of 1% was
set based on the experience that we gained working with specialists in this field. For
MIST, we achieved the required precision by representing inputs as 16-bit signed words
and outputs as 64-bit values. MUSIC-I requires more fractional digits to avoid under-
flow in the computation of trigonometric functions and square roots. Thus, we chose a
32-bit input/output width. For both algorithms, intermediate calculations use as many
bits as needed to avoid overflow.4 These widths are obtained by analyzing the propaga-
tion of worst-case scenarios through the datapath. SystemC eases the implementation
of mixed-width datapaths because both integer and fixed-point classes in this language
include methods to manage width extension/reduction as well as overflow/underflow,
thereby abstracting the hardware details for the user [IEEE 2011].

The accuracy study has been performed manually, but it can be easily scripted by
gradually increasing the bit widths, until all simulations reach the required precision.
The execution time of this characterization phase depends on the size of the available
dataset of images. However, thanks to the efficiency of untimed SystemC simulation,
the time required to compute the fixed-point output for each image has the same
order of magnitude of the software execution time of the two algorithms, detailed in
Section 3.1.

Figure 2 reports an example of two MUSIC-I images reconstructed with floating-point
and fixed-point operations, respectively; notice that there is no appreciable difference
between the two cases. Similar results are obtained for MIST, not reported for brevity.

3.4. Microarchitecture

Figures 3 and 4 show high-level views of the accelerators. The two microarchitectures
that we devised exploit the intrinsic parallelism that both algorithms offer at the voxel
level, as evident in Listings 1 and 2. The accelerators are composed of a series of
parallel subblocks (blue rectangles in Figures 3 and 4) that operate concurrently on
different sets of input data. Computations in subblocks are scheduled by a top-level
control unit, composed of several concurrent SystemC threads, which also manage I/O

3We also verified that a fixed-point software implementation of the two algorithms is not faster than a
double-precision one. Thus, moving to fixed-point does not remove the need for hardware acceleration.
4As will be clear in Section 3.6, since all the operations are replaced by combinations of additions, subtrac-
tions, shifts, and multiplications, it is easy to compute the number of bits needed to avoid overflow.

ACM Transactions on Embedded Computing Systems, Vol. 16, No. 3, Article 80, Publication date: March 2017.



Accelerators for Breast Cancer Detection 80:11

Fig. 2. (a) Floating-point vs. (b) fixed-point approximation for a MUSIC-I breast image. The color gradient
shows the most reflecting points and highlights the presence of a highly reflective tumor.

Fig. 3. Accelerator architecture for MIST Beamforming.

interfaces between the accelerator and the rest of the system (Figure 1), as detailed in
Section 3.5.

3.4.1. Implicit versus Explicit Parallelism. In behavioral modeling, the ideal way to achieve
parallelism would be to describe the entire processing part of the accelerators as a
single sequential SystemC loop, and then use the partial unrolling features of the HLS
tool to unfold some of the iterations during scheduling. However, commercial HLS tools
still present some limitations when this type of implicit parallelism is pursued.

In particular, limitations are related to memory conflicts, which happen when shared
data structures are accessed in parallel loop iterations. If these data structures are
mapped to on-chip Static Random-Access Memory (SRAM) during synthesis (i.e., the
optimal choice for area and power reduction in large arrays), parallelism is limited
by the number of ports of the available memory IPs. Theoretically, a higher degree of
parallelism can be achieved if data structures are partitioned and stored in a num-
ber of smaller SRAMs (when parallel accesses are nonoverlapping by construction), or
replicated (when accesses instead overlap). Commercial HLS tools, however, can auto-
matically infer partitioning and replication only in straightforward cases. On the other
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Fig. 4. Accelerator architecture for MUSIC-I.

Table IV. Data Structures of Listings 1 and 2 Classified in Terms of Access Concurrency

Overlapping Access Nonoverlapping Access
MIST Beamforming x w,d,en

MUSIC-I xo, yo, kb, u1 x,y,F

hand, forcing every memory element to be mapped to flip-flop registers to maximize
the access parallelism, ruling out the possibility to use SRAM blocks, would not only
severely limit the design-space exploration, but also most likely result in suboptimal
implementations.

To avoid these issues, we specified parallelism explicitly in the two accelerators, by
instantiating subblocks in the high-level description (VP and RP blocks in Figures 3
and 4). The resulting SystemC code is structural at the top level, due to the explicit
instances of the parallel subblocks, and behavioral at the bottom level, due to the
untimed specification of the internal microarchitecture of each subblock.

The number of subblocks can be set at synthesis time by modifying proper prepro-
cessor constants. Therefore, this number effectively becomes an additional knob for
design-space exploration, complementary to those provided by the HLS tool such as
pipelining, fine-grain parallelization (inside the subblocks), and resource sharing.

3.4.2. Parallel Subblocks Granularity. Besides computational logic, each subblock contains
private scratchpad memories to store the input and output data relative to the com-
putations scheduled to it. To determine the granularity of the task performed by each
subblock, we considered the trade-off between scratchpad memory size and complexity
in the top-level controller of the accelerators: typically, a larger scratchpad footprint
corresponds to a lower control overhead at the top level, and vice versa.

Scratchpad memory size depends not only on the input and output datasets required
by the two algorithms to process a voxel, previously presented in Table II, but also on
the data sharing among different voxels. As pointed out in Section 3.4.1, Listings 1 and
2 contain data structures that are accessed during the computation of multiple voxels.
Some are accessed in a nonoverlapping way, that is, different elements in the arrays
are related to different voxels. These data can be split and distributed in chunks to
the subblocks. Some data structures, on the contrary, are accessed in an overlapping
way: these must be replicated and stored in each subblock to avoid conflicts. Table IV
provides a summary of data sharing in the two algorithms.
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Fig. 5. Example of processing patterns in MIST Beamforming and MUSIC-I, for a 10×10 image. Both
accelerators have four parallel elements (VP/RP0:3), and MUSIC-I operates on three different frequencies
(f0:2).

In MIST, weights w and delays d are the largest inputs, and they are not shared
among voxels. Samples x, instead, have a smaller size and are shared among all voxels.
The large size of w and d calls for a voxel-level partitioning among parallel elements,
therefore named Voxel Processors (VPs). To avoid access conflicts, each VP receives a
copy of the samples at the beginning of computation. Since the samples size is small,
the overhead due to data replication is negligible. Weights and delays, instead, are
distributed cyclically to VPs, any time a new voxel must be computed.

In MUSIC-I, the smaller size of the dataset and the higher data sharing call for a
coarser granularity in the assignment of processing tasks to parallel elements. There-
fore, the MUSIC-I accelerator is composed of a series of Row Processors (RPs), each
dedicated to computing one or more rows of matrix F. Each RP receives a copy of shared
arrays xo, yo, kb, and V at the beginning of the computation. Since every block operates
on separate row ranges, a suitable partitioning in subarrays is possible for the remain-
ing inputs x and y, thereby avoiding data duplication. The larger size of the atomic
processing unit in MUSIC-I reduces the control overhead in the top-level controller
of the accelerator. An even coarser granularity (e.g., computational blocks dedicated
to computing the entire F matrix, each on a different frequency) would require an
excessively large output scratchpad memory for each subblock.

Figure 5 shows the sequence of processing tasks for the two accelerators, for a small
2D example. Arrows indicate the order in which locations of the output image/frequency
plane are processed. Colors indicate assignment of computations to parallel processing
elements. For each assigned task, the top-level control unit of the accelerator writes
the corresponding input dataset in the VP/RP scratchpad memory, triggers the VP/RP
execution, and collects the result(s) at the end of the computation.

3.5. Processor-Accelerator Communication

As shown in Figures 3 and 4, the accelerators have two interfaces to the main system
bus. Through the slave interface, the embedded processor accesses a bank of memory-
mapped registers inside the accelerators, in which the processor writes commands and
reads the execution status. Through the master bus interface, the two accelerators
transfer data to and from the main system memory in Direct Memory Access (DMA).

3.5.1. TLM Modeling. We developed the bus interfaces using a synthesizable
Transaction-Level Modeling (TLM) library. Compared to signal-level modeling, TLM of-
fers the advantage of abstracting the bus protocol, by modeling transactions as generic
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read and write operations on blocking FIFO queues. Besides simplifying the design
phase, abstract primitives also enable the portability of the designs to a different bus
(or to a network-on-chip) with minimal or no code rewriting.

In particular, for the experiments described in Section 4, we mapped the agnostic
TLM protocol to a signal-level implementation of the AMBA AXI3 standard, which is
the interface adopted in our FPGA prototyping platform.

3.5.2. Sequence of Operations. Computation and I/O are orchestrated by the top-level
controller of the two accelerators. In particular, the controller reacts to changes in
the contents of the register bank. Before activating the accelerators, the system CPU
writes in the appropriate registers the following information:

—the number of items (voxels or rows) to be processed;
—the physical source address in memory from which inputs are fetched via DMA;
—the destination address where outputs have to be saved, also via DMA;
—A command, written in the control register, indicating relevant details on the type

of computation to be performed (e.g., if the inputs refer to new voxels of a previous
image, or to a new image).

