
Cloud-Aided Design
for Distributed
Embedded Systems
YoungHoon Jung and Luca P. Carloni

Columbia University
Michele Petracca

Cadence Design Systems

h CLOUD COMPUTING AND embedded systems col-

laborate in the execution of many emerging classes

of applications, while storing large amounts of data

on the cloud. Examples of such applications include

distributed-sensor data analysis, user behavior anti-

cipation, and applications that run on smartphones.

Typically, embedded systems act as widespread data

collectors or user interface (UI) devices, while the

cloud supports them with computation and storage

services. Consequently, a growing amount of soft-

ware involves computations that run concurrently

on embedded devices and back-end clouds, which

communicate through heterogeneous wireless and/

or wired networks. (The ‘‘Related Work’’ section dis-

cusses various methods for the design-space explo-

ration of distributed embedded systems.)

On the other hand, cloud computing can also

contribute to the design of embedded systems. The

increasing complexity of such systems

requires engineers to run CAD tools

that have heavy computation work-

loads. Cloud computing can help to

more efficiently execute processes for

simulation, optimization, and verifica-

tion of embedded systems, from com-

plex SoCs with billions of transistors

to distributed embedded systems

where heterogeneous networks connect various

devices.

Motivated by these two aspects of the collabora-

tion between embedded systems and cloud comput-

ing, we recently proposed the idea of a networked

virtual platform (VP), which provides a simulation

environment with high scalability and heterogeneity

supports [1]. The simulation environment targets

the design and testing of distributed embedded sys-

tems executing applications that can access cloud

services. A networked VP can run on a cloud

through the infrastructure as a service (IaaS) model.

For the realization of our first prototype of a net-

worked VP, NetShip, we defined the virtual-platform-

on-virtual-machine (VP-on-VM) model. This model

enables scalability along two key dimensions:

horizontally, by adding more virtual machines

(VMs), and vertically, by adding more VPs.

Thanks to these capabilities, NetShip can effec-

tively support the design of large-scale software ap-

plications running on a heterogeneous network of

multiple devices and cloud servers. In particular, it

simplifies performance and scalability analysis by

making it possible to simulate the execution of the

actual applications and software stacks onto virtual

Editor’s notes:
This paper presents how to use cloud computing for designing distributed
embedded systems. The cloud is used as a simulation platform. This
platform allows the design and development of distributed embedded
systems.

VYung-Hsiang Lu, Purdue University

IEEE Design & Test2168-2356/14 B 2014 IEEE Copublished by the IEEE CEDA, IEEE CASS, IEEE SSCS, and TTTC32

Embedded Systems and Cloud Computing

Digital Object Identifier 10.1109/MDAT.2014.2320521

Date of publication: 29 April 2014; date of current version:

22 July 2014.

models of the hardware and the network. Further-

more, the VP-on-VM model simplifies the deploy-

ment and migration of NetShip across the cloud

because it supports the execution of a VM image on

a cloud instance.

We have used NetShip in a case study to demon-

strate how cloud-computing instances can be de-

ployed to design and validate a complex distributed

application that runs across portable devices and a

cluster of servers. For this experiment, we could

easily and rapidly deploy more than 100 VP in-

stances, a task that would be unfeasible without

the ability to leverage elastic cloud-computing

services.

Networked virtual platforms
A VP is a simulation model of a system that pro-

vides virtual processors and peripherals and uses

binary translation to execute the target binary code

on top of a host instruction-set architecture (ISA).

VPs enable system-level cosimulation of the hard-

ware and software parts of a given system before the

actual hardware implementation is finalized.

One VP instance is used to simulate and test a

single device. Multiple VP instances can simulate

multiple devices that form a physically connected

system. In particular, a VP can be extended to sup-

port the model of peripherals and have network in-

terface card (NIC) modules. Through a NIC module,

a VP can communicate with other VPs in the net-

work. A networked VP is realized precisely through

the combination of multiple VP instances that run

concurrently and interact with

one another through their NIC

modules. The resulting platform

can serve as a full-system sim-

ulator of a distributed em-

bedded system. It can run a

real software stack to analyze

the execution of various real

applications before attempting

an actual deployment of the

physical machines.

Various challenges, however,

must be addressed for the effec-

tive implementation of a net-

worked VP. For example, the NIC

module in each VP usually has

no timing or performance

model to precisely simulate the

network communications. Also, the simulation time

of each VP can progress independently of the

others. Moreover, many distributed embedded sys-

tems today are large scale and heterogeneous, pre-

senting further challenges. To address these

challenges, we developed the VP-on-VM model.

A VM handles the management and provisioning

of physical resources to create a virtualized envi-

ronment. The resources are mostly provided by one

or more server computers; the management is per-

formed by a hypervisor. Examples of VPs include

open virtual platform (OVP), virtual system platform

(VSP), and quick emulator (QEMU). Examples of

VMs include kernel-based virtual machine (KVM),

VMware, and the instances enabled by the Xen

hypervisor.

Our proposed VP-on-VM model supports the

scalability of modeling and simulations. Multiple

VP instances are hosted by the same VM, and mul-

tiple VM instances run in a networked VP. Figure 1

shows the example of a configuration where two

VMs are running three VPs each. With the VP-on-VM

model, the entire networked VP can be hosted on a

set of VM instances provided by a private cloud, or

by public cloud services such as Amazon’s Elastic

Compute Cloud (EC2) or Microsoft’s Windows

Azure.

Installing VP instances on VMs rather than on

physical machines benefits from the various prop-

erties of cloud computing, such as easy manage-

ment (duplication and deletion), migration, and

monitoring of VM instance images. In particular, the

Figure 1. VP-on-VM model based on the IaaS model, and its scalability.

May/June 2014 33

VP-on-VM model translates these properties into key

advantages for the realization of a networked VP:

h the VM control panel simplifies the overall mo-

nitoring and management of physical resources;

h the networked VP’s size can be quickly increased

via preconfigured VM images;

h the automatic optimization of VP placement is

possible through VM migration.

The simple action of cloning a VM image that

includes several VPs often represents a convenient

way to scale out the model of the target system.

Scalability
The VP-on-VM model makes the networked VP

both horizontally and vertically scalable. As Figure 1

shows, users can scale the system out by adding

more preconfigured VM instances to the network

(horizontal scalability), and scale the system up by

assigning more VPs to some of the running VM in-

stances (vertical scalability). What makes vertical

scalability possible is the VM dynamic configuration

feature, which allows configuration changes such as

adding more CPU cores and disk space. Meanwhile,

horizontal scalability is obtained through the elastic

VM creation feature in the IaaS model.

Heterogeneity
An important modeling aspect is support for

heterogeneous system architectures. This comes in

three different flavors. First, a system is heteroge-

neous when there are nodes with different types of

processor cores, that is, based on different ISAs. For

this type of heterogeneity, our framework lets differ-

ent types of VPs be interconnected and interact

through a network. This frees the networked VP from

the limitation of each specific VP, while providing

access to the superset of their features. For example,

users interested in modeling an application running

partly on certain ARM-based mobile phones and

partly on MIPS-based servers can use this infrastruc-

ture to build a network of Android emulators (http://

developer.android.com) and OVP nodes (http://

www.ovpworld.org).

Second, a system with distinctly configured nodes

is also heterogeneous. For example, a node equipped

with additional GPUs is considered different from a

node without a GPU, even if they have the same kind

of CPU. The designer can vary node configurations

using the specific configuration feature of each VP.

Most VPs let designers configure the node with

multiple different CPU cores and peripherals, includ-

ing user-defined hardware accelerator modules.

Third, even two identically configured nodes

differ when their interconnection network is differ-

ent; for example, some nodes communicate via a

particular wireless standard such as Global System

for Mobile Communications (GSM) or Wi-Fi, where-

as others communicate over Ethernet. These various

network types have different network bandwidths,

latencies, and error rates.

Leveraging the elasticity of the cloud
The encapsulation of multiple VPs in a VM in-

stance lets us extend the various advantages of cloud

computing to CAD of distributed embedded systems.

The key is the ability to run many VM images as in-

stances of elastic cloud computing. In cloud comput-

ing, elasticity denotes the ability to rapidly scale

resources up and down on demand, an essential fea-

ture of public cloud platforms [2], [3].With NetShip, a

prebuilt VM image becomes a building block that can

be deployed rapidly and efficiently on the cloud to

support the simulation and analysis of a large-scale

system. In particular, NetShip has two main advan-

tages: scalability performance and maintenance.

Scaling out application services deployed on a

cloud simply involves duplicating the VM image

[4], [5]. Likewise, a VM image, configured for multi-

ple VP simulations, can be programmatically dupli-

cated as necessary. For example, a designer can

scale out a simulation task from four to 32 embed-

ded systems by invoking one command that handles

the replication of the VM images and the launch of

the VP instances in a few minutes. Without this

automated scalability based on the cloud elasticity,

the designer would have to manually perform many

tedious and repetitive actions to install several

physical machines, configure the operating systems,

and copy the VP images. More generally, by relying

on the cloud’s elasticity, NetShip can be scaled

horizontally and vertically to support the designer’s

needs. In particular, cloud computing is necessary

to obtain vertical scalability, which is the ability to

scale up a VM instance by allocating additional

resources (for instance, dynamically adding a CPU

core) and launching more VPs.

Cost of ownership and system maintenance are

other issues that cloud computing greatly simplifies.

IEEE Design & Test34

Embedded Systems and Cloud Computing

Otherwise, designers would

have to physically possess all

the machines necessary to run

distributed simulations. For sim-

ulating very large-scale systems,

this would be impractical due

to the space availability, power

supply costs, and heat manage-

ment. Vendors of elastic-cloud-

computing services take care of

these issues, and cloud-aided

design with tools such as NetShip lets designers

rely on these services while focusing on the design

itself.

To build and run the distributed simulations for

our experiments, we used a vSphere-based private

cloud built with VMWare’s vCloud Suite. However,

users can easily port NetShip to any other type of

vendor cloud system by modifying its VM manage-

ment module. This module requests the cloud to

duplicate, launch, terminate, or add resources such

as CPU cores or disk space.

Table 1 shows the time required to add multiple

VP instances using an API for cloud instance pro-

visioning. Each VP uses a shared 2-GB read-only disk

image and a dedicated 50-MB read-writable disk

image. For example, adding 64 VPs to the simulation

takes about 300 s to create a cloud instance that

holds 64 VPs. The necessary work behind the cloud

platform involves copying a thin-provisioned disk

image with a size of 5148 MB þ (64 � 50 MB) ¼
8348 MB and launching the newly created cloud

instance. The size of the disk image for the cloud

instance is 5148 MB, including 2048 MB of the

shared image for the VPs. In our experiments, we

use up to five VMs, each having four CPU cores with

a 2.5-GHz clock frequency and a 4-GB main memory.

Prototyping a networked virtual platform
We developed NetShip as a prototype of a net-

worked VP. In doing so, we also designed a general

infrastructure for construction and management of

networked VPs.

The main building blocks in NetShip are shown

in Figure 2. NetShip can have various VP types. OVP

is an industry-oriented platform for processor mod-

eling, virtualization, and emulation that provides

Table 1 Time for adding new VPs using vCloud.

Figure 2. The architecture of NetShip.

May/June 2014 35

open APIs. QEMU is an open-source processor

emulator widely used for emulation and virtualiza-

tion. Finally, the Android emulator is a QEMU-based

mobile-device virtualization application that runs a

full Android system stack. NetShip orchestrates the

VP instances through the synchronizer.

Synchronizer
VPs vary in terms of the degree of accuracy of

their timing models for the CPU performance that

they support. Some VPs have no timing model and

simply execute the binary code as fast as possible.

This is often desirable, particularly when a VP runs

in isolation. NetShip, however, runs multiple VPs on

the same VM, so no VP can be allowed to monopo-

lize CPU resources and starve other VPs. QEMU pro-

vides a crude way to keep simulation time within a

few seconds of real time. OVP instead controls the

execution speed so that the simulated time never

surpasses the wall clock time. Multiple OVP in-

stances, however, still show different time develop-

ments, requiring a synchronization method across

the VPs in the network.

We equipped NetShip with a synchronizer mod-

ule to support synchronization across the hetero-

geneous set of VPs in the networked platform, as

Figure 2 shows. The synchronizer is a single process

that runs on just one particular VM and has a design

that is similar to the fixed-time step synchronization

method presented by D’Angelo et al. [6]. At each

iteration, a central node increases the base time-

stamp, and the client nodes stop after reaching the

given timestamp. However, because our target is

distributed and scalable, we had to consider two

additional aspects in our synchronizer:

h we must be able to synchronize VPs that are

scattered over several physically separated

machines;

h we must preserve the scalability provided by the

VP-on-VM model.

NetShip targets large-scale systems involving

software deployments across physically separated

machines. The synchronization across these ma-

chines incurs milliseconds of delays during simula-

tion. Hence, NetShip supports the modeling of

applications that have running times ranging from

a few seconds to multiple hours or days, rather than

simulations at the nanosecond level.

VM and VP management
Whereas the commands in the command data-

base are dedicated to VP configuration, specialized

modules manage the disk images of the VP and VM

instances for creating, copying, and deleting. In

particular, the VM controller shown in Figure 2 is

integrated with the APIs provided by the cloud

vendor that provisions and manages VM instances.

The VM controller has a flexible design so that an

implementation for additional cloud vendors can be

plugged into the back-end layer. Our prototype has a

default back-end implementation for VMWare’s

vCloud to automate the provision and control of

VM instances from vCloud. Extending the VM con-

troller module enables NetShip to be deployed on

any type of cloud (for example, Amazon’s EC2).

Network simulation
Some nodes can communicate via a particular

wireless standard such as GSM or Wi-Fi, whereas

others can communicate over Ethernet. The VP

models of NetShip have their own NIC models.

These NIC models, however, are purely behavioral

and do not capture network performance [6]. Con-

sequently, we developed a network simulation

module (NetSim) that enables the specification of

bandwidth, latency, and error rates, thus supporting

the modeling of network-level heterogeneity in any

system modeled with NetShip. As Figure 2 shows,

NetSim resides in each particular VP and uses the

traffic-shaping features based on the traffic control

(tc) command, which manipulates the traffic con-

trol settings of the Linux kernel.

Cloud-Based crowd estimation
system design

Here, we discuss a use case we conducted with

NetShip. Crowd estimation, or crowd counting, is the

problem of predicting how many people are present

in a given area [7]. Several researchers have focused

on crowd estimation based on the image processing

of pictures [8], [9]. Using NetShip, we developed a

crowd estimation application that processes pictures

taken by mobile-phone users who are present in rela-

tively wide areas (for example, a city or parts of a city).

We designed a distributed system that consists of

embedded devices and a cloud-based server.

Figure 3 illustrates the modeled system’s design

and implementation. In this scenario, smartphone

users take some pictures (image source) with

IEEE Design & Test36

Embedded Systems and Cloud Computing

geolocation information using the camera module

(image collecting interface) on the phone (user

smartphones) and then upload these pictures to the

database server in the cloud. A cluster of MIPS pro-

cessors (image-processing cluster) downloads the

pictures from a database server, runs an image-

processing application to count the number of

people in the picture, and adds the number to the

geolocational sum in the database server.

Application design
The application iterates the following workflow:

1) the mobile-phone users take pictures and

upload them to the image database, along with

their geolocation;

2) the cluster of MIPS servers fetches one image at a

time from the database and counts the people in

this image using a human recognition algorithm;

3) the number of people in each image is stored

back into the database;

4) the map generator creates a plotted image as the

result.

Each iteration is done in parallel: the multiple

Android emulators upload images, while the MIPS

servers process the images.

In the implementation, several parts of the design

are replaced by virtual counterparts. For instance,

instead of physically deploying multiple Android

phones, we use Android emulators running an

application that simulates the behavior of smart-

phone users. Because of the lack of camera modules

in the emulator, images downloaded from cloud

image services (such as Picasa and Flickr) through

their public cloud APIs serve as the user-taken pic-

tures. Finally, OVP MIPS instances form a cluster to

run an image-processing application.

The Android emulators and OVP instances in

Figure 3 are VPs. Using NetShip, we built a net-

worked VP that simulates the designed system.

Given the application requirements, we used

NetShip to gain insights on the amount of resources

required for real-time processing of the pictures tak-

en by a large crowd in a particular geographic area:

Manhattan, New York. Our main concern is the op-

portunity to build and study the networked VP and

to use it to analyze the properties of the application

that runs on it. In other words, we used this appli-

cation primarily as a case study to test the capa-

bilities of NetShip; the optimization of the crowd

estimation quality was only a secondary concern.

Android emulator scalability
We used several Android emulators to model

millions of mobile phones that sporadically take

pictures (instead of using millions of emulators). To

validate whether the emulators realistically reflect

the actual devices’ behavior with respect to network

utilization, we performed multiple tests after making

the following practical assumptions:

h there are three million mobile-phone users in

Manhattan, and 2% of them upload two pictures

per day;

h the uploading of pictures is evenly spread

throughout the day (9:00 A.M. to 6:00 P.M.);

h the average image file size is 74 KB.

Figure 3. The design of the cloud-based crowd estimation system.

May/June 2014 37

On the basis of these assumptions, we estimated

the number of pictures uploaded by the users in an

hour as three million � 0.02 � 2/9 � 13333. This

value is represented by the bold lines in Figures 4

and 5. Thus, this is the number of pictures that the

Android emulators must be able to upload and that

the MIPS cluster must be able to process every hour.

This requirement lets us dimension the system by

deriving the minimum number of Android emula-

tors and MIPS VPs that must be present in the cluster.

For example, as Figure 4 shows, if the networked VP

has only one Android emulator (first bar), it fails to

upload 13333 pictures per hour because of the

insufficient emulator perfor-

mance. So, in this case, we

must increase the number of

emulators to at least two. Simi-

larly, as Figure 5 shows, proces-

sing the uploaded pictures in

real time requires increasing the

cluster size to accommodate at

least 32 MIPS VPs.

The incoming traffic mea-

sured from the database server

is fairly constant, and is inde-

pendent of the number of emu-

lators that upload the same total

number of pictures. This im-

plies that we can analyze the

system by using far fewer emu-

lators than the number of smart-

phones we would have in

reality (only four emulators versus three million

smartphones), as long as those emulators can

generate a comparable amount of traffic.

Bottleneck analysis
Given the average time required by one MIPS

server to run the human recognition application for

one picture, system designers can perform the fol-

lowing bottleneck analysis.

First, the designer can measure the number of

MIPS servers required to support the volume of

image processing for given input and output data

rates. For example, assume the database server re-

ceives images from the cluster

at a rate of S kb/s, and an MIPS

server can execute the image-

processing program for an

average-sized image with a

throughput of T kb/s. The de-

signer can estimate that the sys-

tem should have at least dS=T e
MIPS servers to guarantee

real-time execution of the

application.

Second, in certain circum-

stances it might not be possible

to increase the number of avail-

able servers N or the average

throughput T of each server.

Consequently, the system can

process the input data only at a

Figure 4. Maximum image-uploading capability as a function of the
number of emulators.

Figure 5. Image-processing capability as a function of the number of VPs.

IEEE Design & Test38

Embedded Systems and Cloud Computing

rate S0, smaller than the rate S at which images are

received from the database server. In such cases, the

designer can acquire precise indications from the

simulation analysis to determine a new, sustainable

image size for the application. Specifically, if the

images arriving at the rate of S have an average size

equal to I, then reducing this size down to

I 0 ¼ I � S0=S would make the application work in

real time when computation resources cannot be

increased.

Third, the network traffic through the database

server includes picture uploading from mobile

phones, picture downloading by the MIPS clusters,

updating and reading of geolocation information,

and the counting of people in images. On the basis

of the network traffic analysis and the observation of

how the behavior scales as the system grows, the

designer can evaluate the best database architecture

(for example, distributed versus centralized).

Related work
Several researchers have provided methods

for the design-space exploration of distributed em-

bedded systems [10], [11]. Some projects have

focused on the simulation of specific classes of dis-

tributed embedded systems. For instance, the design

of wireless sensor networks (WSNs) has benefited

from the development of tools that provide better

scalability [12], [13], accuracy [14], codesign of

hardware and software [15], [16], and testbed pro-

visioning [17].

Recent years have also seen the development of

simulation frameworks for machine-to-machine

(M2M) and distributed embedded systems, which

leverage VMs [18], [19] and, by extension, cloud

computing [20], [21].

In contrast to these earlier research projects, our

approach leverages the properties of cloud comput-

ing to achieve unprecedented degrees of scalability

and heterogeneity. In terms of scalability, our net-

worked VP, NetShip, can simulate thousands of em-

bedded devices that execute an actual complete

software stack. In terms of heterogeneity, NetShip

lets us model the different properties of heteroge-

neous networks in addition to those of heteroge-

neous CPUs and peripherals.

NETWORKED VIRTUAL PLATFORMS can be used for

various purposes, including simulation of distri-

buted applications; systems, power, and perfor-

mance analysis; and costs modeling and analysis

of embedded networks’ characteristics. In particu-

lar, since energy efficiency is becoming the most

important concern for many classes of embedded

applications, we plan to integrate models for power

consumption into NetShip. Another important ave-

nue of future research involves how to leverage

the progressive enhancement of cloud computing

in both quality and quantity in order to improve

the power and time-modeling accuracy of net-

worked VPs. h

Acknowledgment
This work was supported in part by the National

Science Foundation under Awards #644202 and

#1147406, and by an Office of Naval Research

(ONR) Young Investigator Award. The authors would

like to thank Y. Watanabe for useful discussions.

h References
[1] Y. Jung, J. Park, M. Petracca, and L. P. Carloni,

‘‘NetShip: A networked virtual platform for large-scale

heterogeneous distributed embedded systems,’’ in

Proc. Design Autom. Conf., 2013, article 169.

[2] P. C. Brebner, ‘‘Is your cloud elastic enough?

Performance modelling the elasticity of infrastructure

as a service (IaaS) cloud applications,’’ in Proc. 3rd

ACM/SPEC Int. Conf. Performance Eng., 2012,

pp. 263–266.

[3] R. Moreno-Vozmediano, R. S. Montero, and

I. M. Llorente, ‘‘Elastic management of

cluster-based services in the cloud,’’ in Proc. 1st

Workshop Autom. Control Datacenters Clouds

2009, pp. 19–24.

[4] vCloud API Programming Guide. [Online]. Available:

http://pubs.vmware.com/vcd-51/index.jsp.

[5] Amazon Elastic Compute Cloud Documentation. [Online].

Available: http://aws.amazon.com/documentation/ec2.

[6] M. D’Angelo, A. Ferrari, O. Ogaard, C. Pinello, and

A. Ulisse, ‘‘A simulator based on QEMU and

SystemC for robustness testing of a networked

linux-based fire detection and alarm system,’’ in Proc.

Embedded Real Time Softw. Syst. Conf., Softw.

Platform Integr. Eng. Things, 2012. [Online]. Available:

http://www.erts2012.org/Site/0P2RUC89/4B-3.pdf.

[7] A. N. Marana, L. da Fontoura Costa, R. A. Lotufo,

and S. A. Velastin, ‘‘Estimating crowd density with

Minkowski fractal dimension,’’ in Proc. IEEE Int. Conf.

Acoust. Speech Signal Process., 1999, vol. 6,

pp. 3521–3524.

May/June 2014 39

[8] T. Fei, L. SunDong, and G. Sen, ‘‘A novel method

of crowd estimation in public locations,’’ in

Proc. Int. Conf. Future BioMed. Inf. Eng., 2009,

pp. 339–342.

[9] W. Li, X. Wu, K. Matsumoto, and H.-A. Zhao, ‘‘Crowd

density estimation: An improved approach,’’ in

Proc. IEEE 10th Int. Conf. Signal Process., 2010,

pp. 1213–1216.

[10] D. E. Setliff, J. K. Strosnider, and J. A. Madriz,

‘‘Towards a design assistant for distributed

embedded systems,’’ in Proc. 12th IEEE Int. Conf.

Autom. Softw. Eng., 1997, pp. 311–312.

[11] Z.-M. Hsu, J.-C. Yeh, and I.-Y. Chuang, ‘‘An accurate

system architecture refinement methodology with

mixed abstraction-level virtual platform,’’ in Proc.

Design Autom. Test Eur. Conf., 2010, pp. 568–573.

[12] P. Levis, N. Lee, M. Welsh, and D. Culler, ‘‘TOSSIM:

Accurate and scalable simulation of entire TinyOS

applications,’’ in Proc. 1st Int. Conf. Embedded

Netw. Sensor Syst., 2003, pp. 126–137.

[13] B. L. Titzer, D. K. Lee, and J. Palsberg, ‘‘Avrora:

Scalable sensor network simulation with precise

timing,’’ in Proc. 4th Int. Symp. Inf. Process. Sensor

Netw., 2005, pp. 477–482.

[14] L. Girod et al. ‘‘Emstar: A software environment

for developing and deploying heterogeneous

sensor-actuator networks,’’ ACM Trans. Sensor

Netw., vol. 3, no. 3, 2007, DOI: 10.1145/1267060.

1267061.

[15] J. Zhang et al. ‘‘A software-hardware emulator for

sensor networks,’’ in Proc. 8th Annu. IEEE Commun.

Soc. Conf. Sensor Mesh Ad Hoc Commun. Netw.,

2011, pp. 440–448.

[16] S.-H. Lo et al. ‘‘SEMU: A framework of simulation

environment for wireless sensor networks with

co-simulation model,’’ in Proc. 2nd Int. Conf. Adv.

Grid Perv. Comput., 2007, pp. 672–677.

[17] G. Coulson et al. ‘‘Flexible experimentation in

wireless sensor networks,’’ Commun. ACM, vol. 55,

no. 1, pp. 82–90, 2012.

[18] P. Boyko and A. Mazo, ‘‘Qemunet: An approach to an

automated virtualized testbed,’’ in Proc. 4th Int. ICST

Conf. Simul. Tools Tech., 2011, pp. 431–438.

[19] S.-H. Hung, C.-H. Chen, and C.-H. Tu, ‘‘Performance

evaluation of machine-to-machine (M2M) systems with

virtual machines,’’ in Proc. 15th Int. Symp. Wireless

Pers. Multimedia Commun., 2012, pp. 159–163.

[20] M. D. Rossetti and Y. Chen, ‘‘A cloud computing

architecture for supply chain network simulation,’’ in

Proc. