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As commercial demand for system-
on-a-chip (SOC)-based products grows, the
effective reuse of existing intellectual-property
design modules (also known as IP cores) is
essential to meet the challenges posed by deep-
submicron (DSM) technologies and to com-
plete a reliable design within time-to-market
constraints. Originally, IP cores were mostly
functional blocks built for previous design
generations within the same company. Fre-
quently, today’s IP cores are optimized mod-
ules marketed as off-the-shelf components by
specialized vendors.

An IP core must be both flexible—to col-
laborate with other modules within different
environments—and independent from the
particular details of one-among-many possi-
ble implementations. The prerequisite for an
easy trade, reuse, and assembly of IP cores is
the ability to assemble predesigned compo-
nents with little or no effort. The consequent
challenge is addressing the communication
and synchronization issues that naturally arise
while assembling predesigned components.

We believe that the semiconductor industry
will experience a paradigm shift from com-
putation- to communication-bound design:
The number of transistors that a signal can

reach in a clock cycle—not the number that
designers can integrate on a chip—will drive
the design process. The “From computation-
to communication-bound design” sidebar dis-
cusses this trend. The strategic importance of
developing a communication-based design
methodology naturally follows. Researchers
have proposed the principle of orthogonal-
ization of concerns as essential to dealing with
the complexity of systems-on-a-chip design.1

Here, we address the orthogonalization of
communication versus computation—in par-
ticular, separating the design of the block
functionalities from communication archi-
tecture development.

An essential element of communication-
based design is the encapsulation of pre-
designed functional modules within
automatically generated interface structures.
Such a strategy ensures a correct-by-con-
struction composition of the system. Laten-
cy-insensitive design and the recycling
paradigm are a step in this direction.

Coping with volatile latency
High-end-microprocessor designers have tra-

ditionally anticipated the challenges that ASIC
designers are going to face in working with the

Luca P. Carloni

Alberto L.
Sangiovanni-

Vincentelli
University of California,

Berkeley

LATENCY-INSENSITIVE DESIGN IS THE FOUNDATION OF A CORRECT-BY-

CONSTRUCTION METHODOLOGY FOR SOC DESIGN. THIS APPROACH CAN

HANDLE LATENCY’S INCREASING IMPACT ON DEEP-SUBMICRON

TECHNOLOGIES AND FACILITATE THE REUSE OF INTELLECTUAL-PROPERTY

CORES FOR BUILDING COMPLEX SYSTEMS ON CHIPS, REDUCING THE NUMBER

OF COSTLY ITERATIONS IN THE DESIGN PROCESS.

0272-1732/02/$17.00  2002 IEEE

COPING WITH LATENCY IN
SOC DESIGN



next process generation. Latency is increasing-
ly affecting the design of state-of-the-art micro-
processors. (Latency, for example, drove the
design of so-called drive stages in the new hyper-
pipelined Netburst microarchitecture2 of Intel’s
Pentium 4). The “impact of latency in the one-
billion-transistor microprocessor design” side-
bar (on p. 27) discusses latency as a force
shaping this future architecture, which is
expected within the next 10 years.

We have argued that interconnect latency
will have a significant impact on the design of
the communication architecture among the
modules of a system on a chip. However, it is
difficult to estimate the actual interconnect

latency early in the design cycle because sev-
eral phenomena affect it. Process variations,
crosstalk, and power supply drop variations
all affect interconnect latency. Furthermore,
their combined effect can vary across chip
regions and periods of chip operation. Hence,
finding the exact delay value for a global wire
is often impossible. On the other hand, rely-
ing on conservative estimates to establish value
intervals can lead to suboptimal designs.

We believe that recently proposed design
flows advocating new CAD tools that couple
logic synthesis and physical design will suffer
from the impracticality of accurately estimat-
ing the latency of global wires. Indeed, logic
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According to the “2001 Technology Roadmap for Semiconductors,” the
historical half-pitch technology gap between microprocessors and ASICs
on the one hand and DRAM on the other will disappear by 2005.1 As we
proceed into deep-submicron (DSM) technologies, the 130-nm micro-
processor half-pitch in 2002 will shrink to the projected 32-nm length in
2013, allowing the integration of more than 1 billion transistors on a sin-
gle die. At the same time, the ITRS predicts that the on-chip local-clock
frequency will rise from today’s 1 to 2 GHz, to 19 to 20 GHz. The so-called
interconnect problem, however, threatens the outstanding pace of tech-
nological progress that has shaped the semiconductor industry. Despite
the increase in metal layers and in aspect ratio, the resistance-capaci-
tance delay of an average metal line with constant length is becoming
worse with each process generation.2-3 The current migration from alu-
minum to copper metallization is compensating for this trend by reducing
the interconnect resistivity. The introduction of low-k dielectric insula-
tors may also alleviate the problem, but these one-time improvements
will not suffice in the long run as feature size continues to shrink.4