When the start bit of the control register is asserted, the SystemC threads of the
controller perform the following actions in sequence: (1) start fetching input data from
the main memory using the master bus interface; (2) distribute the workload among
VPs/RPs, stalling the I/O whenever all processing elements are busy; (3) write back the
results in main memory as soon as they are available. As we explain in Section 3.5.3,
these actions are pipelined so that computations and DMA transfers perfectly overlap.

When all the computed outputs have been saved, the controller alerts the CPU with
an interrupt. In case an error occurs, this information is made available to the CPU in
an additional status register. This “batch” scheme limits the interaction between CPU
and accelerator to the initial and final phases of the computation.

3.5.3. Concurrent Computation and Communication. To minimize the execution time, we
focused on the optimization not only of the accelerators datapath, but also of the
control and the synchronization. In particular, the pipelining between computation
and communication phases has been thoroughly crafted to minimize idle phases.

The first optimization aims to avoid stalling the VPs and RPs computation during
the long I/O transfers of the large input dataset in MIST and the large output dataset
in MUSIC-I. Since our accelerators have a single master interface, these data transfers
happen serially, and are managed by the top-level controller. To cope with this issue,
we added the optional inclusion (to be decided at synthesis time) of double buffers
(aka ping-pong buffers) to be instantiated in VPs input and RPs output scratchpad
memories, respectively. These buffers, which are shown in Figure 6 with a 0/1 index,
are only useful for those data that have to be renewed every time a new computation
starts (i.e., data that are distributed among subblocks, as explained in Section 3.4.1).
Since their insertion is enabled or disabled by a SystemC preprocessor constant, the
presence of ping-pong buffers becomes another design-space exploration knob.

Another improvement consists in buffering the output data and transferring them to
the main memory in bursts. In MIST, transferring the single energy output produced by
each VP would be suboptimal (due to the bus overhead). Therefore, results are stored in
a circular buffer and transferred to the bus as soon as a sufficient number of elements
for a burst is ready. On the other hand, output buffering is not needed in MUSIC-I:
since the number of pixels in a row of matrix F is typically larger than the maximum
AXI burst length, there is no need to group outputs before a DMA write.

The previously described solutions affect the complexity of the control part in the two
accelerators. In MIST, two main concurrent threads are needed to manage computation
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Fig. 6. Internals of the parallel computing elements of the two accelerators.

and I/O. The reader logic copies new input data to the VPs scratchpads via DMA, and
triggers their execution; the writer logic gathers VP results and performs output bus
transfers. Internal signal-level synchronization avoids data loss or overwriting when
the output buffer fills up or when VPs are not ready to receive new data (both with and
without a ping-pong scheme). Two threads are needed because both input and output
transfers happen continuously during the operation of the accelerator. Burst length
and circular buffer size are generic parameters to be set at synthesis time.

Control and synchronization are simpler in MUSIC-I, because all rows of matrix F
for a given frequency are obtained with the same small set of input data. Consequently,
after a single initial input burst, all RPs can start computing together. As we explained,
there is also no need for buffering output transfers. In summary, a single control thread
is sufficient to manage both I/O directions.

In conclusion, MUSIC-I RPs are internally more complex than MIST VPs, but MIST
uses a more advanced communication and synchronization scheme. This difference is
reflected in the experimental results reported in Section 4.

Simplified timing diagrams displaying the typical sequence of operations performed
in the two accelerators are shown in Figures 7 and 8. The diagrams summarize the
interaction between the system’s processor (CPU), the accelerators controllers (CTL),
and parallel processing units (RP0:3/VP0:3), focusing in particular on the beginning and
on the end of the hardware operations. Arrows indicate some of the causality relations
among operations. Two cases are shown: with and without double buffering.

The advantages of doubling critical scratchpad memories are evident from the pic-
tures. In the MIST Beamforming case shown in Figure 7, without double buffers the
long DMA transfers needed to fetch the large input data (recall Table II) can start only
when at least one VP has completed its assigned computation. Otherwise, the input
data on which VPs are working would be overwritten, creating errors. In the example
of Figure 7, after the first four sets of inputs have been transferred to VPs scratchpads,
the controller has to wait for VP0 to finish its processing, before starting a new DMA
read. This reduces the utilization of VPs, as shown by the empty time intervals between
two successive processing phases. (Output transfers in MIST Beamforming can hap-
pen concurrently with input reads, and do not introduce further time overheads.) On
the contrary, with double buffers the controller can start fetching the inputs relative
to voxel no. 5 while VP0 is still processing voxel no. 0, copying these new inputs in
the “inactive” window of its double buffer. Consequently, the idle phases of all VPs are
either reduced or completely eliminated, depending on the latencies of processing and
I/O, which are a consequence of synthesis choices.
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Fig. 7. Timing diagram of the execution of the MIST Beamforming accelerator.

