
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009 165

Leveraging Local Intracore Information to Increase
Global Performance in Block-Based Design

of Systems-on-Chip
Cheng-Hong Li and Luca P. Carloni, Member, IEEE

Abstract—Latency-insensitive design is a methodology for
system-on-chip (SoC) design that simplifies the reuse of intellec-
tual property cores and the implementation of the communication
among them. This simplification is based on a system-level pro-
tocol that decouples the intracore logic design from the design of
the intercore communication channels. Each core is encapsulated
within a shell, a synthesized logic block that dynamically controls
its operation to interface it with the rest of the SoC and absorb
any latency variations on its I/O signals. In particular, a shell
stalls a core whenever new valid data are not available on the
input channels or a downlink core has requested a delay in the
data production on the output channels. We study how knowledge
about the internal logic structure of a core can be applied to the
design of its shell to improve the overall system-level performance
by avoiding unnecessary local stalling. We introduce the notion
of functional independence condition (FIC) and present a novel
circuit design of a generic shell template that can leverage FIC.
We propose a procedure for the logic synthesis of a FIC-shell
instance that is only based on the analysis of the intracore logic
and does not require any input from the designers. Finally, we
present a comprehensive experimental analysis that shows the
performance benefits and limited design overhead of the proposed
technique. This includes the semicustom design of an SoC, an
ultrawideband baseband transmitter, using a 90-nm industrial
standard cell library.

Index Terms—Finite state machines (FSMs), latency-insensitive
design (LID), logic synthesis, sequential logic optimization,
system-level design, system-on-chip (SoCs).

I. INTRODUCTION

D ESIGNERS of systems-on-chip (SoCs) for embedded ap-
plications face the difficult task of assembling and coordi-

nating several hardware blocks under stringent time-to-market
requirements. Latency-insensitive design (LID) has been pro-
posed as a correct-by-construction design methodology for
synchronous SoCs. LID provides a sound way to cope with the
complexity of SoC design because:

1) It reconciles traditional and well-accepted CAD methods
for semicustom design, which are based on the synchro-

Manuscript received January 27, 2008; revised July 21, 2008. Current
version published January 21, 2009. This work was supported in part by Intel
Corporation and in part by the GSRC Focus Center, one of five research centers
funded under the Focus Center Research Program, a Semiconductor Research
Corporation program. This paper was recommended by Associate Editor
V. Narayanan.

The authors are with the Department of Computer Science, Columbia
University, New York, NY 10027 USA (e-mail: cheli@cs.columbia.edu;
luca@cs.columbia.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2008.2009157

Fig. 1. Shell encapsulation, relay-station insertion, and channel backpressure.

nous model of computation, with the reality that chips
designed with nanometer technologies are increasingly
becoming distributed systems due to the impact of global
communication delays [1].

2) It facilitates the reuse and assembly of predesigned and
prevalidated intellectual property (IP) cores, which can
be either hard macros in GDSII format or soft macros,
i.e., synthesizable logic blocks specified in a hardware
description language like Verilog or VHDL [2], [3].

3) It helps SoC engineers to meet the required target clock
frequency (achieve timing closure) and reduce the num-
ber of costly iterations in the design process by sim-
plifying the automatic application of wire pipelining, a
technique to fix timing violations in global interconnect
that is very effective yet challenging to apply [4].

These results are made possible thanks to the separation of
computation and communication, a form of orthogonalization
of concerns [5], that the theory of latency-insensitive protocols
formally enforces [6]. According to the LID methodology, an
SoC is obtained through the assembly of cores (or pearls),
each of which is first encapsulated within an automatically
synthesized interface module called shell (or wrapper). The
cores perform the actual computation in the system, while the
shells handle global communication and synchronization.

Fig. 1 shows a latency-insensitive system with five shell-core
pairs connected by point-to-point unidirectional channels. Each
core can be an arbitrarily complex sequential module (a control
logic block carrying state, a pipelined datapath with feedback
loops, etc.) as long as it satisfies the requirement that it is stal-
lable, i.e., it can be clock gated. The shell dynamically controls

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

166 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

the operations of the core by deciding whether to stall or fire it
at any given clock cycle based on the value of the flow-control
signals on the input/output channels. Data communicated over a
channel is labeled by a bit signal indicating whether the current
data are valid or void. At each clock cycle, the shell fires the
core if and only if each input channel presents a new valid
data token (AND-firing semantics). Otherwise, it stalls the core
through clock gating while storing valid data that have arrived
in its input queues (for future processing) and putting void data
on each output channel. Since the shell has necessarily limited
storage capability, a stop bit signal is transmitted backward
on each channel whenever a downlink shell needs to request
an uplink shell to slow down the production of good data
(backpressure).

At the implementation stage, the wires of a channel with
delay longer than the target clock period can be pipelined
by inserting one or more relay stations. A relay station is a
clocked buffer with twofold storage capacity, unit latency, and
simple flow-control logic. By processing the void and stop bit
signals, the flow-control logic of the shells and relay stations
implements the latency-insensitive protocol. This is designed
to accommodate any variations of delay on intercore wires
while guaranteeing that the functional behavior of the origi-
nal synchronous system is preserved (semantics preservation)
without the need of changing any part of the intracore logic
design [6].

LID helps to meet the required target clock frequency
through automatic wire pipelining, but performance in terms
of data processing throughput (number of valid data tokens
processed over time) may be affected negatively by the insertion
of relay stations [7], [8]. This is because each relay station that
is added to the system a posteriori must be initialized with a
void data token (a “bubble,” also denoted with the symbol τ).
If the relay station is inserted on a cyclic path, such as a
feedback loop, the AND-firing semantics of the shells makes
the bubble circulate in the loop indefinitely, thus causing the
processing throughput of the overall system to drop below the
ideal value (equal to one). For example, the two relay stations
placed between core A and core E in Fig. 1 induce two bubbles
that circulate in the loop and stall these cores periodically, thus
reducing the throughput of the entire system to 0.5. Throughput
degradation can be easily computed in advance and can be
reduced by optimizing the relay station insertion or the sizing
of the shell queues [7], [8].

The original works on LID make a general assumption that
the IP cores are black boxes whose internal logic structure is
not known to the designers [6], [9]. These earlier works show
how the knowledge of the core’s I/O signals is sufficient to
automatically synthesize the shell circuits. However, in assem-
bling a complex SoC, it may be the case that some cores are
acquired as synthesizable modules or are developed in-house,
thereby giving the designers access to the internal details of
their implementation. If indeed the core is a white box, then a
different type of shell can be automatically synthesized around
it to improve the performance of the overall latency-insensitive
system. This is the topic of this paper.

Contributions: We study how knowledge about the internal
logic structure of a core can be applied to the design of its shell

to improve the overall system-level performance by avoiding
the unnecessary local stalling.

While being fully compatible with the classic shells and
relay stations, this FIC-shell can exploit dynamically its core’s
functional independence condition (FIC). Formally defined in
Section II, FIC capture those scenarios when some input data
are not needed for the current computation inside a core,
and therefore, even if no valid data token is present on the
corresponding input channel, the core could still be fired. For
instance, this may occur for a finite-state machine (FSM) when
it is in a certain state, thereby its state transition and output
functions do not depend on a given input variable. At any clock
cycle, FIC depend on the local logic state of the core and,
potentially, on a subset of the data on other input channels. By
avoiding unnecessary stall and actually firing the core, the shell
may reduce the overall number of stalls incurred in the whole
system and raise its global processing throughput. In Section II,
we present a simple motivating example of this fact, while in
Section V, we show its impact in a real SoC design.

In Section III, we present a novel circuit design of a generic
FIC-shell that can dynamically exploit FIC when the core is
given as a white box. Like for the original simpler shell in
LID, this design can be used as a parameterized template to
synthesize a specific instance of the FIC-shell for any given
stallable core. In Section IV, we provide a fully automatic
procedure for the logic synthesis of the main logic block of
a FIC-shell instance based on the particular characteristics of
its corresponding core. Our method requires no input from
designers and relies on efficient logic synthesis algorithms.

