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ABSTRACT
ESP is an open-source research platform for heterogeneous SoC

design. The platform combines a modular tile-based architecture

with a variety of application-oriented flows for the design and opti-

mization of accelerators. The ESP architecture is highly scalable and

strikes a balance between regularity and specialization. The com-

panion methodology raises the level of abstraction to system-level

design and enables an automated flow from software and hardware

development to full-system prototyping on FPGA. For application

developers, ESP offers domain-specific automated solutions to syn-

thesize new accelerators for their software and to map complex

workloads onto the SoC architecture. For hardware engineers, ESP

offers automated solutions to integrate their accelerator designs

into the complete SoC. Conceived as a heterogeneous integration

platform and tested through years of teaching at Columbia Uni-

versity, ESP supports the open-source hardware community by

providing a flexible platform for agile SoC development.

CCS CONCEPTS
•Computer systems organization→ Systemona chip; •Hard-
ware→Methodologies for EDA.
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1 INTRODUCTION
Why ESP? ESP is an open-source research platform for heteroge-

neous system-on-chip (SoC) design and programming [18]. ESP

is the result of nine years of research and teaching at Columbia
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Figure 1: Agile SoC design and integration flows in ESP.

University [11, 12]. Our research was and is motivated by the con-

sideration that Information Technology has entered the age of

heterogeneous computing. From embedded devices at the edge of

the cloud to data center blades at the core of the cloud, specialized

hardware accelerators are increasingly employed to achieve energy-

efficient performance [9, 15, 31]. Across a variety of application

domains, such as mobile electronics, automotive, natural-language

processing, graph analytics and more, computing systems rely on

highly heterogeneous SoC architectures. These architectures com-

bine general-purpose processors with a variety of accelerators spe-

cialized for tasks like image processing, speech recognition, radio

communication and graphics [20] as well as special-purpose proces-

sor cores with custom instruction sets, graphics processing units,

and tensor manipulation units [32]. The shift of the silicon industry

from homogeneous multicore processors to heterogeneous SoCs is

particularly noticeable if one looks at the portion of chip area dedi-

cated to accelerators in subsequent generations of state-of-the-art

chips for smartphones [48], or at the amount of diverse processing

elements in chips for autonomous driving [16].

ESP Vision. ESP is a platform, i.e., the combination of an archi-

tecture and a methodology [11]. The methodology embodies a set

of agile SoC design and integration flows, as shown in Figure 1. The

ESP vision is to allow application domain experts to design SoCs.

Currently, ESP allows SoC architects to rapidly implement FPGA-

based prototypes of complex SoCs. The ESP scalable architecture
and its flexible methodology enable a seamless integration of third-

party open-source hardware (OSH) components (e.g., the Ariane

RISC-V core [1, 51] or the NVIDIA Deep-Learning Accelerator [3]).

SoC architects can instantiate also accelerators that are developed

with one of the many design flows and languages supported by

ESP. The list, which continues to grow, currently includes: C/C++

with Xilinx Vivado HLS and Mentor Catapult HLS; SystemC with

Cadence Stratus HLS; Keras TensorFlow, PyTorch and ONNX with

hls4ml; and Chisel, SystemVerilog, and VHDL for register-transfer
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Figure 2: Example of a 3x3 instance of ESP with a high-level
overview of the sockets for processors and accelerators.

level (RTL) design. Hence, accelerator designers can choose the

abstraction level and specification language that are most suitable

for their coding skills and the target computation kernels. These

design flows enable the creation of a rich library of components

ready to be instanced into the ESP tile-based architecture with the

help of the SoC integration flow.

Thanks to the automatic generation of device drivers from pre-

designed templates, the ESP methodology simplifies the invocation

of accelerators from user-level applications executing on top of

Linux [25, 39]. Through the automatic generation of a network-

on-chip (NoC) from a parameterized model, the ESP architecture

can scale to accommodate many processors, tens of accelerators,

and a distributed memory hierarchy [27]. A set of platform ser-
vices provides pre-validated solutions to access or manage SoC

resources, including accelerators configuration [41], memory man-

agement [39], and dynamic voltage frequency scaling (DVFS) [40],

among others. ESP comes with a GUI that guides the designers

through the interactive choice and placement of the tiles in the SoC

and it has push-button capabilities for rapid prototyping of the SoC

on FPGA.