Fig. 8. Timing diagram of the execution of the MUSIC-I accelerator.

In the case of MUSIC-I, shown in Figure 8, the benefits of double buffers are even
more evident. Here, the critical DMA phases are related to output. The difference
with respect to MIST is that all RPs start processing together (since inputs are small
and mostly shared). However, when one RP without double buffers has completed its
processing, it must wait until the controller has transmitted all outputs to the main
system memory before restarting, to avoid overwriting results. Since the accelerator has
a single DMA interface, the controller serializes output transfers related to different
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RPs, which creates very long idle phases. In the example, the worst case is for RP3,
which has to wait for a time equal to the sum of all output transfers on all RPs. With
double buffers, instead, each RP immediately starts producing a second row of outputs
by switching the buffer used for writing results. Meanwhile, the controller can free
the first buffer with an output DMA burst. Again, depending on the relation between
processing and I/O latencies, this reduces or eliminates idleness in RPs.

3.6. Hardware Implementation of Mathematical Kernels in MUSIC-I Critical Section

The math of the critical section of MUSIC-I is nontrivial from a hardware-
implementation viewpoint. Most commercial HLS tools do not provide implementa-
tions of the operations required (division, square root, exponential, and trigonometric
functions). Therefore, we implemented a SystemC library that maps each operation
to one or more synthesizable specifications of known algorithms. When multiple spec-
ifications are available, a preprocessor constant allows the user to select among them.
After this selection, the implementation can be further customized using standard
HLS strategies (e.g., loop unrolling/pipelining, inlining/sharing of the function, etc).

This solution provides more flexibility than using a “fixed” RTL IP for each operation.
For example, we can easily make different optimization choices for our two different
targets (FPGA and ASIC), by trading off resource usage with the operation latency.

For trigonometric functions (required by the complex exponential in the critical sec-
tion of MUSIC-I), we used the CORDIC algorithm [Parhami 2010], which we extended
to accept any input angle, since in our application the input is not limited to [−π

2 , π
2 ].

This extension can be achieved using trigonometric equalities to convert every angle to
one that stands in the validity range of CORDIC, and then modifying the result accord-
ingly. For instance, for an angle θ between π

2 and π , it is sufficient to use θ ′ = (θ −π ) as
input for CORDIC, since cos(θ ′) = − cos(θ ). In implementing this extension, we made
sure to only use loops with a fixed number of iterations, independent from the input
angle. The reason is that unbounded loops limit the exploration capabilities of HLS
tools, preventing unrolling and pipelining. To extend CORDIC to any angle with a
fixed number of operations we had to use a multiplication, whereas the classic version
of the algorithm only contains sums, shifts, and accesses to a Look-Up Table (LUT).
However, the additional cost can be amortized by other multiplications performed in
the accelerator. In fact, resource sharing between a mathematical kernel and the rest
of the hardware is possible, as long as the corresponding function call is inlined.

For the real part of the exponential, we used a recursive algorithm that converges in a
number of iterations that is logarithmic in the operands width [Koren 2002]. The basic
version of this algorithm requires additions, shifts, and LUT accesses. However, like
for CORDIC, MUSIC-I data cannot be bound in the convergence range of the recursion.
The extension to any bit width, presented in Koren [2002], requires multiplications.

For division and square root, we implemented two alternative algorithms. The ba-
sic, “slow” versions use shift-and-subtraction algorithms [Parhami 2010]; the “fast”
solutions are based on a convergent recursion equation known as the Goldschmidt
algorithm [Koren 2002]. Slow algorithms only use additions and shifts, but they re-
quire a number of operations linear in the operands width. Fast versions, instead, use
multiplications and LUTs, but the execution has logarithmic time complexity.

It must be noted that the number of iterations in the behavioral specifications of the
mathematical kernels does not necessarily correspond to the clock cycles latency in the
resulting hardware. Since specifications are untimed, the HLS tool allocates clock cycles
to operations only at synthesis time, and can obtain very different results depending
on the target technology. Moreover, latency, as well as the amount of resource sharing,
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also depend on the scheduling and binding directives (e.g., unrolling, pipelining, etc.)
set by the library user at synthesis time as well as other HLS optimizations.

4. EXPERIMENTAL RESULTS

4.1. Setup

We experimented with two different technology targets, a Xilinx Artix-7 FPGA and a
32-nm CMOS standard-cell ASIC library. The FPGA target was chosen primarily for
validating the design on a prototype platform based on the Xilinx Zynq XC7Z702 SoPC,
which is composed of a dual-core ARM Cortex-A9 and the Artix-7 Programmable Logic
(PL) [Xilinx 2013]. The Zynq system bus implements the AXI standard, and has slave
and master ports accessible from the PL. Therefore, we could validate all FPGA imple-
mentations of our designs from a full-system perspective, connecting the accelerated
parts with the rest of the reconstruction algorithm, implemented in software on the
Cortex-A9. To complete the HW/SW stack, we wrote a custom device driver for each
accelerator on the Linux Operating System, kernel version 3.13.0.

By using Cadence CtoSilicon, a commercial HLS tool, we performed a design-space
exploration (DSE) as detailed in the following subsections to determine the Pareto set
of optimal implementations. Then, starting from the HLS-generated RTL code of the
two accelerators, we obtained gate-level netlists through logic synthesis.

For the FPGA technology, we used Xilinx Vivado Design Suite. The different use of
PL resources by the two kernels, especially DSP blocks, affected the place-and-route
step. Consequently, we could synthesize the MIST accelerator at a frequency of 75MHz
and MUSIC-I at 50MHz. As a cost metric, we used the percentage of occupation of
the most critical resource type on the PL. In most MUSIC-I implementations these
resources are DSP blocks, while in MIST Beamforming they are LUTs. To measure
performance, we profiled the execution time of the complete reconstruction algorithm
on the Zynq, including software parts and driver overheads. Finally, we also gathered
power consumption data provided by Vivado.

With standard-cell ASIC experiments, we aimed to evaluate the performance of a
hypothetical SoC implementation. We used Synopsys Design Compiler (DC) for the
logic synthesis step, and we successfully reached a 1-GHz clock frequency for both
accelerators. Cost was measured as the silicon area (in mm2) and execution time was
obtained via logic simulation. Power data were also estimated with Synopsys DC.

The quality of the accelerators design can be conveniently evaluated with metrics
such as execution time and power consumption. Rather than absolute values, however,
it is more meaningful to evaluate them in relative terms using the nonaccelerated
software version as a baseline.

For the execution time, FPGA implementations have been compared with a software
running on the Zynq Cortex-A9 CPU at 667MHz. ASIC results were evaluated against
the execution time of an identical implementation of the Cortex-A9 in a 32-nm CMOS
technology. To determine the clock frequency for this case, we used the tool McPAT
[Li et al. 2013], which returns estimates on power, area, and timing given a processor
description in terms of technology, architecture, and workload. McPAT already contains
a 32-nm model of the Cortex-A9 that is estimated to run at 2GHz.

To estimate the software power consumption, we first gathered workload statistics
needed by McPAT by profiling the compiled binaries of the software versions of MIST
and MUSIC-I. Thanks to the detailed power consumption breakdown provided by
McPAT, we could isolate the contribution of each algorithm, removing the common
power that the processor would consume anyway, also when accelerators are used. This
contribution is the baseline to which accelerators power consumption is compared. For
the FPGA implementation, we rescaled the McPAT model parameters to the 28-nm
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Table V. Software Execution Time and Average Power. MIST Parameters: NA = 9, L = 55, 152 × 176
2D Image. MUSIC-I Parameters: NA = 18, NFREQ = 20, 200 × 200 2D Image

FPGA Cortex-A9 @667MHz ASIC Cortex-A9 @2GHz
Algorithm Exec. time (s) Power (mW) Exec. time (s) Power (mW)
MIST 1.80 42.10 0.60 161.82
MUSIC-I 12.72 41.80 4.24 160.70

Fig. 9. Accelerators performance vs. area design space; same parameters of software versions (see Table V).

technology in which the Xilinx Zynq is fabricated, and set the clock frequency to
667MHz. For the ASIC implementation we used directly the 32-nm model.

Table V reports baseline execution time and power consumption of the software ver-
sion of the algorithms, for both FPGA and ASIC. The algorithm parameters are reported
in the table caption. Note that the relatively short execution time is a consequence of
the small image size used for these experiments, and that differences between MIST
and MUSIC-I are in part due to the values of the parameters.

4.2. Design-Space Exploration

For both technologies, we performed a designer-driven DSE by setting the HLS knobs
(primarily loop breaking, unrolling, or pipelining, function inlining, memory flatten-
ing on registers or SRAM instantiation) as well as the previously mentioned custom
architectural configurations (e.g., amount of VP/RP parallelism, choice between fast
and slow math kernels, and double-buffer insertion). After pruning Pareto-dominated
implementations, we obtained 80 Pareto-optimal design points for MIST Beamforming
and 104 for MUSIC-I. All these alternative implementations were obtained from a single
SystemC specification for each accelerator.