The increasing resistance-capacitance delays combined with the
increases in operating frequency, die size, and average interconnect length
cause interconnect delay to become the largest fraction of the clock cycle
time. In 1997, Computer magazine published a study by D. Matzke5 con-

taining a gloomy forecast of how on-chip interconnect latency (predicted
to soon measure in the tens of clock cycles) will hamper Moore’s law. Since
then, researchers have fiercely debated the real magnitude of the wire-
delay impact and the consequent need for revolutionizing established
design methodologies already challenged by the timing-closure problem.

The debate’s core has been about the scaling properties of interconnect
wires relative to gate scaling. On one side, some researchers share an
optimistic view based on the fact that wires that scale in length togeth-
er with gate lengths offer approximately a constant resistance and a
falling capacitance. Hence, as long as designers adopt a modular design
approach and treat functional modules of up to 50,000 gates as the main
components, these researchers’ position is that current design flows can
sustaining the challenges of DSM design.6

On the other side of the debate, researchers argue that the previous
argument does not account for the presence in SOCs of many global wires
that cannot scale in length. As Figure A7 (next page) shows, such wires
must span multiple modules to connect distant gates, so aren’t scalable.

As Table A3 illustrates, the intrinsic interconnect delay of a 1-mm length
wire for a 35-nm technology will be longer than the transistor delay by two
orders of magnitude. Some researchers argue that, even under the best

From computation- to communication-bound design

Table A. Interconnect delay of 1-mm line vs. transistor delay for various process technologies.3

Minimum, scaled, Reverse, scaled, Ratio of the
1-mm interconnect 1-mm interconnect wire size to  

Technology (type of MOSFET* switching intrinsic delay, intrinsic delay, the minimum  
wire and substrate) delay, approximate (ps) approximate (ps) approximate (ps) lithographic size

10 µm (Al, SiO2) 20 5 5 1

0.1 µm (Al, SiO2) 5 30 5 1.5

35 nm (Cu, low-k) 2.5 250 5 4.5

*Metal-oxide-semiconductor field-effect transistor

continued on p. 26



synthesis tools presently suffer from several
drawbacks. They are

• inherently unstable, and
• based on the synchronous design method-

ology. 

Small variations to the hardware descrip-
tion language’s input specification—like those
a designer might make to fix a slow path—
can lead to major variations in the output
netlist and, consequently, in the final layout.

The synchronous design methodology is
the foundation of the design flows for the
majority of commercial chips today, but, if
left unchanged, will lead to an exacerbation
of the timing closure problem for tomorrow’s
design flows. In fact, the main assumption
in synchronous design is that the delay of
each combinational path is smaller than the
system clock period. By combinational path,

we mean each signal path leaving a latch and
traversing only combinational logic and
wires to reach another latch. The slowest
combinational path (critical path) dictates
the maximum operating frequency for the
system. However, it is often the case that the
desired operating frequency represents a fixed
design constraint. Then, once designers
derive the final layout, every path with a
delay longer than the desired clock period
simply represents a design exception to be
fixed. To fix these exceptions, designers use
techniques from wire buffering and transis-
tor resizing to rerouting wires, replacing
modules, and even redesigning entire por-
tions of the system.

Replacing, rerouting, and redesigning clear-
ly do not alleviate the timing closure problem.
Buffering is an efficient technique but carries
precise limitations, because there is a limit to
the number of buffers that designers can insert
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conditions, the latency to transmit a signal across the chip in a top-level
metal wire will vary between 12 and 32 cycles, depending on the clock rate.8

In fact, although the number of gates reachable in a cycle will not change
significantly and the on-chip bandwidth will continue to grow, the percent-
age of the die reachable within one clock cycle is inexorably and dramati-

cally decreasing. Designs will soon reach a point where more gates can fit
on a chip that can communicate in one cycle.5,7 Hence, instead of being lim-
ited by the number of transistors integratable on a single die (computation
bound), designs will be limited by the amount of state and logic reachable
within the required number of clock cycles (communication bound).
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Scaling