Open-Source Hardware. OSH holds the promise of boosting

hardware development and creating new opportunities for academia

and entrepreneurship [30]. In recent years, no other project has

contributed to the growth of the OSH movement more than RISC-

V [6]. To date, the majority of OSH efforts have focused on the

development of processor cores that implement the RISC-V ISA

and small-scale SoCs that connect these cores with tightly-coupled

functional units and coprocessors, typically through bus-based in-

terconnects. Meanwhile, there have been less efforts in developing

solutions for large-scale SoCs that combine RISC-V cores with

many loosely-coupled components, such as coarse-grained accel-

erators [19], interconnected with a NoC. With this gap in mind,

we have made an open-source release of ESP to provide the OSH

community with a platform for heterogeneous SoC design and

prototyping [18].

2 THE ESP ARCHITECTURE
The ESP architecture is structured as a heterogeneous tile grid. For

a given application domain, the architect decides the structure of

the SoC by determining the number and mix of tiles. For example,

Figure 2 shows a 9-tile SoC organized in a 3 × 3 matrix. There

are four types of tiles: processor tile, accelerator tile, memory tile

for the communication with main memory, and auxiliary tile for

peripherals, like UART and Ethernet, or system utilities, like the

interrupt controller and the timer. To support a high degree of

scalability, the ESP tiles are connected by a multiplane NoC [49].

The content of each tile is encapsulated into a modular socket
(aka shell), which interfaces the tile to the NoC and implements the

platform services. The socket-based approach, which decouples the

design of a tile from the design of the rest of the system, is one of the

key elements of the agile ESP SoC design flow. It highly simplifies

the design effort of each tile by taking care of all the system integra-

tion aspects, and it facilitates the reuse of intellectual property (IP)

blocks. For instance, the ESP accelerator socket implements services

for DMA, cache coherence, performance monitors, and distributed

interrupt requests. At design time, it is possible to choose the set

of services to instantiate in each tile. At runtime, the services can

be enabled and many of them offer reconfigurability options, e.g.,

dynamic reconfiguration of the cache-coherence model [28].

The ESP architecture implements a distributed system that is

inherently scalable, modular and heterogeneous, where processors

and accelerators are given the same importance in the SoC. Differ-

ently from other OSH platforms, ESP proposes a system-centric

view, as opposed to a processor-centric view.

2.1 System Interconnect
Processing elements act as transaction masters that access periph-

erals and slave devices distributed across remote tiles. All remote

communication is supported by a NoC, which is a transparent com-

munication layer. Processors and accelerators, in fact, operate as

if all remote components were connected to their local bus con-

troller in the ESP sockets. The sockets include standard bus ports,

bridges, interface adapters and proxy components that provide a

complete decoupling from the network interface. Figure 3 shows

in detail the modular architecture of the ESP interconnect for the

case of a six-plane NoC. Every platform service is implemented by

a pair of proxy components. One proxy translates requests from

bus masters, such as processors and accelerators, into transactions

for one of the NoC planes. The other proxy forwards requests from

the NoC planes to the target slave device, such as last-level cache

(LLC) partitions, or Ethernet. For each proxy, there is a correspond-

ing buffer queue, located between the tile port of the NoC routers

and the proxy itself. In Figure 3, the color of a queue depends on

the assigned NoC plane. The number and direction of the arrows

connected to the queues indicate whether packets can flow from

the NoC to the tile, from the tile to the NoC, or in both directions.

The arrows connect the queues to the proxies. These are labeled

with the name of the services they implement and the number of

the NoC plane used for receiving and sending packets, respectively.

The current implementation of the ESP NoC is a packet-switched

2D-mesh topology with look-ahead dimensional routing. Every hop

takes a single clock cycle because arbitration and next-route compu-

tation are performed concurrently. Multiple physical planes allow

protocol-deadlock prevention and provide sufficient bandwidth

for the various message types. For example, since a distributed

directory-based protocol for cache coherence requires three sepa-

rate channels, planes 1, 2 and 3 in Figure 3 are assigned to request,

forward, and response messages, respectively. Concurrent DMA

transactions, issued by multiple accelerators and handled by var-

ious remote memory tiles, require separate request and response
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Figure 3: Detailed architecture of the NoC interface for four main ESP tiles.

planes. Instead of reusing the cache-coherence planes, the addition

of two new planes (4 and 6 in Figure 3) increases the overall NoC

bandwidth. Finally, one last plane is reserved for short messages,

including interrupt, I/O configuration, monitoring and debug.

Currently, customizing the NoC topology is not automated in the

ESP SoC integration flow. System architects, however, may explore

different topologies by modifying the router instances and updating

the logic to generate the header flit for the NoC packets [50].

2.2 Processor Tile
Each processor tile contains a processor core that is chosen at design

time among those available: the current choice is between the RISC-

V 64-bit Ariane core from ETH Zurich [1, 51] and the SPARC 32-bit

LEON3 core from Cobham Gaisler [17]. Both cores are capable of

running Linux and they come with their private L1 caches. The

processor integration into the distributed ESP system is transparent:

no ESP-specific software patches are needed to boot Linux. Each

processor communicates on a local bus and is agnostic of the rest of

the system. The memory interface of the LEON3 core requires a 32-

bit AHB bus, whereas Ariane comes with a 64-bit AXI interface. In

addition to proxies and bus adapters, the processor socket provides

a unified private L2 cache of configurable size, which implements a

directory-based MESI cache-coherence protocol. Processor requests

directed to memory-mapped I/O registers are forwarded by the

socket to the IO/IRQ NoC plane through an APB adapter. The

only processor-specific component of the socket is an interrupt-

level proxy, which implements the custom communication protocol

between the processor and the interrupt controller and system

timer in the auxiliary tile.

2.3 Memory Tile
Each memory tile contains a channel to external DRAM. The num-

ber of memory tiles can be configured at design time. Typically, it

varies from one to four depending on the size of the SoC. All neces-

sary hardware logic to support the partitioning of the addressable

memory space is automatically generated and the partitioning is

completely transparent to software. Each memory tile also contains

a configurably-sized partition of the LLC with the corresponding

directory. The LLC in ESP implements an extended MESI protocol,

in combination with the private L2 cache in the processor tiles, that

supports Linux with symmetric multiprocessing, as well as runtime

reconfigurable coherence for accelerators [28].

2.4 Accelerator Tile
This tile contains the specialized hardware of a loosely-coupled

accelerator [19]. This type of accelerator executes a coarse-grained

task independently from the processors while exchanging large

datasets with the memory hierarchy. To be integrated in the ESP

tile, illustrated on the top-left portion of Figure 3, accelerators

should comply to a simple interface that includes load/store ports

for latency-insensitive channels [10, 13], signals to configure and

start the accelerator, and an acc_done signal to notify the accelera-

tor completion and generate an interrupt for the processors. ESP

accelerators that are newly designed with one of the supported

design flows automatically comply with this interface. For existing

accelerators, ESP offers a third-party integration flow [24]. In this

case, the accelerator tile has only a subset of the proxy components
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because the configuration registers, DMA for memory access, and

TLB for virtual memory [39] are replaced by standard bus adapters.

The set of platform services provided by the socket relieves

the designer from the burden of “reinventing the wheel” with re-

spect to implementing accelerator configuration through memory-

mapped registers, address translation, and coherence protocols. Fur-

thermore, the socket enables point-to-point communication (P2P)

among accelerator tiles so that they can exchange data directly

instead of using necessarily shared-memory communication.

Third-party accelerators can use the services to issue interrupt

requests, receive configuration parameters and initiate DMA trans-

actions. They are responsible, however, for managing shared re-

sources, such as reserved memory regions, and for implementing

their own custom hardware-software synchronization protocol.

The run-time reconfigurable coherence protocol service is partic-

ularly relevant for accelerators. In fact, there is no static coherence

protocol that can necessarily serve well all invocations of a set

of heterogeneous accelerators in a given SoC [26]. With the non-
coherent DMAmodel, an accelerator bypasses the cache hierarchy to

exchange data directly with main memory. With the fully-coherent
model, the accelerator communicates with an optional private cache

placed in the accelerator socket. The ESP cache hierarchy augments

a directory-basedMESI protocol with support for twomodels where

accelerators send requests directly to the LLC, without owning a

private cache: the LLC-coherent DMA and the coherent DMAmodels.