In Section V, we analyze in detail the applicability and
effectiveness of the performance optimization based on FIC in
the LID methodology. This includes a report on the semicustom
design of a real SoC using LID. Our results confirm that
the system performance of a latency-insensitive system can
benefit considerably from this idea with minor area (and no
delay) overhead. Finally, in Section VI, we present an extensive
discussion of related work.

II. FUNCTIONAL INDEPENDENCE CONDITIONS

Without loss of generality, a core can be viewed as synchro-
nous logic network [10] and can be modeled as an FSM. We
revisit in the following the classic FSM model in the context
of LID to highlight the role played by the core’s I/O channels
(Fig. 2).

1) The inputs of the FSM is a set of Boolean variables, par-
titioned into N groups: P = P1

⋃
· · ·

⋃
PN , where Pi is

a set of wi Boolean variables {pi
1, . . . , p

i
wi
}, representing

the data portion of an input channel i of parallelism wi.
2) The outputs of the FSM is a set of Boolean variables parti-

tioned into M groups: Q = Q1

⋃
· · ·

⋃
QM , where Qj =

{qj
1, . . . , q

j
wj

} represents the data of an output channel j
of parallelism wj .

3) Let S = {s1, . . . , sn} and S ′ = {s′1, . . . , s′n} be the
sets of Boolean variables representing the FSM present
state and next state, respectively. At each clock transi-
tion, the next state’s values become the present state’s
values.

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

LI AND CARLONI: LEVERAGING INTRACORE INFORMATION TO INCREASE PERFORMANCE IN DESIGN OF SoCs 167

Fig. 2. Modeling a core module as an FSM.

4) Let B = {0, 1}. The state transition functions are an array
of Boolean functions mapping the input and present-state
variables to the next-state variables fi : B|P1|+···+|PN | ×
B|S| → B, or simply f : B|P1|+···+|PN | × B|S| → B|S|.
Likewise, the output functions are an array of Boolean
functions mapping the input and present-state variables
to the output variables gj : B|P1|+···+|PN | × B|S| → B, or
just g : B|P1|+···+|PN | × B|S| → B|Q1|+···+|QM |.

We now give a definition of FIC based on the FSM model.
Definition 1: Let T ≡ {P̃1, . . . , P̃k, . . . , P̃N ; S̃} be a tuple

of values for the input and present state of an FSM; the state
transition functions and output functions are independent from
value P̃k of channel Pk when, for any other tuple of values
T′ ≡ {P̃1, . . . , P̃′

k, . . . , P̃N ; S̃} that only differs for the value
of input channel Pk, we have

f(T) = f(T′) (1)
g(T) =g(T′). (2)

Whether f and g are independent from the value of an input
channel is contingent on the values of the other input channels
and the present state. Given a tuple T ≡ {P̃1, . . . , P̃k, . . . ,

P̃N ; S̃}, of input and present-state values, if f and g are inde-
pendent from the value of Pk, we call1

FICPk
(T) def= {P̃1, . . . , P̃k−1, P̃k+1, . . . , P̃N ; S̃}

a FIC of input channel Pk. If either f or g is dependent on the

value of Pk, FICPk
(T) def= ∅.

Generally, there may be more than one tuple of input and
present-state values under which the core’s computation is
independent from the value of input channel Pk.

Definition 2: Let T ⊆ B|P1|+···+|PN | × Bn be the set of all
possible tuples of input and present-state values. The set of FIC
of channel Pk is

FICPk

def=
⋃
T∈T

FICPk
(T). (3)

Since the number of distinct input and present-state values is
finite, the set FICPk

is also finite. The set of FICPk
can be

partitioned in the following two subsets.
1) SDFICPk

is the subset of FICPk
which depends only

on the present state, i.e., SDFICPk
=

⋃
T∈W FICPk

(T),

1We use the term FIC instead of don’t care because the latter should
be reserved for those input minterms of a Boolean function for which the
function’s output value is not specified or not needed [10], [11].

Fig. 3. Synchronous system made up of two communicating FSMs.

Fig. 4. Latency-insensitive system derived from the system of Fig. 3.

where W = B|P1|+···+|PN | × S, with S = {S̃|∀P̃1, . . . ,

∀P̃N , F ICPk
({P̃1, . . . , P̃n; S̃}) ∈ FICPk

}.
2) ISDFICPk

is the subset of FICPk
which depends both

on input and present-state values, i.e., ISDFICPk
=

FICPk
\ SDFICPk

.
Next, we present a simple example to show how FIC can

be used to optimize the performance of a latency-insensitive
system. In Section IV, we provide a procedure to find FIC for
each input channel. The set of FIC returned by our procedure
is implicitly represented as a Boolean predicate that can be
efficiently implemented as a hardware logic block (the FIC-
detect block), which, in turn, becomes part of the FIC-shell.

A. Motivating Example

Consider the synchronous system of Fig. 3 having two inter-
connected Moore FSMs M1 and M2. Each FSM has a single
input variable that is set equal to the output variable of the other
FSM: X is the output of M1 and the input of M2, while Y
is the output of M2 and the input of M1. In the FSM state
transition diagrams, each edge is labeled with the value of the
input variable that activates the corresponding transition. Both
FSMs have three states: the set of states of M1 is {A,B,C},
and the set of states of M2 is {D,E, F}. Since we have single-
output Moore FSMs, we simply assume that in each state S,
the value of the output variable is equal to the corresponding
lowercase letter s: In other words, FSM M1 outputs X = a
while being in state A, X = b while being in state B, and
X = c while being in state C. Similarly, FSM M2 outputs
Y = d while being in state D, Y = e while being in state E,
and Y = f while being in state F . As denoted by the arrow,
the initial states are A for M1 and D for M2. There are three
sets of traces in Fig. 5: The first set captures the behavior of the

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 5. Sets of traces for the behaviors of the three systems in the motivating example.

strictly synchronous system of Fig. 3. Notice that the system cy-
cles through five compound state transitions: For M1, we have
(A → C → A → A → B) → (A → C . . .), while for M2, we
have (D → F → E → F → E) → (D → F . . .).

The second set of traces in Fig. 5 describes the behavior of
the system of Fig. 4: This latency-insensitive system is obtained
from the system of Fig. 3 by encapsulating each FSM with a
distinct shell and inserting a relay station on the channel from
M2 to M1. Since the relay station is initialized with a void token
(denoted as τ), this is what variable Y ′

b presents at the first cycle
t0. Due to the AND-firing semantics of LID, this value continues
to iterate in the feedback loop, forcing each shell to periodically
stall its core FSM: M1 stalls at t3n, while M2 stalls at t3n+1,
with n ≥ 0. Pairwise comparison of the X and Y traces with
the Xb and Yb traces shows that they are latency equivalent as
expected, i.e., they are the same if one ignores the τ symbol [6].
However, the data processing throughput of the system is
reduced from 1 to 2/3 = 0.66.

Part of the lost throughput, however, can be recovered if one
takes advantage of FIC by analyzing the internal structure of the
FSM (an assumption not made in [6] where cores are treated as
black boxes). For instance, when M2 is in state F , its computa-
tion is independent from the value of input channel Xb. Thus,
the present-state value F is a FIC of q under all possible input
patterns: FICXb

≡ {∗;SM2 = F}. This FIC can be used to
design a shell that performs the following: 1) Avoids to stall M2

whenever it is in state F and there is a τ on channel Xb (stall
avoidance), and 2) remembers that after each stall avoidance, it
must eventually stall M2 when the “previously unneeded” data
on channel Xb arrives, only to be discarded (delayed stall). This
is what happens first at cycles (t1, t2) and then again at cycles
(t8, t9) in the third set of traces of Fig. 5 where the stalled FSM
is reported in the last row (and delayed stalls are marked with
parenthesis). The key point is that, even for this simple system,
delaying a local stall by a single clock cycle allows us to raise
the global throughput by 9% to 5/7 = 0.72.