(1) (2)

Figure A. Local wires scale in length; global wires do not.
The figure shows the different impact of technology scal-
ing on devices, local wires, and global wires. The newer
technology process in SOC (2) allows a higher level of
integration than SOC (1) as more (and smaller) devices
and modules are accommodated on the chip. Local wires
connect devices within a module and shrink with the
module. Global wires connect devices located in different
modules and do not shrink because they need to span
significant proportions of the die.7



on a given wire and still reduce delay. In fact,
as a last resort, designers often must break long
wires by inserting latches, which is similar to
the insertion of new stages in a pipeline.

This operation, which trades off fixing a
wire exception with increasing its latency by
one or more clock cycles, will become perva-
sive in deep-submicron design, where most
global wires will be heavily pipelined anyway.
In fact, latency (measured in clock cycles)
between SOC components will vary consid-
erably based on the components’ reciprocal
distances—even without considering the need
for increasing latency to further pipeline long
global wires. Inserting latches (stateful
repeaters) has a different impact on the sur-
rounding control logic with respect to insert-
ing buffers (stateless repeaters). If the interface
logic design of two communication compo-

nents assumes a certain latency, then design-
ers must rework it to account for additional
pipeline stages. Such rework has serious con-
sequences on design productivity.

On the one hand, the increasing impact of
latency variations will drive architectures
toward modular designs with an explicit glob-
al latency mechanism. In the case of multi-
processor architectures, latency variation will
lead the designers to expose computation/com-
munication tradeoffs to the software compil-
ers. At the same time, the focus on latency will
open the way to new synthesis tools that can
automatically generate the hardware interfaces
responsible for implementing the appropriate
synchronization and communication strate-
gies, such as channel multiplexing, data
coherency, and so on. All these considerations
lead us to propose a design methodology that
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The evolution toward communication-bound design in microprocessors
implies that the amount of state reachable in a clock cycle, and not the
number of transistors, becomes the major factor limiting the growth of
instruction throughput. Furthermore, the increasing interconnect latency
will particularly penalize current memory-oriented microprocessor archi-
tectures that strongly rely on the assumption of low-latency communica-
tion with structures such as caches, register files, and rename/reorder
tables. Recent studies employ cache-delay analysis tools that account for
cache parameters as well as technology generation figures. These stud-
ies predict that in a 35-nm design running at 10 GHz and accessing even
a 4-Kbyte level-one cache will require three clock cycles.1 In fact, this trend
has already started to affect design: The architects of the Alpha 21264
adopted clustered functional units and a partitioned register file to con-
tinue offering high computational bandwidth despite longer wire delays.
Similarly, Intel’s Pentium 4 microprocessor presents two so-called drive
stages in its new hyperpipelined Netburst microarchitecture; designers
dedicated these stages purely to instruction distribution and data move-
ment.2 Exposing interconnect latency to the microarchitecture and possi-
bly to the instruction set will be key in controlling system performance.
Several research teams have already started investigating this idea.3-8

In particular, Bill Dally proposes a model for a hypothetical 2009 mul-
ticomputer chip. He divides the proposed chip into 64 tiles (each con-
taining a processor and a memory), where the memory processor’s
round-trip intratile communication latency is two cycles (1 ns). The worst-
case latency for a corner-to-corner communication with the most distant
memory is 56 cycles. More importantly, Dally points out the following
features of his approach:

• On-chip communication bandwidth is not an issue because of the
many wiring tracks.

• Unlike modern multiprocessors with their all-or-nothing locality, laten-
cy on the 2009 multicomputer varies continuously with distance.

• This approach controls latency by placing data near their point of
use, not just at their point of use.
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guarantees the robustness of the system’s func-
tionality and performance with respect to arbi-
trary latency variations.

Latency-insensitive design
The foundation of latency-insensitive design

is the theory of latency-insensitive protocols.3

A latency-insensitive protocol controls com-
munication among components of a patient
system—a synchronous system whose func-
tionality depends only on the order of each sig-
nal’s events and not on their exact timing.
Designers can model a synchronous system as
a set of modules. These modules communi-
cate by exchanging signals on a set of point-
to-point channels. The protocol guarantees
that a system, if composed of functionally cor-
rect modules, behaves correctly, independent
from delays in the channels connecting the
modules. Consequently, it’s possible to auto-
matically synthesize a hardware implementa-
tion of the system such that its functional
behavior is robust with respect to large varia-
tions in communication latency.4 In practice,
the channel implementation can vary and does
not necessarily follow the point-to-point struc-
ture. Still, this methodology orthogonalizes
computation and communication because it
separates the module design from the com-
munication architecture options, while
enabling automatic synthesis of the interface
logic. This separation is useful in two ways:

• It simplifies module design because design-
ers can assume the synchronous hypothe-
sis. That is, intermodule communication
will take no time (or, in other words, it’s
completed within one virtual clock cycle).

• It permits the exploration of tradeoffs in
deriving the communication architecture
up to the design process’ late stages,
because the protocol guarantees that the
interface logic can absorb arbitrary laten-
cy variations.

In an earlier work, we discussed the appli-
cation of the latency-insensitive methodology
to the case where the channels are simply
implemented as sets of point-to-point metal
wires.3 Here, our discussion addresses an
immediate advantage of this methodology:
After physical design, it lets designers pipeline
any long wire having a delay larger than the

desired clock period into shorter segments by
inserting special memory elements called relay
stations. Hence, we divide the latency-insen-
sitive design flow into four basic steps:

1. Specification of synchronous compo-
nents. Designers must first specify the
system as a collection of synchronous
components, relying on the synchronous
hypothesis. These components can be
custom modules or IP cores; we refer to
them as pearls.

2. Encapsulation. Next, it’s necessary to
encapsulate each pearl within an auto-
matically generated shell. A shell is a col-
lection of buffering queues—one for
each port—plus the control logic that
interfaces the pearl with the latency-
insensitive protocol.

3. Physical layout. In this traditional step,
designers use logic synthesis, and place-
and-route tools to derive the layout of the
chip implementing the system.

4. Relay station insertion. Designers seg-
ment every wire whose latency is greater
than the clock period by distributing the
necessary relay stations. Relay stations are
similar to regular pipeline latches and,
therefore, inherently different from tra-
ditional buffering repeaters.

The only precondition this methodology
requires is that the module’s pearls are stal-
lable, that is, they can freeze their operation
for an arbitrary time without losing their
internal state. This is a weak requirement
because most hardware systems can be made
stallable by, for instance, implementing a
gated clock mechanism. But, this precondi-
tion is sufficient to permit the automatic syn-
thesis of a shell around the pearl such that the
shell-pearl combination satisfies the neces-
sary, and much stronger, patience property.3

Figure 1 illustrates a system where five auto-
matically generated shells encapsulate five
pearls to make them patient. The resulting
shell-pearl components communicate by
means of eight point-to-point communica-
tion channels that implement the back-pres-
sure mechanism described in the next section.
Finally, the insertion of six relay stations
enables channel pipelining to meet the sys-
tem clock period.
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Channels and back-pressure
Channels are point-to-

point unidirectional links
between a source and a sink
module. Data are transmitted
on a channel by means of
packets that consist of a vari-
able number of fields. Here,
we consider only two basic
fields: payload, which contains
the transmitted data; and void,
a one-bit flag that, if set to 1,
denotes that no data are pre-
sent in the packet. If a packet
does contain meaningful pay-
load data (that is, it has void
set to 0), we call it a true packet.

A channel consists of wires and relay sta-
tions. The number of relay stations in a chan-
nel is finite and represents the channel’s
buffering capability. At each clock cycle, the
source module can either put a new true pack-
et on the channel or, when no output data are
available, put a void packet on it. Conversely,
at each clock cycle the sink module retrieves
the incoming packet from the channel. It then
discards or stores the packet on the input
channel queue for later use, basing its deci-
sion on the void field value.

A source module might not be ready to
send a true packet, and a sink module might
not be ready to receive it if, for instance, its
input queue is full. However, the latency-
insensitive protocol demands fully reliable
communication among the modules, and
does not allow lossy communication links; it
requires the proper delivery of all packets.
Consequently, the sink module must interact
with the channel (and ultimately with the cor-
responding source module) to momentarily
stop the communication flow and avoid the
loss of any packet. Therefore, we slightly relax
our definition of a channel as unidirectional
to allow a bit of information (the channel stop
flag) to move in the opposite direction. The
dashed wires in Figure 1 represent this signal,
which is similar to the NACK signal in
request/acknowledge protocols of asynchro-
nous design. See the “Latency-insensitive ver-
sus asynchronous design” sidebar for a
discussion of the two approaches.

By setting the stop flag equal to one during
a certain clock cycle, the sink module informs

the channel that it can’t receive the next pack-
et, and the channel must hold the packet until
the sink module resets the stop flag. Because
the sink module and channel have limited
buffering resources, a channel dealing with a
sink module that requires a long stall might fill
up all its relay stations and have to send a stop
flag to the source module to stall its packet pro-
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Figure 1. Shell encapsulation, relay station insertion, and channel back-pressure. 

Latency-insensitive versus asynchronous design
The latency-insensitive design methodology is clearly reminiscent of many ideas that the

asynchronous-design community has proposed during the past three decades.1-2 Informally,
asynchronous design’s underlying assumption is that the delay between two subsequent
events on a communication channel is completely arbitrary. In the case of a latency-insen-
sitive system, designers constrain this arbitrary delay to be a multiple of the clock period. The
key point is that this type of discretization lets designers leverage well-accepted design tools
and methodologies for the design and validation of synchronous circuits. In fact, the basic
distinction between the two approaches is the specification of a latency-insensitive system
as a synchronous system. Notice that we say specified because, from an implementation
point of view, you could realize a latency-insensitive protocol using handshake-driven sig-
naling techniques (for example, request-acknowledge mechanisms), which are typically asyn-
chronous. On the other hand, synchronous systems specify a complex system as a collection
of modules whose state is updated collectively in one zero-time step. This update is natu-
rally simpler than specifying the same system as the interaction of many components whose
state is updated following an intricate set of interdependency relations. IC designers could
legitimately see latency-insensitive design as a compromise that accommodates important
properties of asynchronous circuits within the familiar synchronous design framework.
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duction. This back-pressure mechanism con-
trols the flow of information on a channel while
guaranteeing that no packets are lost.

Shell encapsulation
Given particular module M, we can devise

a method to automatically synthesize an
instance of a shell as a wrapper to encapsulate
M. We can further interface the shell with the
channels so that M becomes a patient system.
To do so, the only necessary condition is that
M be stallable. At each clock cycle, the mod-
ule’s internal computation must fire only if all
inputs have arrived. The module shell’s first
task is to guarantee this input synchronization.
Its second task is output propagation: At each
clock cycle, if M has produced new output val-
ues and no output channel has previously
raised a stop flag, then the shell can transmit
these output values by generating new true
packets. If the shell does not verify either of
these two conditions, then it must retransmit
the packet transmitted in the previous cycle as
a void packet. In summary, a shell for module
M cyclically performs the following actions:

1. It obtains incoming packets from the
input channels, filters away the void
packets, and extracts the input values for
M from the payload fields of the true
packets.

2. When all input values are available for
the next computation, it passes them to
M and initiates the computation.

3. It obtains the computation results from M.
4. If no output channel has previously

raised a stop flag, it routes the result into
the output channels.

Figure 2 illustrates a simple unoptimized
implementation of a shell wrapping a mod-
ule with three input and two output channels.
It’s also possible to insert queues between the
shell I/Os and M’s I/Os to increase buffering
and avoid fragmented stalling. Using queues
lets designers optimize implementations.
Because such implementations follow the pro-
tocol outlined previously, the shell-pearl com-
bination operates in a way similar to that of
an actor in a static data flow. Hence, design-
ers can take advantage of useful properties,
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Figure 2. Shell encapsulation: Making an IP core patient.



such as the ability to statically size the shell
queues and to statically compute the perfor-
mance of the overall system.

Relay stations
A relay station is a patient process commu-

nicating with two channels, ci and co. Let si

and so be the signals associated with the chan-
nels. Further, let I(l, k, si), l ≤ k, denote the
sequence of informative events (true packets)
of si between the lth and kth clock cycle. If
these conditions are true, then si and so are
latency equivalent and for all k

I[1, (k − 1), si] − I(1, k, so) ≥ 0
I(1, k, si) − I [1, (k − 1), so] ≤ 2

The following is an example of relay station
behavior, where τ denotes a stalling event
(void packet) and ιi a generic informative
event:

si = ι1 ι2 ι3 τ τ ι4 ι5 ι6 τ τ τ ι7 τ ι8 ι9 ι10 …
so = τ ι1 ι2 ι3 τ τ τ ι4 τ τ τ ι5 ι6 ι7 τ ι8 ι9 ι10 …

Notice that we don’t further specify signals si

and so; not even, for example, saying that si is
the input and so is the output. The definition
of relay station simply involves a set of rela-
tions—a protocol, between si and so without
any implementation detail. Still, it’s clear that
each informative event received on channel ci

is later emitted on co, while the presence of a
stalling event on co might induce a stalling event
on ci in a later cycle. In fact, an informative
event takes at least one clock cycle to pass
through a relay station (minimum forward
latency equal to one), and at most two infor-
mative events can arrive on ci while no infor-
mative events are emitted on co (internal storage
capacity equal to two). Finally, one extra stalling
event on co will move into ci in at least one cycle
(minimum backward latency equal to one).
The double storage capacity of a relay station
permits, in the best case, communication with
maximum throughput (equal to one).

Because relay stations are patient process-
es, and patience is a compositional property,
the insertion of a relay station in a patient sys-
tem guarantees that the system remains
patient.3 Further, because relay stations have
minimum latencies equal to one, designers
can repetitively insert them into a channel to

segment it, thereby increasing the channel’s
latency. Figure 3 illustrates a possible relay sta-
tion implementation. Researchers have recent-
ly proposed other interesting relay station
implementations.5

Figure 4 shows a finite state machine rep-
resenting the control logic in the relay station
of Figure 3. Basically, the relay station switch-
es between two main states: processing, when
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a flow of true packets traverses the relay sta-
tion; and stalling, when communication is
interrupted. Switching through states
WriteAux and ReadAux governs the transition
between these two states. These states ensure
proper control of the auxiliary register to avoid
losing a packet, because the stop flag takes a
cycle to propagate backward through the relay
station.

Recycling
In general, an automatic tool should com-

plete the insertion of relay stations as part of
the physical design process (similarly to the
buffer insertion techniques available in cur-
rent design flows). In fact, the latency-insen-
sitive methodology’s main advantage is the
freedom offered to designers in moving the
latency after deriving the final implementa-
tion. Designers can fix problematic layouts
without changing the design of individual
modules and also explore and optimize laten-
cy-throughput tradeoffs up to the late stages
of the design process. The recycling paradigm
formally captures the latency variations of the
communication channels as you add (and
move) relay stations. It lets you exactly com-
pute the system’s final throughput.6

For recycling, we model a latency-insensi-
tive system as a directed (possibly cyclic) graph
G that associates each vertex with a shell-pearl
pair and in which each arc corresponds to a
channel. We annotate each arc a with length
l(a) and weight w(a). The length denotes the
smallest multiple of the desired clock period
that is larger than the delay of the corre-
sponding channel. The weight represents the
number of relay stations inserted on the chan-
nel. We call arc a illegal if w(aj) < l(aj) − 1. The
presence of illegal wires in the layout implies
that the final implementation is incorrect.
Thanks to the latency-insensitive methodol-
ogy, we can correct the final layout by intro-
ducing relay stations to ensure that each wire’s
delay is less than the desired clock period. This
insertion corresponds to incrementing the
weight of each illegal arc a by the quantity
∆w(a) = l(a) − 1 − w(a).

Although recycling is an easy way to cor-
rect the system’s final implementation and sat-
isfy the timing constraints imposed by the
clock, it does have a cost. In fact, augmenting
the weights of some arcs of G could increase

the graph’s maximum cycle mean λ(G),
defined as maxC ∈ G{[w(C) + |C|] / |C|},
where C is a cycle of G and w(C) the sum of
the weights of the arcs of C. Increasing λ(G)
corresponds to increasing the cycle time of the
system modeled by G and, symmetrically,
decreasing its throughput ϑ(G).6 Throughput
always decreases if any arc a with augmented
weight w(a) belongs to the set of critical cycles
of G, that is, those cycles whose mean coin-
cides with the maximum cycle mean. Increas-
ing the weights of some arcs might make a
noncritical cycle of G become a critical cycle
of recycled graph G ′. In any case, after com-
pleting the recycling transformation, we can
exactly compute the consequent throughput
degradation ∆ϑ(G, G ′) = ϑ(G) − ϑ(G ′) using
one of the following methods:

• Solve the maximum cycle mean problem
for graph G ′, and simply set ϑ(G ′) =
1/[λ(G ′)].

• After establishing set Α of cycles having
at least one arc with an augmented
weight, increment the cycle mean of each
element C of Α by the quantity 1/|C | ×
∑i ∆w(ai), where ai are the arcs of C that
have been corrected. Let λ* be the max-
imum among all these cycle means, then

∆ϑ (G, G′) = 0 if λ* ≤ λ(G) or [λ* − λ(G)] /
[λ(G) × λ*] otherwise.

The critical cycle dictates overall through-
put because the rest of the system must slow
down to wait for it and avoid packet loss. In
general, if G contains more than one strong-
ly connected component, you must decom-
pose the recycling transformation in two steps:

1. Legalization. Legalize G by augmenting
the weights of the wires by the appropri-
ate quantity.

2. Equalization. Compute maximum
throughput ϑ(Sk) = ak/bk ∈ ]0, 1] that is
sustainable by each strongly connected
component Sk ∈ G′; recall that ϑ(Sk) is
equal to the inverse of the maximum cycle
mean λ(Sk). Equalize the throughputs by
adding quantity nk ∈ Ζ* to the denomi-
nator of each ϑ(Sk). This corresponds to
augmenting by quantity nk the weight of
the critical cycle Ck ∈ Sk, that is, to dis-
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tribute nk extra relay stations among the
corresponding paths. Solving an opti-
mization problem gives the quantities nk.

6

One key to avoiding large performance loss-
es during recycling is to avoid augmenting the
weights of those arcs belonging to critical cycle
C of G. Furthermore, from the definition of
maximum cycle mean, we have that for the
same w(C), the smaller the cycle’s cardinality
|C |, the greater the loss in throughput for G.
The worst case is clearly represented by self-
loops. Designers must keep these considera-
tions in mind while partitioning the system
functionality into tasks assigned to different
IP cores. It’s true that the latency-insensitive
methodology guarantees that no matter how
poor the final system implementation (in
terms of wire lengths in the communication
architecture), it’s always possible to fix the sys-
tem by adding relay stations. Still, to achieve
acceptable performance, designers should
adopt a design strategy based on the following
guidelines:

• All modules should put comparable tim-
ing constraints on the global clock (that is,
delays of the longest combinatorial paths
inside each module should be similar).

• Modules whose corresponding vertices
belong to the same cycle should be kept
close to each other while deriving the
final implementation.

Figure 5 illustrates the functional diagram
of an MPEG-2 video encoder whose corre-
sponding graph, reported in Figure 6 (next
page), contains six distinct cycles:

• C1 = {a9, a10, a12}
• C2 = {a9, a11, a14, a12}
• C3 = {a16, a17, a18, a19, a20}
• C4 = {a4, a5,, a6, a7, a8, a9, a10, a13}
• C5 = {a4, a5,, a6, a7, a8, a9, a11, a14, a13}
• C6 = {a6, a7, a8, a9, a11, a15, a17, a18, a19, a20}

Most arcs are common to more than one
cycle, for example, a9 is part of C1, C2, C4, C5,
and C6, but others are contained only in one
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cycle; for example, a15 is only part of C6. Final-
ly, some arcs, such as a3, are not contained in
any cycle. We already know that increasing
the weight of these arcs does not affect the sys-

tem performance. However, can we compute
performance degradation in advance for the
arcs belonging to one or more cycles? Figure
7 shows the results of an analysis based on the
recycling approach. The six curves in the chart
represent the previously mentioned cycles.
Each point of curve Ci shows the degradation
in system throughput detected after setting
total sum w(Ci) of the weights of Ci’s arcs
equal to integer x, with x ∈ [0, 20]. Obvious-
ly, the underlying assumption is that Ci is a
critical cycle of G, limiting the choice of those
arcs of Ci with augmentable weights. For
example, assume that w(C2) = 5, as a result of
summing w(a9) = 4, w(a11) = 1, w(a14) = 0, and
w(a12) = 0. In this case, C2 is definitely not a
critical cycle. In fact, its cycle mean is λ(C2) =
(5 + 4)/4 = 9/4 = 2.250. Even if w(a10) = w(a12)
= 0, cycle Ci—with w(Ci) = w(a9) = 4—has a
larger cycle mean: exactly λ(C1) = (4 + 3)/3 =
7/3 = 2.333).

As Figure 7 confirms, the best way to avoid
losing performance is to increase the weights
of those arcs that belong to longer cycles. Per-
forming the recycling transformation this way
might or might not be possible, for example,
if the length of arc a10 is large, cycle C1 will
ultimately dictate the system throughput.
However, in general the latency-insensitive
methodology lets us move around relay sta-
tions without redesigning any module. This
capability could be useful, for example, in
reducing the length of an arc such as a9, which
belongs to both large and small cycles, while
in exchange increasing the length of a15, which
is only part of C6. This example assumes that,
before rebalancing, l(a9) = 3 and l(a15) = 1,
where, after rebalancing, they become respec-
tively 1 and 3. It also assumes that all other
arcs have unit lengths, giving a final through-
put of 10 / (10 + 2) = 0.833 instead of 3 / (3
+ 2) = 0.6, a 38 percent improvement.

Deep-submicron technologies suffer—and
in the foreseeable future will continue to

suffer—from delays on long wires that often
force costly redesigns. Latency among various
SOC components will vary considerably and
in a manner that is difficult to predict. Laten-
cy-insensitive design is the foundation of a cor-
rect-by-construction methodology that lets us
increase the robustness of a design implemen-
tation. This approach enables recovering the
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Figure 6. Latency-insensitive design graph of the MPEG-2
video encoder shown in Figure 5. The vertices of the graph
correspond to blocks in the MPEG diagram. Source and Tar-
get represent respectively the input and output of the
MPEG.
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arbitrary delay variations of the wires by chang-
ing their latency, leaving overall system func-
tionality unaffected. A promising avenue for
further research is the application of these con-
cepts to the optimization of the computa-
tion/communication tradeoffs that arise while
designing software compilers for machines
having a communication architecture with
variable latency. MICRO

References
1. K. Keutzer et al., “System Level Design:

Orthogonalization of Concerns and Platform-

Based Design,” IEEE Trans. Computer-Aided

Design of Integrated Circuits and Systems,

vol. 19, no. 12, Dec. 2000, pp. 1523-1543.

2. P. Glaskowski, “Pentium 4 (Partially)

Previewed,” Microprocessor Report, vol. 14,

no. 8, Aug. 2000, pp. 10-13.

3. L.P. Carloni, K.L. McMillan, and A.L.

Sangiovanni-Vincentelli, “Theory of Latency-

Insensitive Design,” IEEE Trans. Computer-

Aided Design, vol. 20, no. 9, Sept. 2001, pp.

1059-1076.

4. L.P. Carloni et al., “A Methodology for

‘Correct-by-Construction’ Latency Insensitive

Design,” Proc. Int’l Conf. Computer-Aided

Design (ICCAD 99), IEEE Press, Piscataway,

N.J., 1999, pp. 309-315.

5. T. Chelcea and S. Novick, “Robust Interfaces

for Mixed-Timing Systems with Application

to Latency-Insensitive Protocols,” Proc. 38th

Design Automation Conf. (DAC 01), ACM

Press, New York, 2001, pp. 21-26.

6. L.P. Carloni and A.L. Sangiovanni-Vincentelli,

“Performance Analysis and Optimization of

Latency Insensitive Systems,” Proc. 37th

Design Automation Conf. (DAC 00), IEEE

Press, Piscataway, N.J., 2000, pp. 361-367.

Luca P. Carloni is a PhD candidate in the
Electrical Engineering and Computer Science
Department of the University of California,
Berkeley. His research interests include com-
puter-aided design and design methodologies
for electronic systems, embedded system
design, logic synthesis, and combinatorial
optimization. He has a Laurea in electrical
engineering from the University of Bologna,
Italy, and an MS in electrical engineering and
computer science from the University of Cal-
ifornia, Berkeley.

Alberto L. Sangiovanni-Vincentelli holds the
Buttner Chair in electrical engineering and
computer science at the University of Cali-
fornia, Berkeley. His research interests include
all aspects of computer-aided design of elec-
tronic systems, hybrid systems and control,
and embedded system design. He cofounded
Cadence and Synopsys and received the Kauf-
man Award from the Electronic Design
Automation Consortium for pioneering con-
tributions to EDA. He is a fellow of the IEEE
and a member of the National Academy of
Engineering.

Direct questions and comments about this
article to Luca P. Carloni, 211-10 Cory Hall,
University of California at Berkeley, Berkeley
CA 94720; lcarloni@ic.eecs.berkeley.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

computer.org/e-News

Available for 
FREE to members.

Good news for your in-box.

Be alerted to

• articles and 
special issues 

• conference news

• submission 
and registration
deadlines

• interactive 
forums

Sign Up Today 
for the IEEE 

Computer 
Society’s

e-News

Sign Up Today 
for the IEEE 

Computer 
Society’s

e-News