The latter keeps the accelerator requests coherent with respect to

all private caches in the system, whereas the former does not. While

fully-coherent and coherent DMA are fully handled in hardware by

the ESP cache hierarchy, non-coherent DMA and LLC-coherent DMA
demand that software acquires appropriate locks and flushes pri-

vate caches before invoking accelerators. These synchronization

mechanisms are implemented by the ESP device drivers, which are

generated automatically when selecting any of the supported HLS

flows discussed in Section 4.

2.5 Auxiliary Tile
The auxiliary tile hosts all shared peripherals in the system except

from memory: the Ethernet NIC, UART, a digital video interface,

a debug link to control ESP prototypes on FPGA and a monitor

module that collects various performance counters and periodically

forwards them through the Ethernet interface.

As shown in Figure 3, the socket of the auxiliary tile is the most

complex because most platform services must be available to serve

the devices hosted by this tile. The interrupt-level proxy, for in-

stance, manages the communication between the processors and

the interrupt controller. Ethernet, which requires coherent DMA to

operate as a slave peripheral, enables users to remotely log into an

ESP instance via SSH. The frame-buffer memory, dedicated to the

video output, is connected to one proxy for memory-mapped I/O

and one for non-coherent DMA transactions. These enable both

processor cores and accelerators to write directly into the video

frame buffer. The Ethernet debug interface [23], instead, uses the

memory-mapped I/O and register access services to allow ESP users

to monitor and debug the system through the ESP Link application.

Symmetrically, UART, timer, interrupt controller and the bootrom

are controlled by any master in the system through the counter-

part proxies for memory-mapped I/O and register access. Hence,

Application
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// Example of existing C application with ESP
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// 2 and 4. The cfg_k# arguments contain
// buffer and the accelerator configuration.
{
  int *buffer = esp_alloc(size);
  for (...) {
    kernel_1(buffer,...); // existing software
    esp_run(cfg_k2); // run accelerator(s)
    kernel_3(buffer,...); // existing software
    esp_run(cfg_k4); // run accelerator(s)
  }
  esp_free(buffer);
}

Figure 4: ESP accelerator API for seamless shared memory.

the auxiliary tile includes both pairs of proxies. These enable an

additional communication path, labeled as local port shortcut in
Figure 3, which connects the masters in the auxiliary tile (i.e. the

Ethernet debug link) with slaves that do not share the same local

bus. A similar shortcut in the processor tile allows a processor to

flush its own private L2 cache and manage its local DVFS controller.

3 THE ESP SOFTWARE STACK
The ESP accelerator’s Application Programming Interface (API)

library simplifies the invocation of accelerators from a user appli-

cation, by exposing only three functions to the programmer [25].

Underneath, the API invokes the accelerators with the automati-

cally generated Linux device drivers. The API is lightweight and

can be targeted from existing applications or by a compiler. For

a given application, the software execution of a computationally

intensive kernel can be replaced with hardware accelerators by

means of a single function call (esp_run()). Figure 4 shows the case

of an application with four computation kernels, two executed in

software and two implemented with an accelerator. The configura-

tion argument passed to esp_run() is a simple data structure that

specifies which accelerator(s) to invoke, how to configure them, and

their point-to-point dependencies, if any. By using the esp_alloc()

and esp_free() functions for memory allocation, data can be truly

shared between accelerators and processors, i.e., no data copies are

necessary. Data are allocated in an efficient way to improve the ac-

celerator’s access to memory without compromising the software’s

performance [39]. The ESP software stack, combined with the gen-

eration of device drivers for new custom accelerators, makes the

accelerator invocation as transparent as possible for the application

programmers.

4 THE ESP METHODOLOGY
The ESP design methodology is flexible because it embodies dif-

ferent design flows, for the most part automated and supported

by commercial CAD tools. In particular, recalling Figure 1, the ac-
celerator design flow (on the left in the figure) aids the creation of

an IP library, whereas the SoC flow (on the right) automates the

integration of heterogeneous components into a complete SoC.

4.1 Accelerator Flow
The end goal of this flow is to add new elements to the library of

accelerators that can be automatically instantiated with the SoC

flow. Designers can work at different abstraction levels with various

specification languages:

• Cycle-accurate RTL descriptions with languages like VHDL,

Verilog, SystemVerilog, or Chisel.
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• Loosely-timed or un-timed behavioral descriptions with Sys-

temC or C/C++ that get synthesized into RTL with high-level

synthesis (HLS) tools. ESP currently supports the three main

commercial HLS tools: Cadence Stratus HLS, Mentor Cata-

pult, and Xilinx Vivado HLS.

• Domain-specific libraries for deep learning like Keras Ten-

sorFlow, PyTorch, and ONNX, for which ESP offers a flow

combining HLS tools with hls4ml, an OSH project [2, 22].

HLS-Based Accelerator Design. For the HLS-based flows, ESP
facilitates the job of the accelerator designer by providing ESP-

compatible accelerator templates, HLS-ready skeleton specifica-

tions, multiple examples, and step-by-step tutorials for each flow.

The push in the adoption of HLS from C/C++ specifications

has many reasons: (1) a large codebase of algorithms written in

these languages, (2) a simplified hardware/software co-design (since

most embedded software is in C), and (3) a thousand-fold faster

functional execution of the specification than the counterpart RTL

simulation. On the other hand, HLS from C/C++ has also shown

some limitations because of the lack of ability to specify or accu-

rately infer concurrency, timing, and communication properties

of the hardware systems. HLS flows based on the IEEE-standard

language SystemC overcome these limitations, thus making Sys-

temC the de-facto standard to model protocols and control-oriented

applications at a level higher than RTL.

In ESP, we support and encourage the use of both C/C++ and

SystemC flows for HLS and we have defined a set of guidelines to

support the designers in porting an application to an HLS-ready

format. The ideal starting point is a self-contained description of the

computation kernel, written in a subset of the C/C++ language [42]:

a limited use of pointers and the absence of dynamic memory

allocation and recursion are important; also, aside from common

mathematical functions, no external library functions should be

used. This initial software transformation is oftentimes the most

important step to obtain good quality source code for HLS [41].

The designer of an ESP accelerator should aim at awell-structured

description that partitions the specification into concurrent func-

tional blocks. The goal is to obtain any synthesizable specification

that enables the exploration of a vast design space, by evaluating

many micro-architectural and optimization choices. Figure 5 shows

the relationship between the C/C++/SystemC design space and the

RTL design space. The HLS tools provide a rich set of configuration

conf_info

acc_done

clk rst

load_chnl load_ctrlLOAD

COMPUTE

store_chnl

store_ctrl

CONFIGURE

STORE

PLM

PLM

Figure 6: Structure of ESP accelerators.

knobs to obtain a variety of RTL implementations, each correspond-

ing to a different cost-performance tradeoff point [36, 37]. The

knobs are push-button directives of the HLS tool represented by

the green arrows. Designers may also perform manual transfor-

mations of the specification (orange arrows) to explore the design

space while preserving the functional behavior. For example, they

can expose parallelism by removing false dependencies or they can

reduce resource utilization by encapsulating sections of code with

similar behavior into callable functions [41].

Accelerator Structure. The ESP accelerators are based on the

loosely-coupled model [19]. They are programmed like devices by

applications that invoke device drivers with standard system calls,

such as open and ioctl. They perform coarse-grained computa-

tions while exchanging large data sets with the memory hierarchy.

Figure 6 shows the structure and interface common to all ESP ac-

celerators. The interface channels allow the accelerator to (1) com-

municate with the CPU via memory-mapped registers (conf_info),

(2) program the DMA controller or interact with other accelerators

(load_ctrl and store_ctrl), (3) exchange data with the memory

hierarchy or other accelerators, (load_chnl and store_chnl), and (4)

notify its completion back to the software application (acc_done).

These channels are implemented with latency-insensitive com-

munication primitives, which HLS tools commonly provide as li-

braries (e.g. MentorMatchLib Connections [33], Cadence Flex Chan-

nels [38], Xilinx ap_fifo). These primitives preserve functional

correctness in the presence of latency variation both in the com-

putation within the accelerator and in the communication across

the NoC [10]. This is obtained by adding valid and ready signals to

the channels. The valid signal indicates that the value of the data

bundle is valid in the current clock cycle, while the ready signal is

de-asserted to apply backpressure. The latency-insensitive nature

of ESP accelerators allows designers to fully exploit the ability of

HLS to produce many alternative RTL implementations, which are

not strictly equivalent from an RTL viewpoint (i.e., they do not

produce the same timed sequence of outputs for any valid input

sequence), but they are members of a latency-equivalent design

class [14]. Each member of this class can be seamlessly replaced

with another one, depending on performance and cost targets [44].

The execution flow of an ESP accelerator consists of four phases,

configure, load, compute, and store, as shown in Figure 6. A soft-

ware application configures, checks, and starts the accelerator via

memory-mapped registers. During the load and store phases, the
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Figure 7: Overlapping of computation and communication of ESP accelerators.

accelerator interacts with the DMA controller, interleaving data

exchanges between the system and the accelerator’s private local

memory (PLM) with computation. When the accelerator completes

its task, an interrupt resumes the software for further processing.

For better performance, the accelerator can have one or more

parallel computation components that interact with the PLM. The

organization of the PLM itself is typically customized for the given

accelerator, with multiple banks and ports. For example, the de-

signer can organize it as a circular or ping-pong buffers to sup-

port the pipelining of computation and transfers with the external

memory or other accelerators. Designers can leverage PLM genera-

tors [45] to implement many different memory subsystems, each

optimized for a specific combination of HLS knobs settings.

Accelerator Behavior. The charts of Figure 7 show the behav-

ior of two concurrent ESP accelerators (ACC0 and ACC1) in three pos-

sible scenarios. The two accelerators work in a producer-consumer

fashion: ACC0 generates data that ACC1 takes as inputs. The accelera-

tors are executed two times and concurrently; the consumer starts

as soon as the data is ready; finally, both the accelerators perform

burst of load and store DMA transactions, in red and brown respec-

tively. The completion of the configuration phase and interrupt

request (acc_done) are marked with CFG and IRQ, respectively.

In the top scenario, the two accelerators communicate via exter-

nal memory. First, the producer ACC0 runs and stores the resulting

data in main memory. Upon completion of the producer, the con-

sumer ACC1 starts and accesses the data in main memory; concur-

rently, the producer ACC0 can run a second time. The data exchange

happens through memory at the granularity of the whole acceler-

ator data set. This scenario is a virtual pipeline of ESP accelerators
through memory. Ping-pong buffering on the PLM for both load and

store phases allows the overlap of computation and communication.

In addition, load and store phases are allowed to overlap. This is

only possible by assuming to have dedicated memory channels

for each accelerator (e.g. two ESP memory tiles). As long as the

NoC and memory bandwidth are not saturated, the performance

overhead is limited only to the driver run time and the interrupt

handling procedures. We consider this scenario ideal.

In complex SoCs, it is reasonable to expect resource contention

and delays with the main memory. This can potentially limit the

latency and throughput of the accelerators, as shown in the middle

scenario of Figure 7, where some of the DMA transactions get de-

layed for both the producer and consumer accelerators. The ESP

library and API allows designers to replace the described software

pipeline, with an actual pipeline of accelerators, based on point-
to-point communication (P2P) over the NoC. The communication

method does not need to be chosen at design time; instead, special

configuration registers are used to overwrite the default DMA be-

havior. Beside relieving memory contention, P2P communication

can actually improve latency and throughput of communicating

accelerators, as shown in the bottom scenario of Figure 7. Here,

each output transaction of the producer ACC0 is matched to an input

transaction of the consumer ACC1 (in green). Differently from the

previous scenarios, the data exchange via P2P happens at a smaller

granularity: a single store transaction of the producer ACC0 is a valid

input for the consumer ACC1. A designer should take into account

this assumption when designing accelerators for a specific task.

Accelerator Templates and Code Generator. ESP provides

the designers with a set of accelerator templates for each of the HLS-

based design flows. These templates leverage concepts of object-

oriented programming and class inheritance to simplify the design

of the accelerators in C/C++ or SystemC and enforce the interface

and structure previously described. They also implicitly address

the differences existing among the various HLS tools and input
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Figure 8: Overview of the accelerator and SoC design flows with an example of SoC design configuration on the ESP GUI.

specification languages. For example, the latency-insensitive prim-

itives, which come with the different vendors, may have slightly

different APIs, e.g. Put()/Get() vs. Read()/Write(), or timing behav-

ior. With some HLS tools, the designer has to specify some extra

wait() statements in SystemC to generate the correct RTL code.

In the case of C/C++ designs a combination of HLS directives and

coding style must be followed to ensure that extra memories are not

inadvertently inferred and the phases are correctly synchronized.

Next to templates, ESP provides a further aid for the accelerator

design: an interactive environment that generates a fully-working

and HLS-ready accelerator skeleton from a set of parameters passed

by the designer. The skeleton comes with a unit testbench, synthesis

and simulation scripts, a bare-metal driver, a Linux driver, and a

sample test application. This is the first step of the accelerator design

flow, as shown on the top-right of Figure 8. The skeleton is a basic

specification that uses the templates and contains placeholder for

manual accelerator-specific customizations. The parameters passed

by the designers include: unique name and ID, desired HLS tool flow,

a list of application-specific configuration registers, bit-width of the

data tokens, size of the data set and number of batches of data sets

to be executed without interrupting the CPU. Next to application-

specific information, designers can choose architectural parameters

that set the minimum required size of the PLM and the maximum

memory footprint of the application that invokes the accelerator.

These parameters have effect on the generated accelerator skeleton,

device-driver, test application, and on the configuration parameters

for the ESP socket that will host the accelerator.

Starting from the automatically generated skeleton, designers

must customize the accelerator computation phase, leveraging the

software implementation of the target computation kernel as a

reference. In addition, they are responsible for customizing the input

generation and output validation functions in the unit testbench

and in the bare-metal and Linux test applications. Finally, in case

of complex data access patterns, they may also need to extend the

communication part of the accelerator and define a more complex

structure for the PLM. The ESP release offers a set of online tutorials

that describe these steps in details with simple examples, which

demonstrate how the first version of a new accelerator can be

designed, integrated and tested on FPGA in a few hours [18].

The domain specific flow for embedded machine learning is fully

automated [25]. The accelerator and the related software drivers

and application are generated in their entirety from the neural-

network model. ESP automatically generates also the accelerator

tile socket and a wrapper for the accelerator logic.

4.2 Third-Party Accelerator Integration
For existing accelerators, ESP provides a third-party accelerator

integration flow (TPF). The TPF skips all the steps necessary to

design a new accelerator and goes directly to SoC integration. The

designer must provide some information about the existing IP block

and a simple wrapper to connect the wires of the accelerator’s

interface to the ESP socket. Specifically, the designer must fill in a

short XML file with a unique accelerator name and ID, the list and

polarity of the reset signals, the list of clock signals, an optional

prefix for the AXI master interface in the wrapper, the user-defined

width of AXI optional control signals and the type of interrupt

request (i.e., level or edge sensitive). In addition, the TPF requires

the list of RTL source files, including Verilog, SystemVerilog, VHDL

and VHDL packages, a custom Makefile to compile the third-party

software and device drivers, and the list of executable files, libraries

and other binary objects needed to control the accelerator.

Currently, ESP provides adapters for AXI master (32 and 64

bits), AHB master (32 bits) and AXI-Lite or APB slave (32 bits). As

long as the target accelerator is compliant with these standard bus

protocols, the Verilog top-level wrapper consists of a simple wire

assignment to expose bus ports to the ESP socket and connect any

non-standard input port of the third-party accelerator (e.g. disable

test mode), if present. After these simple manual steps, ESP takes

care of the whole integration automatically. We used the TPF to

integrate the NVDLA [3]. An online tutorial in the ESP release

demonstrates the design of a complete SoC with multiple NVDLA

tiles, multiple memory tiles and the Ariane RISC-V processor. This
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system can run up to four concurrent machine-learning tasks using

the original NVDLA software stack
1
[24].

4.3 SoC Flow
The center and the left portion of Figure 8 illustrate the agile SoC

development enabled by ESP. Both the ESP and third-party accel-

erator flows contribute to the pool of IP components that can be

selected to build an SoC instance. The ESP GUI guides the designers

through an interactive SoC design flow that allows them to: choose

the number, types and positions of tiles, select the desired Pareto-

optimal design point from the HLS flows for each accelerator, select

the desired processor core among those available, determine the

cache hierarchy configuration, select the clock domains for each

tile, and enable the desired system monitors. The GUI writes a

configuration file that the ESP build flow can include to generate

RTL sockets, the system memory mapping, NoC routing tables, the

device tree for the target processor architecture, software header

files, and configuration parameters for the proxy components.

A single make target is sufficient to generate the bitstream for one

of the supported Xilinx evaluation boards (VCU128, VCU118 and

VC707) and proFPGA prototyping FPGA modules (XCVU440 and

XC7V2000T). Another single make target compiles Linux and creates

a default root file system that includes accelerators’ drivers and test

applications, together with all necessary initialization scripts to

load the ESP library and memory allocator. If properly listed during

the TPF, the software stack for the third-party accelerators is loaded

into the Linux image as well. When the FPGA implementation is

ready, users can load the boot loader onto the ESP boot memory

and the Linux image onto the external DRAM with the ESP Link
application and the companion module on the auxiliary tile. Next

ESP Link sends a soft reset to the processor cores, thus starting

the execution from the boot loader. Users can monitor the boot

process via UART, or log in with SSH after Linux boot completes.

The online tutorials explain how to properly wire the FPGA boards

to a simple home router to ensure connectivity.

In addition to FPGA prototyping, designers can run full-system

RTL simulations of a bare-metal program. If monitoring the FPGA

with the UART serial interface, they can run bare-metal applica-

tions on FPGA as well. The development of bare-metal and Linux

applications for an ESP SoC is facilitated by the ESP software stack

described in Section 3. The ESP release offers several examples.

The agile ESP flow allowed us to rapidly prototypemany complex

SoCs on FPGA, including:

• An SoC with 12 computer vision accelerators, with as many

dynamic frequency scaling (DFS) domains [40].

• A multi-core SoC booting Linux SMP with tens of accelera-

tors, multiple DRAM controllers, and dynamically reconfig-

urable cache coherence models [28].

• A RISC-V based SoCs where deep learning applications run-

ning on top of Linux invoke loosely-coupled accelerators

designed with multiple ESP accelerator design flows [25].

• A RISC-V based SoCs with multiple instances of the NVDLA

controlled by the RISC-V Ariane processor [24].

1
A minor patch was required to run multiple NVDLAs in a Linux environment.

5 RELATEDWORK
The OSH movement is supported by multiple SoC design platforms,

many based on the RISC-V open-standard ISA [6, 29]. The Rocket
Chip Generator is an OSH project that leverages the Chisel RTL

language to construct SoCs with multiple RISC-V cores connected

through a coherent TileLink bus [35]. The Chipyard framework in-

herits Rocket Chip’s Chisel-based parameterized hardware genera-

tor methodology and also allows the integration of IP blocks written

in other RTL languages, via a Chisel wrapper, as well as domain-

specific accelerators [5]. Celerity used the custom co-processor

interface RoCC of the Rocket chip to integrate five Rocket cores

with an array of 496 simpler RISC-V cores and a binarized neural

network (BNN) accelerator, which was designed with HLS, into a

385-million transistor SoC [21]. HERO is an FPGA-based research

platform that allows the integration of a standard host multicore

processor with programmable manycore accelerators composed of

clusters of RISC-V cores based on the PULP platform [4, 34, 47].

OpenPiton was the first open-source SMP Linux-booting RISC-V

multicore processor [8]. It supports the research of heterogeneous

ISAs and provides a coherence protocol that extends across multiple

chips [7, 46]. Blackparrot is a multicore RISC-V architecture that

offers some support for the integration of loosely-coupled acceler-

ators [43]; currently, it provides two of the four cache-coherence

options supported by ESP: fully-coherent and non-coherent.

While most of these platforms are built with a processor-centric

perspective, ESP promotes a system-centric perspective with a

scalable NoC-based architecture and a strong focus on the integra-

tion of heterogeneous components, including particularly loosely-

coupled accelerators. Another feature distinguishing ESP from the

other open-source SoC platforms is the flexible system-level design

methodology that embraces a variety of specification languages

and synthesis flows, while promoting the use of HLS to facilitate

the design and integration of accelerators.

6 CONCLUSIONS
In summary, with ESP we aim at contributing to the open-source

movement by supporting the realization of more scalable archi-

tectures for SoCs that integrate more heterogeneous components,

thanks to a more flexible design methodology that accommodates

different specification languages and design flows. Conceived as

a heterogeneous integration platform and tested through years of

teaching at Columbia University, ESP is naturally suited to foster

collaborative engineering of SoCs across the OSH community.
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