Figure 9 reports some of these results in the performance versus cost design space.
The vertical axes report both the absolute execution time and the speedup with respect
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Table VI. Minimum and Maximum Design Metrics Obtained on FPGA from a Single SystemC Specification

Exec. Time (ms)
(HW/SW Speedup)

Occupation (%)
Power (mW)

(HW/SW Ratio)
Energy (mJ)

(HW/SW Ratio)
EDP (Js·10-3)

(HW/SW Ratio)
Algorithm Min Max Min Max Min Max Min Max Min Max

MIST
84.43

(21.42)
1,207.63

(1.49)
13.9 95.9

25
(0.59)

387
(9.19)

7.87
(0.1)

32.08
(0.42)

0.76
(0.006)

38.74
(0.28)

MUSIC-I
595.07
(21.38)

1,765.92
(7.20)

27.3 100
55

(0.24)
309

(7.39)
125.38
(0.24)

138.53
(0.26)

78.26
(0.01)

221.41
(0.03)

to software. The horizontal axes report occupation (in percentage) for the FPGA im-
plementations, and silicon area (in mm2) for the ASIC ones. Parameters used for the
experiments are the same as those used for the software evaluation reported in Table V.
Note that operations performed in both accelerators are data independent (Listings 1
and 2), so these graphs are valid for any set of input samples of the same size.

The FPGA Pareto curve of MIST Beamforming in Figure 9(a) is much denser in points
than the MUSIC-I one in Figure 9(b). The reason is that VPs are simpler and smaller
than RPs, hence it is possible to allocate from 1 to 16 of them without exceeding the
FPGA resources. On the contrary, all MUSIC-I implementations with more than three
RPs exceed the available DSP blocks and LUTs. Moreover, since the FPGA area metric
considers a single resource type, most solutions were discarded as Pareto dominated: for
instance, solutions without ping-pong buffers were pruned because they use the same
number of critical resources (LUTs/DSPs) but execute more slowly. The maximum
achieved speedup is similar for the two FPGA accelerators, close to 25×.

ASIC implementations better highlight the flexibility and scalability of our mixed
structural-behavioral description. In Figure 9(c) we grouped together MIST solutions
with the same number of VPs, to show that by changing this number we can easily
reach the desired portion of the design space. Then, we can achieve a finer tuning by
modifying the internals of each VP with HLS tool directives. In MUSIC-I, as shown in
Figure 9(d), the number of solutions is even larger because the higher complexity of
RPs enables more flexibility. Compared to the FPGA case in Figure 9(b), many more
ASIC solutions are not Pareto dominated (e.g., those without ping-pong buffers).

The MIST Beamforming speedup curves in Figures 9(a) and 9(c) show an interesting
behavior, highlighted by gray regions in the graphs: beyond a certain threshold, adding
more VPs or reducing their latency does not improve performance. The performance
limiter is the bandwidth of the communication bus: beyond a certain number of VPs, it
becomes impossible to fetch data at a rate sufficiently high to keep them all busy. The
threshold depends on the chosen bus protocol, the clock frequency, and the target tech-
nology. With our selected targets and the AXI bus, we found that the maximum useful
number of VPs is 14 for FPGA and 12 for ASIC (Figures 9(a) and 9(c), respectively).

The speedup in MUSIC-I, instead, increases linearly with the number of RPs. Clearly,
a similar threshold exists but is not likely to be reached in any realistic case due to the
much lighter I/O requirements. The I/O bound limits MIST speed up to 160×, whereas
MUSIC-I with 16 RPs reaches the 2,000× mark. Interestingly, the speedup for a given
area is five times larger for MUSIC-I (e.g., 500× at 1mm2 vs. 100× of MIST).

Tables VI and VII summarize the DSE results reporting the minimum and maxi-
mum values of the main metrics over the whole set of Pareto-optimal implementations.
Besides execution time and area occupation, these metrics include average power con-
sumption, total energy consumed during the execution time, and the product of energy
and execution time (energy-delay product, aka EDP metric). Power and energy values
refer to the accelerator in its entirety, including control logic and I/O interfaces.

The metrics show that performance and area vary by more than one order of
magnitude between minimum and maximum, for both accelerators and both target
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Table VII. Minimum and Maximum Design Metrics Obtained on a 32-nm ASIC from
a Single SystemC Specification

Exec. Time (ms)
(HW/SW Speedup)

Area (mm2)
Power (mW)

(HW/SW Ratio)
Energy (mJ)

(HW/SW Ratio)
EDP (Js·10-3)

(HW/SW Ratio)
Algorithm Min Max Min Max Min Max Min Max Min Max

MIST
3.79

(159.12)
90.51
(6.66)

0.13 1.95
17.58
(0.11)

173.68
(1.07)

0.49
(0.005)

1.59
(0.016)

0.002
(3.2·10-5)

0.14
(0.002)

MUSIC-I
2.1

(2,023.61)
89.49

(47.40)
0.206 4.47

37.31
(0.23)

1,353.2
(8.42)

2.09
(0.003)

4.80
(0.007)

0.005
(1.8·10-6)

0.43
(1.5·10-4)

Table VIII. Value of Main HLS Knobs Required to Obtain the Optimal Solutions

MUSIC-I ASIC Parall. Buffer Memory Main Loop Math
Best Performance 16 RP double registers pipelined fast
Best Power 1 RP single SRAM sequential slow
Best Energy 8 RP single SRAM pipelined fast
Best EDP 16 RP single SRAM pipelined fast
Best Area 1 RP single registers sequential slow

MUSIC-I FPGA Parall. Buffer Memory Main Loop Math
Best Perf./EDP 3 RP double BRAM pipelined fast
Best Area/Pow./En. 1 RP single BRAM sequential slow

MIST ASIC Parall. Buffer Memory Main Loop
Best Perf/En./EDP 12 VP double SRAM pipelined
Best Pow./Area 1 VP single SRAM pipelined

MIST FPGA Parall. Buffer Memory Main Loop
Best Perf. 14 VP double BRAM pipelined
Best Pow./Area 1 VP single BRAM pipelined
Best En./EDP 8 VP double BRAM pipelined

technologies. This is an indicator of how different the nondominated solutions are,
thereby offering a rich set of options for the design reuse of each accelerator across
different systems. Particularly remarkable is that all these implementations were
obtained starting from the same SystemC specification.

Moreover, although the largest implementations of the two accelerators consume
more power than the software versions, the total energy consumed is always less than
50% for FPGA and 2% for ASIC, thanks to the reduced execution time. The quality
of the performance-energy trade-off using accelerators is summarized by the very low
values of the EDP metric. These results confirm that, although high performance
implementations could be obtained with a high-end server-class processor or a GPU, a
hybrid architecture with an embedded CPU and accelerators is particularly suitable
for applications that need cost-efficient and energy-efficient solutions.

The radar charts in Figure 10 are obtained selecting five implementations that
are optimal for at least one of the considered design metrics (execution time, power,
area, energy, and EDP). All quantities are normalized so that the optimal value for a
given dimension (i.e., maximum performance, minimum area, power, energy, and EDP)
corresponds to the edge of the chart. The aim of the chart is to help identify the best
overall solutions by graphically highlighting those implementations that tend to stay on
the outer edges of the chart, being optimal or close to optimal in more than one metric.
Table VIII shows the main HLS knobs used to obtain these five optimal solutions.

As expected, accelerators with minimum area or power are also those with lower
performance (low parallelism, no pipelining), and vice versa. Interestingly enough,
the charts and the values of the knobs in Table VIII reveal that solutions with high
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Fig. 10. “Optimal” implementations of the two accelerators for each optimization metric.

Table IX. Best MIST Execution Time Achieved on Zynq Technology with RTL
and SystemC Accelerators

RTL Accelerator (s) SystemC Accelerator (s) Speedup
0.257 0.08443 3.04

parallelism, double buffers, aggressive loop pipelining, and fast math functions (for
MUSIC-I) are not only optimal performancewise, but also optimal or close to optimal
in terms of energy and EDP. We conclude that accelerators with the highest parallelism
(and, therefore, the largest size) are the most energy-efficient solutions for this par-
ticular application: compared to solutions with lower parallelism, they can efficiently
utilize the larger silicon area and power to increase the performance at low energy and
EDP.

4.3. Comparison with RTL Accelerator for MIST Beamforming

As a final experiment, we evaluated the effectiveness of the HLS methodology against
the RTL MIST Beamforming accelerator described in Casu et al. [2014]. Since the
RTL code was kindly made available to us by the authors, we could use it to compare
the results after resynthesizing it for the same FPGA adopted in our experiments. We
obtained that for similar occupation metrics the design synthesized with HLS has a
speedup larger than 3× with respect to the RTL design, as reported in Table IX.
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Clearly, this result does not mean that it is not possible to obtain an equally good so-
lution directly in RTL. Rather, it demonstrates how HLS makes it possible to perform a
broad design-space exploration in a way that is much more efficient than RTL design. In
fact, we could explore, evaluate, execute on FPGA, and synthesize on ASIC, 80 (MIST)
and 104 (MUSIC-I) alternative implementations in only 4 months. The comparison
with the time to design and test a single RTL implementation of MIST Beamforming,
which required 3 months as the authors of Casu et al. [2014] communicated to us,
confirms the progress reached by HLS tools.

5. RELATED WORK

Since microwave imaging for breast cancer detection is a relatively new field, so far
researchers have mostly focused on developing effective detection algorithms rather
than on their fast or power-efficient implementation on dedicated hardware. There
are, however, a few noteworthy exceptions. In Xu et al. [2012], Shahzad et al. [2014],
and Elahi et al. [2015], the authors recognize the need for hardware acceleration, both
for nonlinear (i.e., tomography) and linear (i.e., radar) scattering inversion algorithms,
as a key factor toward practical microwave-imaging systems for breast cancer detection.
They take different routes toward that goal: In Xu et al. [2012], researchers accelerate
the tomography algorithms on a Cell broadband engine processor, whereas in Shahzad
et al. [2014] and Elahi et al. [2015] a GPU accelerator is targeted.

Although a GPU-based acceleration may lead to an acceptable execution time, it is not
the best implementation choice for power-constrained or form-factor limited embedded
environments. A dedicated hardware accelerator, based on either an FPGA or an ASIC
technology, is more suited for these scenarios. For the MIST Beamforming algorithm,
the authors of Casu et al. [2014] show that an implementation on a high-end FPGA
outperforms those on a multicore CPU and on a GPU.

This is the first article to present a hardware acceleration of a MUSIC-based
microwave-imaging algorithm. We are also the first to use HLS for implementing
microwave-imaging algorithms. Ours is not the first article, however, to propose the
adoption of HLS in the broader field of medical imaging. For image denoising, the au-
thors of Hannig et al. [2010] propose a deeply pipelined and parallel FPGA architecture
synthesized starting from a high-level description. In Cong et al. [2011] and Bui et al.
[2012], a larger set of medical-imaging benchmarks (denoising, registration, segmenta-
tion, etc.) are used to determine the best domain-specific hardware platform and a HLS
methodology is used for the implementation on an FPGA target platform. The same
medical imaging benchmarks have been used in the literature on the development of
accelerator-rich architectures, in which the medical-imaging accelerators are obtained
from a HLS description [Cong et al. 2012]. In the context of ultrasound imaging for
medical applications, the authors of Amaro et al. [2015] present an FPGA implementa-
tion of a synthetic-aperture imaging accelerator, which is obtained entirely with HLS.
Another interesting application of HLS to the biomedical field is presented in Opper-
mann et al. [2015]: here the authors focus on using FPGA technology to accelerate the
simulation of biological systems described by systems of differential equations.

For applications outside the biomedical field, HLS has been proven effective for
obtaining hardware implementations of DSP algorithms, as shown in Liu et al. [2016]
for a complex H.264 decoder, or in Bhatnagar et al. [2013] for a software-defined radio
platform. In this field, designers often use a model-based approach using Simulink to
first describe and then synthesize via HLS their hardware accelerators. For complex
blocks (e.g., for FFT or DCT computation) the standard design flow using Simulink does
not let designers fully explore the microarchitectural design space via HLS, a problem
faced and solved by the authors of Butt et al. [2016].
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The HLS limitations with respect to dealing with kernels that have complex memory
access patterns have been addressed by other researchers in the literature. In Butt
et al. [2014], the authors elegantly solved the problem of overlapping input data fetch
and computation in their HLS-designed pseudolog image transform kernel. Similarly to
our solution, a controller external to the computational kernel fetches data into on-chip
buffers while computation is performed so as to fully exploit the I/O bandwidth.

Other recent applications of HLS include acceleration of pricing algorithms (using
Black-Scholes or Heston model) [Inggs et al. 2015], database analytics [Malazgirt et al.
2015], and control algorithms for power electronic converters [Navarro et al. 2013].

6. CONCLUSIONS

We used HLS to complete a comprehensive design-space exploration of two microwave-
imaging algorithms for breast cancer detection. Our results show that while MIST
Beamforming remains an interesting solution for lower cost implementations, the re-
cently proposed MUSIC-I method [Ruvio et al. 2013] is generally superior, offering
higher scalability (due to the absence of a communication bottleneck) and higher flex-
ibility to system parameter changes. More generally, our work shows the potential
that HLS offers in terms of design-productivity gains: in the span of about 4 months
one designer in our team with no prior knowledge of the two algorithms was able to
specify, synthesize, and evaluate more than 100 alternative implementations (across
FPGA and standard-cell technologies). These include implementations that outperform
a previous RTL design of MIST.
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