III. SHELL DESIGN

We present the design of a shell interface module that can
exploit FIC (FIC-shell). This is a variation of the shell design
reported in [9] and [12], which we review first.

A. Classic Shell With Backpressure

A classic shell aligns the incoming data tokens, which may
arrive with arbitrary latencies, so that the input and output traces

Fig. 6. (Top) Block diagram of a two-input–two-output shell around a stal-
lable core module; (bottom) channel and firing control logic of the shell.

of an encapsulated core module is latency equivalent to the
original core module. Conceptually, a shell has two different
kinds of logic controllers (although in implementation, they
can be combined): A firing control block decides when a core
module should be stalled by gating the core’s clock, and a
channel control block handles incoming data tokens, interface
signals, and input queue operations for each channel. The top
of Fig. 6 reports a block diagram of a two-input–two-output
classic shell. A shell receives data from input channels and
broadcasts outputs of the core to output channels at every clock
cycle. A channel carries data and two special 1-bit signals: void
and stop. The void signal is used by the sender shell to inform
the sender’s downlink receivers whether the accompanying data
are valid. The stop signal is a flow-control signal and is used by
a receiver to inform the receiver’s uplink sender to stop sending
more data (backpressure).

The shell control logic is shown in the bottom half of Fig. 6.
At each clock cycle, the shell decides whether the computation
of a core module can proceed: The computation is allowed for

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

LI AND CARLONI: LEVERAGING INTRACORE INFORMATION TO INCREASE PERFORMANCE IN DESIGN OF SoCs 169

the next clock cycle (“firing”) if and only if the fire signal is
high (4). The signal fire is set high if all of the input channels
are ready, and no downlink receiver sends in backpressure.
Otherwise, the shell stalls the core by setting fire low to gate
the core’s clock. In a classic shell, an input channel i is
ready if it presents a valid data token, either from the channel
(voidIni = 0) or from the queue (qEmptyi = 0), as stated
in (7). The signal backpressurej is set high if a downlink
receiver of an output channel j is unable to save the valid data
generated by the sender in its own queue; it is indicated by
(5), where stopInj = 1 and voidOutj = 0. The output tokens
generated by a stalled module are marked as void if there is no
backpressure from the downlink receivers [the second clause in
(6)]. In the case of backpressure from a receiver on an output
channel j, the current valid output data will not be changed (due
to stalling caused by backpressure) and will be marked as valid
until the receiver has storage space to save it [the first clause
in (6)]. Equations (8)–(10) are the rules for steering the input
data. For an input channel i, the valid but not consumed (due
to stalling) data are stored in its queue for later use, indicated
by enqi = 1 as in (8). If the core is fired and the queue is not
empty, the data at the head of the queue are used by the core,
and thus, it is dequeued [deqi = 1, (9)]. The bypassi signal
directs the proper data to the core, either from the channel or
from the output of the queue (10). Finally, when the queue is
full (qFulli = 1), the stopOuti is set high, thus activating the
backpressure to request the uplink sender of the input channel
to stall (11).

B. Design of an FIC-Shell

Fig. 7 shows a block diagram of the newly proposed FIC-
shell design and its logic. While the firing control block of the
classic shell is reused, the channel control logic is modified
to support the new stall avoidance and delayed stall opera-
tions discussed in the example in Section II. First, the FIC-
shell differs from the classic shell by the conditions deciding
a channel’s readiness. Normally, a FIC-shell operates like a
classic shell, but it “becomes more aggressive” when FIC can
be exploited, i.e., whenever one or more input channels present
invalid data which are not necessary to the core’s computation.
In this case, these channels are declared ready, and the FIC-shell
fires the core module. However, this operation makes the core
run one more clock cycle ahead of the next valid data for such
channels. So, when these data arrive, they must be discarded.
Therefore, for each input channel, a FIC-shell maintains a
counter that records the number of cycles that the core module
currently runs ahead with respect to the next valid data on the
channel.

For an input channel i, whether certain FIC for the channel
is satisfied at a given clock cycle is dynamically established
by the FIC-detecti block: This is a combinational logic block
that monitors the present state of the core and the values of
other input channels. Each channel has its own single-output
FIC-detect block.2 When the FIC-detecti sets FICi high,

2In practice, all the FIC-detect blocks can be combined into a single compo-
nent to increase logic optimization opportunities.

Fig. 7. (Top) Block diagram of an FIC-shell; (bottom) FIC-shell channel and
firing control logic. For clarity, only input channel i = 1 is shown.

the current data of the channel are not needed for the core’s
computation. In Section IV, we present a procedure for the logic
synthesis of this block.

The bottom of Fig. 7 lists the channel and firing control logic
of the FIC-shell. As indicated earlier, the firing control logic
[(12)–(14) shown in Fig. 7] is the same as the one of the classic
shell. The channel control logic, instead, is different because it
takes advantage of FIC for potential stall avoidance and updates
counters of input channels to induce delayed stalls. The control
logic of an input channel i follows simple rules implemented as
(18) and (19): Whenever a core is fired but the input channel
has no valid data (i.e., it receives void data voidIni = 1, and
the queue is empty qEmptyi = 1), the count of the channel is
incremented by one (18). A nonzero count indicates that the
next valid data are outdated and should be discarded on arrival.
If this causes a delayed stall, the count is decreased by one
(19). An input channel i is ready when any of the following
conditions holds (15):

1) The queue provides valid data (qEmptyi = 0).
2) The channel provides valid (voidIni = 0) and fresh data

(marked by the zero count, i.e., cntZeroi = 1).
3) The core’s computation does not depend on the data value

(indicated by FICi = 1), and either the counter has not
reached its maximum value (cntMaxi = 0) or the data
are valid (voidIni = 0). When the count reaches its max-
imum value, the channel control can no longer declare
its channel as ready, even if this channel is receiving
void data and the FICi is true, because exploiting the

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 8. Some components of a FIC-shell. (a) Shift register used as the counter. (b) Block diagram of the FIC-queue for a given input channel i. (c) FSM and
output signals of the FIC-queue.

FIC for stall avoidance would cause the overflow of the
counter. However, there is an exception to this rule: When
the counter reaches its maximum value, an input channel
is still declared as ready if valid data (voidIni = 0)
are received and the core’s computation is independent
from the data (FICi = 1). These valid data are dropped,
regardless of whether the core will be fired, so the count
will either be the same (if the core is fired) or will be
decreased (not fired). Thus, regardless of the maximum
value of the count, the FIC-shell can always synchronize
the incoming data properly.

In practice, instead of using an up–down counter, a shift
register is sufficient because the actual count is not needed.
Fig. 8(a) shows an implementation of a 1-bit-wide shift register
which is used as a counter in our FIC-shell. Increasing the count
by one shifts a “1” into the register (shRighti, which is inci);
decreasing the count by one shifts a “1” out (shLefti, which is
deci). Evaluating cntZeroi and cntMaxi is straightforward:
The inverse of the leftmost bit indicates whether the count
is zero (cntZeroi), and the rightmost bit flags whether the
register reaches its maximum capacity (cntMaxi). The size
of the shift registers affects the amount of throughput recovery
that can be obtained with FIC optimization after the insertion
of relay stations. Specifically, if a core presents enough FIC to
avoid n consecutive stalls due to the insertion of n relay stations
on a feedback loop, then the shift register must have at least n
empty slots in order to avoid becoming a limiting factor for the
system performance.

We use synchronous queues to save unused but valid data
tokens. The enqueuing and dequeuing operations only take
effect at the rising/falling clock edges, i.e., the data token is
latched by the queue’s storage element at the next rising/falling
clock edge. Similarly, a queue updates its output, including the
data and queue status signals (qFulli and qEmptyi) at every
rising/falling clock edge. The queue implementation has no
combinational path between its inputs and outputs.

Remark: A FIC-shell relaxes the conditions of firing a core
module but still follows the latency-insensitive protocol when
it communicates with relay stations or other shells. Thus, FIC-
shells and classic shells can coexist in a system. Therefore, a
designer can use FIC-shells only when it is beneficial to the
system’s performance (like for cores in the critical feedback
loops [7], [8]), while classic shells are sufficient elsewhere.

C. FIC-Queue: Reducing the Stalls Due to Backpressure

FIC can also be used to “virtually” increase the queue sizes
without allocating real storage elements for data to reduce
the stalls due to backpressure. To do so, we designed a new
queue, called FIC-queue.3 The FIC-queue maintains the same
operating semantics as a normal synchronous queue. Internally,
for any data which are not needed for the core’s computation,
the queue only remembers the data’s existence but not the value.
In such cases, compared to normal synchronous queues with
the same amount of data storage elements, the new FIC-queue
appears to be larger. Thus, the FIC-queue can potentially reduce
the number of stalls caused by backpressure.

Fig. 8(b) shows the block diagram of the queue, its internal
signals, and its external interface with the remaining logic of
the shell. The FIC-queue replaces the original queue in Fig. 7
and subsumes its functionality. Compared to the original queue,
the FIC-queue of an input channel i reads one more input
signal FICi, which indicates whether the core’s computation is
independent from the oldest unused data on the input channel.4

The control examines the status of the internal queue and the
FICi signal to decide whether the oldest data should be saved.
The control logic is implemented as a two-state FSM. Fig. 8(c)
shows the state transition diagram of the FSM and the values
of outputs at the two states. Initially, the control is in the state
NOT_FI. The FI state indicates that data not needed for the core’s
computation exist, but their values are discarded. The control
discards data not critical to the computation of the core and
enters the FI state in either of the following two scenarios.

1) If the queue is empty, the core’s computation does not
depend on the input data (FICi = 1), and if the channel
control logic enqueues the data (deqi · enqi), then the
control discards the data and enters the FI state.

2) If the core’s computation is independent from the head
of the internal queue (FICi · deqi · qEmptyi), then it is
popped out, and the FSM enters the FI state.

At the FI state, the FSM reports externally that the queue is
not empty, regardless of the status of the internal queue. Note
that qFulli and qEmptyi are both sequential signals as they

3As discussed in Section VI, the FIC-queue generalizes a technique recently
proposed in [13].

4This is either the incoming data from the channel if the internal queue is
empty or the head of the internal queue if it is not empty.

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

LI AND CARLONI: LEVERAGING INTRACORE INFORMATION TO INCREASE PERFORMANCE IN DESIGN OF SoCs 171

Fig. 9. Algorithm to identify FIC for FIC-detect synthesis.

depend only on the internal full and empty signals, which are
updated at rising/falling clock edges, as discussed earlier.

IV. LOGIC SYNTHESIS OF FIC-DETECT BLOCK

We present a procedure to automatically identify the set of
FIC, as defined in Section II. The FIC are returned as logic
predicates of present-state and current input variables; they can
be implemented as simple combinational logic as FIC-detect
blocks.

A. Background Definitions

For a Boolean function f , a variable x is unobservable
if f is not sensitive to the changes of x [10]. A variable’s
unobservability may only hold under certain conditions that are
expressed by the complement of the Boolean difference, which
computes the conditions under which f is sensitive to x. The
Boolean difference is the XOR (⊕) of the cofactors of f with
respect to x and x. Thus, the conditions under which function
f is insensitive to variable x is

∂f

∂x

def= f |x=1⊕f |x=0

where ⊕ is the complement of XOR.
The consensus of Boolean function f with respect to variable

x is the part of f that is independent of x

Cx(f) def= f |x=1 · f |x=0. (22)

Consensus can be extended to a set of variables by iteratively
applying (22) to each variable [10].

B. Synthesis Algorithm

Fig. 9 shows the FIC-detect synthesis algorithm. The inputs
are a core modeled by its state transition and output functions
f and g, and the core’s input channels {P1, . . . , PN}. The
algorithm’s main loop iteratively computes the FIC for each

input channel and saves the FIC as the channel’s FIC-detect
logic (lines 1–15). The FIC of each channel Pi is stored in
variable ˜FICPi

(f ,g), which is computed by the inner loop

(lines 3–10). Then, ˜FICPi
(f ,g) is processed based on whether

we want to generate the full set of FIC or only SDFIC, which
depend only on state variables (lines 11–14). The inner loop
from lines 3 to 10 performs the main computation of FIC of
channel Pi. Variable ˜FICPi

(f ,g), initialized to true, keeps a
superset of Pi’s FIC. Because FIC involve all state and output
functions, the algorithm repeatedly refines ˜FICPi

(f ,g) on line

10 by taking the conjunction of ˜FICPi
(f ,g) and ˜FICPi

(h),
which is the FIC of Pi with respect to only one state transition
(or output) function h. The innermost loop from lines 5 to
9 computes ˜FICPi

(h) by deriving the set of unobservability
conditions5 with respect to h for each input variable pi

k ∈ Pi

and intersecting all the sets across all the variables. After
the loop terminates, line 10 applies the consensus function to
eliminate any cube that contains input variables from channel
Pi. These cubes may appear due to the conjunctions across the
unobservability conditions of the single variables.

Lines 11 to 14 process ˜FICPi
(f ,g), depending on whether

we require the complete set of FIC or SDFIC. In the former
case, we augment the literals of input variables with conditions
which are true if and only if the corresponding input channel
presents valid data. Recall that valid data can come either from
the channel (i.e., its voidIn is 0) or from the channel’s queue
(i.e., the queue is not empty qEmpty = 0).

Alternatively, line 14 restricts FIC dependency to state vari-
ables only (SDFIC) by applying the consensus function over all
input variables iteratively. SDFIC may be preferable because
the firing of a core module is controlled by the fire signal,
which must be stable by the end of each clock cycle. Therefore,
the dependency of FIC on input-channel variables may induce
extra timing constraints as it may lead to long combinational
paths from an uplink sender of data to the fire signal across the
communication channel.

The final FIC of channel Pi is a single-output Boolean func-
tion. The domain of the complete FICPi

(f ,g) is the set of state
variables, input variables, voidIn and qEmpty variables minus
the set of inputs, voidIni and qEmptyi variables of channel
Pi. Instead, the domain of SDFICPi

(f ,g) includes only the
state variables. Either function can be implemented as a com-
binational logic network like the channel FIC-detect block: At
each clock cycle, (FICPi

(f ,g) = 1) (or SDFICPi
(f ,g) = 1)

if and only if the current data value of channel Pi is not needed
to compute the state transition and the output function of the
core.

Complexity: The time complexity of the algorithm depends
on the data structure used to represent the Boolean functions
and the method used to compute the unobservability conditions
on line 7. We used the algorithm proposed in [16], where
Boolean functions are represented as BDD [17]. Each itera-
tion of the innermost loop (lines 5 to 9) takes O(|E||G|2) +
O(|G|2) = O(|E||G|2) time, where |G| is the size of the

5Computing unobservability conditions is the basis of our procedure, but not
the focus of this paper. We refer the interested reader to [10].

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 10. (a) A core with two input channels (three input variables in total)
modeled by a four-state Moore FSM. (b) Unobservability conditions of each
input variable with respect to the two-state transition functions. (c) FIC de-
pending on both inputs and states. (d) FIC depending on states only (SDFIC).

largest BDD and E is the set of edges of the Boolean net-
work implementing the core. The innermost loop’s total run
time is O(|Pi||E||G|2). Since line 10 takes O(|Pi||G|2), the
run time from lines 3 to 10 is O((|FF | + |PO|)|Pi||E||G|2),
where FF/PO denote the sets of flip-flops/primary outputs
of the core, respectively. Lines 11 to 14 take O(|Pi||G|2) in
either case. In summary, the overall run time of our algo-
rithm is O(

∑
i(|FF | + |PO|)|Pi||E||G|2) = O(|PI|(|FF | +

|PO|)|E||G|2), where PI is the set of primary inputs. Al-
though, in the worst case, |G| can be exponential in terms of
|PI| + |FF |, in practice, its size is often manageable, as con-
firmed in our experiments. Also, compared with the algorithm
given in [18], the new algorithm of Fig. 9 generates much
smaller |G| and thus runs faster. If we bound the size of |G|,
the algorithm is polynomial to the size of the core.

Example: We apply the procedures discussed earlier to a
simple core module whose behavior is modeled by a Moore
FSM. The core, its FSM model, and the state transition func-
tions are shown in Fig. 10(a). It has two input channels con-
sisting of three variables in total ({a, b} and c) and four states
encoded as (s0s1) ∈ {00, 01, 10, 11}. We applied our algorithm
to derive the FIC for each input channel. The unobservability
conditions of all three input variables with respect to each state
transition function are shown in Fig. 10(b). After line 12, the
FIC for each of the two channels are as follows: FICP1(f) =
s1c(voidIn2 · cntZero2 + qEmpty2) and FICP2(f) = s1. If
we prefer to restrict ourselves to SDFIC, then we apply line 14.
In this case, the FIC for channel 2 becomes SDFICP2(f)=s1,
while the input data coming at channel 1 are always needed:
SDFICP1(f) = ∅. Overall, less opportunities for avoiding
stalling can be exploited, but this might help to meet timing
constraints on the shell logic.

V. EXPERIMENTAL RESULTS

We present various experiments designed to evaluate the
applicability, efficiency, and overhead of the proposed opti-

mization technique. We implemented the FIC-computation pro-
cedure discussed in Section IV within the logic synthesis tool
ABC [19]. We test it with a suite of sequential circuits including
the ISCAS-89 benchmarks, and with a real-world SoC, an ul-
trawideband baseband transmitter [20], [21]. Both experiments
demonstrate that FIC-based optimization has broad applicabil-
ity, is efficient, and imposes little overhead.

A. Applicability of FIC Optimizations

In the first set of experiments, we evaluate the applicability
and practicality of FIC optimization by applying it to ISCAS-89
benchmarks and other sequential circuits. For each benchmark,
the FIC are derived assuming that each single input is a LID
channel (this assumption will be later discarded when we apply
FIC optimization to the SoC). As defined in Section II, we
distinguish a FIC that depends only on the core’s state vari-
ables (SDFIC) from one that depends also on input variables
(ISDFIC). The distributions in Fig. 11 illustrate the occurrence
frequencies of FIC in reachable states for benchmark circuit
s1488, specifically the ratio of reachable states in which a
particular input has FIC [Fig. 11(a)], the number of inputs
which have FIC in each of the 48 reachable states [Fig. 11(b)],
and the ratio of states where at least some inputs have SDFIC
[Fig. 11(c)]. The analysis only considers satisfied SDFIC at
each reachable state for a given input. In circuit s1488, all but
two inputs have satisfied SDFIC in most states. Furthermore, in
most reachable states, there are a significant number of inputs
which have FIC. The conclusions are that SDFIC are very fre-
quent, and by considering also ISDFIC, only a little more FIC
can be exploited (as indicated by the upper portion of each bar).

Fig. 12 shows the occurrence frequencies of FIC across all
benchmarks. For each benchmark, columns “PI,” “PO,” and
“FF” report the numbers of primary inputs, primary outputs,
and flip-flops, respectively; column “# of inputs with SDFIC”
reports the number of inputs which have satisfied SDFIC in
at least one reachable state, while column “states with SDFIC
inputs” reports the number of reachable states in which at least
one input has one satisfied SDFIC. The nonweighted average of
inputs with satisfied SDFIC per reachable state is given in the
following column. The analogous analysis is applied to FIC (by
considering both SDFIC and ISDFIC), and results are listed in
the last three columns. These experimental results indicate that
FIC are frequent in reachable states.

While, by definition, the set of SDFIC is a subset of FIC,
the number of SDFIC is high in most designs (e.g., all of FIC
discovered in circuit s349 are SDFIC). These results confirm
that, in practice, it is sufficient to focus on exploiting SDFIC
since they already offer many opportunities to improve the
performance of a latency-insensitive system. Furthermore, the
SDFIC-detect logic is typically faster and much smaller.

B. Case Study: An SoC for Wireless Communication

In the second set of experiments, we applied LID and the
proposed FIC optimization to the semi-custom design of an
SoC for wireless communication to measure the performance
improvements made possible by FIC and assess the associated

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

LI AND CARLONI: LEVERAGING INTRACORE INFORMATION TO INCREASE PERFORMANCE IN DESIGN OF SoCs 173

Fig. 11. Frequency distributions of FIC in s1488. In Figs. 11 and 12, the acronym “ISDFIC” refers to FIC that are functions of both state variables and at least
one input variable, while “SDFIC” refers to FIC that are functions of state variables only.

Fig. 12. Statistics on the occurrence frequencies of FIC across all benchmarks.

Fig. 13. LDPC-COFDM-based ultrawideband transmitter. The channels of the datapath are labeled alphabetically.

overhead in terms of both area and delay. We started from the
original RTL specification of the SoC that was designed by
Liu et al. and presented in [20] and [21]: This is a “coded or-
thogonal frequency division modulation” (COFDM) baseband
solution for ultrawideband systems. Fig. 13 shows the top-level
diagram of the system: The transmitter receives packets from
the medium access control layer and outputs encoded symbols
to a DAC for physical transmission.

To evaluate the FIC optimization, we actually synthesized
three versions of this SoC: 1) the original or “strict” system;
2) an LID version of it; and 3) an LID version with FIC
optimization (the FIC-shell does not use the FIC-queue). We
made the entire system latency-insensitive by encapsulating the
five datapath modules and the controller with classic LID shells.

In the third version, we used the new FIC-shells whenever
applicable6 by exploiting the SDFIC which are derived, as ex-
plained in Section IV. These conditions are found and detected
on five global communication channels (A, B, D, E, and F)
that connect the datapath modules. The proposed FIC-detect
synthesis algorithm finds these FIC in less than one second on a
3-GHz Pentium 4 machine with 1-GB memory. The functional
validation and throughput measurements of the two latency-
insensitive systems are done by simulating the synthesizable
RTL design. All of the simulations test the transmission
of ten consecutive data packets, which requires more than

6Modules with no SDFIC are encapsulated with classic shells. This is
possible because the FIC-shell follows the same LI protocol as classic shells.

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 14. Throughput speedup due to FIC-based optimization with one or two
relay-station insertions on different channels.

40 000 clock cycles. To measure the area and delay, we did
the following: 1) synthesized the three designs using Synopsys
Design Compiler; 2) completed technology mapping with a
90-nm industrial standard cell library; and 3) performed static
timing analysis on the mapped design.

Fig. 14 shows the throughput improvements due to FIC
optimization for different design configurations of the latency-
insensitive SoC. The various configurations are latency-
equivalent systems that differ only for the number and location
of the relay stations across the seven global communication
channels. All of the shells use input queues of size two. System
throughput is improved in many cases and very significantly in
some cases, e.g., when one or two relay stations are inserted on
channel F, the FIC optimization brings the throughput almost
up to one, the ideal value. Overall, the throughput speedups
across all configurations range from 0.3% to 30.7%; the average
is 10.3%.

1) Effectiveness of FIC: All of the FIC are computed auto-
matically without human interventions, and all but one mod-
ule has at least one input channel with FIC (more precisely,
SDFIC). Some of the FIC discovered by the algorithm are
very effective. For example, the feedback channel F from the
Shaping module to the Spreading module is only needed in a
very few number of clock cycles. Similarly, the Pilot-Insertion
module does not need its input from channel B periodically,
and this FIC often contributes to the throughput improvement.
The effectiveness of an FIC roughly depends on how often it
can be used to avoid stalling of modules in the critical loops.
Fig. 15 shows the throughput improvements due to FIC op-
timization (“throughput” and “speedup” columns) for various
configurations with one relay-station insertion, the frequency of
the occurrences of the corresponding FIC, and the frequency of
its usage to avoid stalls in the remaining columns. For example,
when a relay station is inserted on channel D, the throughput is
improved from 0.75 to 0.83, because the FIC of channels D and
F avoid a significant number of stalls of the Shaping module
and the Pilot-Insertion module, respectively, and B–C–D–F–B
forms the critical loop of the design. In contrast, when a relay
station is inserted on channel E, the throughput remains almost
the same after FIC optimization, even if B’s FIC is used for

stall avoidance 10% of the overall simulation time and E’s
FIC is used whenever possible. This is because channel B is
not on the critical loop (which is G–E–G in this case), and
channel E’s FIC happens rarely and thus cannot have a sizable
impact on throughput. In general, inserting more relay stations
on a channel decreases the throughput of a latency-insensitive
system, regardless of the use of FIC optimization. Indeed,
since the FIC occurrence frequencies are independent from the
number of relay stations, more relay stations induce more stalls
that eventually cannot be mitigated by FIC.

2) Area and Delay Overheads: We compared the area and
delay of the synthesized original transmitter versus its latency-
insensitive versions with and without FIC optimization. The
area overhead is minimal: 1.04% for shells with queue size of
one, and 3.26% for shells with queue size of two. FIC-shells
with FIC-detect blocks add negligible area (less than 0.01%) to
the classical shells. The critical-path delays of both the classic
and FIC-optimized latency-insensitive transmitters are the same
as in the original strict design, i.e., the maximum clock speed
is not affected. Consequently, FIC optimization often increases
the latency-insensitive system’s effective performance, which is
defined as clock frequency times system throughput [7].

3) Sizing of Shift Registers: The charts of Fig. 16 report the
system throughput of the COFDM design as a function of the
size of the shift registers, which is varied uniformly from zero
to three for all FIC-shells in the system. In particular, each
curve on the left-hand side figure corresponds to the case when
one relay station is inserted on one of the seven global data
channels of Fig. 13. The curves on the right-hand side figure
correspond to the case when two relay stations are inserted on
the same channels. Note that the leftmost data points in the
two charts correspond to the throughput value using classic
LID shells because a FIC-shell with shift registers of size zero
“degenerates” to a classic shell. The throughput improvement
levels off when the size of the shift registers becomes larger
than one in the case of one relay-station insertion and two in
the case of two relay-station insertions.

4) FIC Optimization and Queue Sizing: As discussed in [8],
[14], and [22], the input queue sizes in the shells also affect
the system throughput. For any pair of reconvergent paths, if
the number of relay stations on one path and the total queue
capacity of the other are unbalanced, such reconvergent paths
can become a critical loop consisting of forward datapaths and
backward backpressure paths. This is because the cores on one
of the reconvergent paths will periodically stall their uplink
senders once their queues are full. For example, if we insert one
relay station on channel F in an LID implementation of our de-
sign where queues have size one, the reconvergent path E–A–F
becomes a critical loop with a throughput of 3/4 = 0.75.
To improve the throughput, one option is to increase the size
of the shell’s input queues. For instance, increasing the queue
sizes to two raises the throughput to 0.8. Columns labeled as
“No FIC” in Fig. 17 report analogous throughput variations due
to different queue sizes when the relay station is inserted on one
of the channels.

On the other hand, the use of FIC creates more opportunities
for throughput optimization. When a core utilizes the FIC of
one of its input channels to avoid unnecessary stalls, the usage

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

LI AND CARLONI: LEVERAGING INTRACORE INFORMATION TO INCREASE PERFORMANCE IN DESIGN OF SoCs 175

Fig. 15. Throughput speedup due to FIC-based optimization with one relay-station insertion and shell queues of size two.

Fig. 16. Impact of the size of the shift registers in the FIC-shells on system throughput for the LID of the COFDM. (Left) One relay-station insertion.
(Right) Two relay-station insertions.

Fig. 17. Impact of the FIC optimization and queue sizing on the throughput
(with one relay-station insertion).

of FIC also reduces the chance of filling up the queues of the
core’s remaining input channels. Therefore, FIC can avoid stalls
caused not only by the absence of valid data but also by back-
pressure. For instance, a FIC of channel F is enough to bring the
throughput back to 0.98. This achieves higher throughput than
the queue-sizing technique. In other scenarios, e.g., if the relay
station is inserted on channel B, combining queue sizing and
FIC optimization can achieve a higher throughput (0.92) than
using only one technique alone (0.80 for queue sizing only or
0.79 for FIC optimization only). Columns labeled as “FIC” in
Fig. 17 report the throughput data for the various scenarios.

5) Evaluations of FIC-Queue: We compared the FIC op-
timization using the FIC-queue technique to the one without
using it, whose results are presented earlier. We found that the
throughput improvements of using FIC-queue on the COFDM
design are few. The only throughput improvement is seen in the
case of inserting one relay station on both channels A and E.
The storage space of queues in each shell is one. The through-
put of the design increases from 0.60 to 0.66. If we apply
the FIC-queue technique to other design configurations, the
throughput remains the same.

C. Discussion of FIC-Based Optimization

When the core is implemented as a netlist of logic gates,
our algorithm automatically constructs FIC based on the logic
structure by operating at the circuit level. Still, the presence
of FIC is mostly due to the behavior of a design, not to the
suboptimality of the implementation of its logic circuits. That
is, the behavior of a core module or the entire system implicitly
introduces the FIC. This claim is supported by the analysis of
the experimental results for those cases where the behavior of
the design is known.

1) Benchmark s1488, whose FIC are analyzed in Fig. 11, is
an add–shift multiplier [23] controlled by a 3-bit counter.
By design, its inputs are only needed in the first cycle
of each round of multiplication. This explains why this
benchmark has many state-dependent FIC.

2) For the case of the COFDM SoC, the occurrence of FIC
of channel B may be traced back to the specification
of the standard protocol, as given in [24]: the Pilot-
Insertion module adds pilot symbols periodically to allow
a receiver to measure the distortions of the transmitted
symbols, and when it operates in this mode, it does not
need the inputs from channel B.

A second observation is that logic optimizations do not affect
the amount of FIC discovered by our algorithm. We repeat the
same analysis, as shown in Fig. 12, measuring the occurrence
frequencies of FIC for the same suite of benchmarks after
applying state minimization with STAMINA [25] and the logic
optimization scripts in ABC.7 The results are shown in Fig. 18.8

Comparing this set of results with those of Fig. 12 shows
that the FIC occurrence frequencies are almost the same. This

7For the original analysis, we did not apply any sequential/combinational
logic optimizations to the benchmarks.

8The state space of certain benchmarks cannot be handled by STAMINA.

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

Fig. 18. Statistics on the occurrence frequencies of FIC across all benchmarks subjected to state minimization and sequential and combinational logic
optimizations. Benchmarks whose state space cannot be handled by the tool are marked by dashes in the corresponding rows.

means that logic optimization does not significantly affect the
number of FIC. Similarly, while the synthesis of the COFDM
design that is returned by Synopsys Design Compiler includes
various logic optimization steps, our procedure identifies FIC
that are induced by the COFDM communication protocol. This
is not a surprise if one accepts that FIC depend on the functional
specification (the behavior) of the design, which is not changed
by a logic synthesis tool.

As a final note, we would like to stress the ability of the pro-
posed algorithm to discover the FIC automatically, regardless
of the nature of the design and without human interventions.
For example, our method discovers the FIC in the COFDM SoC
automatically, without the knowledge of its logic and protocol
design, and synthesizes the necessary FIC-detection logic in a
“correct-by-construction” fashion.

VI. RELATED WORK

FIC-based optimization is related to the concept of early
evaluation in asynchronous circuit and system design. Early
evaluation allows an asynchronous component to compute its
output before all of its input values are available. It is a more
practical restriction of the OR-causality precedence relation for
which Yakovlev et al. provide formal models and implemen-
tations for speed-independent asynchronous circuits in [26]
and [27]. Early evaluation has been applied to phased logic
at different granularity levels by Reese et al. [28], [29] and
to the optimization of pipelined asynchronous logic by both
Brej and Garside [30] and, more recently, by Ampalam and
Singh [31].

Early evaluation can be extended to synchronous circuits if
these operate according to a latency-insensitive protocol. The
idea has been first investigated in the context of multiclock
latency-insensitive circuits in [32] and [33], and it has been
applied to elastic systems by using a new latency-insensitive
protocol that explicitly encodes antitoken signals [34]. The
work by Casu and Macchiarulo on adaptive latency-insensitive

protocols [13] and our preliminary results on FIC-based op-
timization [18] have shown that unnecessary stalling can be
avoided with local modification in the logic design of a shell
and without requiring any change in the channel interface
signals (void and stop bits) that were defined to implement the
original latency-insensitive protocol [9].

Two ingredients common to early evaluation and FIC-based
optimization are as follows: the design of the detection logic
and the mechanism to implement delayed stalls for dealing with
late-arriving previously unneeded data items (see Section II-A).

1) Detection logic: To improve performance with early
evaluation or exploiting FIC, a mechanism to dynamically
detect the occurrence of such an event must be supplied. Most
approaches in the literature assume that this mechanism is
manually designed. The burden of manual design is partially
reduced in the method described in [33], which, however,
requires designers to provide high-level specifications of trig-
gering functions that are then automatically translated into FSM
implementations.

Reese et al. [28] provide an algorithm based on traversing
root-to-terminal paths in a BDD representing the given logic
function. This method applies to the synthesis of one trigger
function on a fixed subset of inputs. Our procedure, which
uses unobservability conditions, targets arbitrary multi-input
and multi-output logic functions and finds all the triggering
conditions on all of the possible input subsets.

Casu and Macchiarulo [13] identify the need to have an
“effective and simple” combinational logic block, which they
call “oracle,” to implement the detection logic, but they do
not provide a method to synthesize it. All the aforementioned
approaches somewhat assume that the designers have full
knowledge of the triggering conditions. Instead, the notion of
FIC and the logic synthesis procedure for the FIC-detect logic
block that we have presented in Section IV establish an auto-
matic solution for this problem that does not request any effort
from the designers. Such automatic procedures are possible
because an implementation of the functional specification of

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

LI AND CARLONI: LEVERAGING INTRACORE INFORMATION TO INCREASE PERFORMANCE IN DESIGN OF SoCs 177

a core contains all the necessary information. Fully automatic
synthesis approaches are obviously more desirable since they
eliminate human errors and simplify the application of the
proposed optimization method.

2) Handling Delayed Stalls: One challenge of both early
evaluation and FIC-based optimization is to ensure the func-
tional correctness of the final implementation. If a logic com-
ponent evaluates its outputs in the absence of a valid data
token, when the absent valid token finally arrives, it will
be obsolete and therefore unusable for correct computation.
Hence, it is necessary to ensure that all the computations are
fired on the fresh data tokens. To deal with this problem,
various approaches have been proposed that are either based
on asynchronous design styles or that assume various kinds of
global synchronization schemes, among which are synchronous
latency-insensitive systems. Still, even though these methods
apply to distinct design styles, they can be divided into three
broad classes.

One class of methods assumes communication protocols
which use explicit acknowledgement to request new wave of
data tokens as in many asynchronous systems. The idea is to
withhold the acknowledgement until all data arrive, even if
some early arrivals already trigger the computation. Reese et al.
[28], [29] use Petri nets to model and implement such a hand-
shaking mechanism for asynchronous phased-logic systems.

An alternative approach is to augment the communication
infrastructure with flow of antitokens, which run in parallel
with the normal data flow but in the opposite direction and
annihilate unused (and unneeded) normal data tokens [31], [34].
Whenever a computation core early evaluates, it generates one
antitoken for each input channel from which a late token is
expected. Such mechanisms require communication protocols
that accommodate the flow of antitokens as well as carefully
designed interface circuits which propagate and destroy normal
tokens and antitokens properly.

The third approach is based on counting the number of
subsequent tokens to be discarded due to early evaluations for
each input channel. This notion is similar to the accumulation
of negative tokens in the “guarded” Petri net model proposed by
Júlvez et al. [35] for performance analysis of early evaluation.
Casu and Macchiarulo [13] implement this technique by using
an up–down counter for each input channel whose value is
the number of tokens to be discarded. We use a 1-bit shift
register instead of an up–down counter to reduce the hardware
overhead.9

Compared to the antitoken and counting-based approaches,
the explicit acknowledgement method is more restrictive. The
withholding of the acknowledgements is equivalent to increas-
ing the counter value to one, but it also prohibits “consecu-
tive” early firings, which result in greater counter values if a

9Casu and Macchiarulo have proposed a novel technique to use FIC to reduce
not only the number of stalls caused by void tokens but also the stalls caused by
backpressures. This is achieved by discarding valid but not needed data tokens
which cannot be immediately used, instead of requesting its sender to repeat
sending the same data. In such cases, the counter value is decreased from zero
to negative one in order to properly align the next wave of data tokens. In
Section III-C, we showed how this idea can be generalized to virtually increase
the queue sizes in our FIC-shells for backpressure reduction.

counting-based approach is used. Thus, the acknowledgement
method loses some optimization opportunities that are possible
with the other two techniques: The counting-based approaches
support back-to-back consecutive early firings by allowing
greater-than-one counter values, and the antitoken techniques
achieve the same effect by sending out antitokens continuously
as long as there is no traffic congestion of the antitoken flows.
Interestingly, compared to using antitokens, the counting-based
method can be viewed as storing (the number of) the antitokens
locally in queues, which provide buffering mechanism. Finally,
while the communication interfaces supporting antitoken flows
require the modification of the global communication protocols
with the insertion of additional control signals, the counting-
based methods do not as they only demand changes that are
inherently “local” to the interface.

VII. CONCLUSION

We studied the problem of leveraging the local knowledge
on the internal logic of a core to improve the global SoC perfor-
mance in LID. We defined the notion of FIC, and we described
a logic synthesis procedure to generate automatically a shell
interface (a FIC-shell) around a given core that dynamically
detects FIC occurrences to avoid unnecessary local stalling of
the core, thereby increasing the overall system performance. We
presented a comprehensive experimental study that includes an
evaluation of the applicability and practicality of the proposed
technique with a suite of benchmark circuits and the complete
semicustom design of an SoC for wireless communication.
Experimental results show that, on average, the data processing
throughput of this SoC can be increased by up to 30% with an
area overhead that is never larger than 3.26%.

ACKNOWLEDGMENT

The authors would like to thank H.-Y. Liu and C.-Y. Lee for
providing the RTL design of the COFDM SoC and C. Pinello
for the useful discussions on FIC-based optimization.

REFERENCES

[1] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Coping with latency in
SoC design,” IEEE Micro, vol. 22, no. 5, pp. 24–35, Sep./Oct. 2002.

[2] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd, Sur-
viving the SOC Revolution: A Guide to Platform Based Design. Norwell,
MA: Kluwer, 1999.

[3] M. Keating and P. Bricaud, Reuse Methodology Manual for System-On-
A-Chip Designs. Norwell, MA: Kluwer, 1998.

[4] L. Scheffer, “Methodologies and tools for pipelined on-chip intercon-
nect,” in Proc. Int. Conf. Comput. Des., Oct. 2002, pp. 152–157.

[5] K. Keutzer, S. Malik, A. R. Newton, J. Rabaey, and A. Sangiovanni-
Vincentelli, “System-level design: Orthogonalization of concerns and
platform-based design,” IEEE Trans. Comput.-Aided Design Integr. Cir-
cuits Syst., vol. 19, no. 12, pp. 1523–1543, Dec. 2000.

[6] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli, “Theory
of latency-insensitive design,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 20, no. 9, pp. 1059–1076, Sep. 2001.

[7] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis
and optimization of latency insensitive systems,” in Proc. Des. Autom.
Conf., Jun. 2000, pp. 361–367.

[8] R. Lu and C.-K. Koh, “Performance analysis of latency-insensitive sys-
tems,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 25,
no. 3, pp. 469–483, Mar. 2006.

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 2, FEBRUARY 2009

[9] L. P. Carloni, K. L. McMillan, A. Saldanha, and A. L. Sangiovanni-
Vincentelli, “A methodology for correct-by-construction latency insen-
sitive design,” in Proc. Int. Conf. Comput.-Aided Des., San Jose, CA,
Nov. 1999, pp. 309–315.

[10] G. D. Micheli, Synthesis and Optimization of Digital Circuits. New
York: McGraw-Hill, 1994.

[11] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby,
C. R. Morrison, R. L. Rudell, A. Sangiovanni-Vincentelli, and
A. R. Wang, “Multi-level logic minimization using implicit don’t cares,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 7, no. 6,
pp. 723–740, Jun. 1988.

[12] C.-H. Li, R. L. Collins, S. Sonalkar, and L. P. Carloni, “Design, imple-
mentation, and validation of a new class of interface circuits for latency-
insensitive design,” in Proc. Int. Conf. Formal Methods Models Codesign,
2007, pp. 13–22.

[13] M. R. Casu and L. Macchiarulo, “Adaptive latency-insensitive protocols,”
IEEE Des. Test Comput., vol. 24, no. 5, pp. 442–452, Sep./Oct. 2007.

[14] R. Collins and L. P. Carloni, “Topology-based optimization of maximal
sustainable throughput in a latency-insensitive system,” in Proc. Des.
Autom. Conf., Jun. 2007, pp. 410–416.

[15] C. V. Ramamoorthy and G. S. Ho, “Performance evaluation of asyn-
chronous concurrent systems using Petri nets,” IEEE Trans. Softw. Eng.,
vol. SE-6, no. 5, pp. 440–449, Sep. 1980.

[16] M. Damiani and G. D. Micheli, “Don’t care set specifications in com-
binational and synchronous logic circuits,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 12, no. 3, pp. 365–388, Mar. 1993.

[17] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Trans. Comput., vol. C-35, no. 8, pp. 677–691, Aug. 1986.

[18] C.-H. Li and L. P. Carloni, “Using functional independence conditions
to optimize the performance of latency-insensitive systems,” in Proc. Int.
Conf. Comput.-Aided Des., 2007, pp. 32–39.

[19] ABC: A system for sequential synthesis and verification. [Online].
Available: http://www.eecs.berkeley.edu/alanmi/abc/

[20] H.-Y. Liu, C.-C. Lin, Y.-W. Lin, C.-C. Chung, K.-L. Lin, W.-C. Chang,
L.-H. Chen, H.-C. Chang, and C.-Y. Lee, “A 480 mb/s LDPC-COFDM-
based UWB baseband transceiver,” in Proc. ISSCC Dig. Tech. Papers,
2005, vol. 1, pp. 444–609.

[21] C.-Y. Lee, H.-Y. Liu, and C.-C. Lin, “SoC for COFDM wireless commu-
nications: Challenges and opportunities,” in Proc. Int. Symp. VLSI Des.,
Autom. Test, 2006, pp. 1–4.

[22] R. Lu and C.-K. Koh, “Performance optimization of latency insensitive
systems through buffer queue sizing of communication channels,” in
Proc. Int. Conf. Comput.-Aided Des., 2003, pp. 227–231.

[23] M. C. Hansen, H. Yalcin, and J. P. Hayes, “Unveiling the ISCAS-
85 benchmarks: A case study in reverse engineering,” IEEE Des. Test
Comput., vol. 16, no. 3, pp. 72–80, Jul. 1999.

[24] A. Batra, J. Balakrishnan, A. Dabak, R. Gharpurey, P. Fontaine, J. Lin,
J.-M. Ho, S. Lee, M. Frechette, S. March, and H. Yamaguchi, Multi-Band
OFDM Physical Layer Proposal for IEEE 802.15 Task Group 3a, IEEE
P802.15-03/268r1-TG3a, Sep. 2003.

[25] J.-K. Rho, G. D. Hachtel, F. Somenzi, and R. M. Jacoby, “Exact and
heuristic algorithms for the minimization of incompletely specified state
machines,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 13, no. 2, pp. 167–177, Feb. 1994.

[26] A. Yakovlev, M. Kishinevsky, A. Kondratyev, L. Lavagno, and
M. Pietkiewicz-Koutny, “On the models for asynchronous circuit behav-
iour with OR causality,” Form. Methods Syst. Des., vol. 9, no. 3, pp. 189–
233, Nov. 1996.

[27] A. Bystrov, D. Sokolov, and A. Yakovlev, “Low-latency control struc-
tures with slack,” in Proc. Int. Symp. Asynchr. Circuits Syst., May 2003,
pp. 164–173.

[28] R. R. Reese, M. A. Thornton, and C. Traver, “A coarse-grain phased logic
CPU,” in Proc. Int. Symp. Asynchr. Circuits Syst., 2003, pp. 2–13.

[29] R. R. Reese, M. A. Thornton, C. Traver, and D. Hemmendinger, “Early
evaluation for performance enhancement in phased logic,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 4, pp. 532–550,
Apr. 2005.

[30] C. F. Brej and J. D. Garside, “Early output logic using anti-tokens,” in
Proc. Int. Workshop Logic Synth., 2003, pp. 302–309.

[31] M. Ampalam and M. Singh, “Counterflow pipelining: Architectural sup-
port for preemption in asynchronous systems using anti-tokens,” in Proc.
Int. Conf. Comput.-Aided Des., 2006, pp. 611–618.

[32] M. Singh and M. Theobald, “Generalized latency-insensitive systems for
single-clock and multi-clock architectures,” in Proc. Conf. Des., Autom.
Test Eur., 2004, pp. 1008–1013.

[33] A. Agiwal and M. Singh, “An architecture and a wrapper synthesis ap-
proach for multi-clock latency-insensitive systems,” in Proc. Int. Conf.
Comput.-Aided Des., 2005, pp. 1006–1013.

[34] J. Cortadella and M. Kishinevsky, “Synchronous elastic circuits with early
evaluation and token counterflow,” in Proc. Des. Autom. Conf., 2007,
pp. 416–419.

[35] J. Júlvez, J. Cortadella, and M. Kishinevsky, “Performance analysis of
concurrent systems with early evaluation,” in Proc. Int. Conf. Comput.-
Aided Des., 2006, pp. 448–455.

Cheng-Hong Li received the B.S. degree in elec-
trical engineering and the M.S. degree in computer
science from National Taiwan University, Taipei,
Taiwan, in 1998 and 2001 respectively. He is cur-
rently working toward the Ph.D. degree in the
Department of Computer Science, Columbia Univer-
sity, New York, NY.

His research interests include communication-
based design methodology of systems-on-chip,
formal verification, and code compression for em-
bedded systems.

Luca P. Carloni (S’95–M’04) received the Laurea
degree (summa cum laude) in electrical engineering
from the Università di Bologna, Bologna, Italy, in
1995 and the M.S. and Ph.D. degrees in electrical
engineering and computer sciences from the Uni-
versity of California, Berkeley, in 1997 and 2004,
respectively.

He is currently an Assistant Professor with the
Department of Computer Science, Columbia Univer-
sity, New York, NY. He has authored over 50 publi-
cations and is the holder of one patent. His research

interests include design tools and methodologies for integrated circuits and
systems, distributed embedded systems design, and design of high-performance
computer systems.

Dr. Carloni is a member of the IEEE Computer Society. He received
the Faculty Early Career Development (CAREER) Award from the National
Science Foundation in 2006 and was selected as an Alfred P. Sloan Research
Fellow in 2008. He is the recipient of the 2002 Demetri Angelakos Memo-
rial Achievement Award “in recognition of altruistic attitude towards fellow
graduate students.” In 2002, one of his papers was selected for “The Best of
ICCAD,” a collection of the best IEEE International Conference on Computer-
Aided Design papers of the past 20 years.

Authorized licensed use limited to: Columbia University. Downloaded on February 18,2010 at 20:35:46 EST from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

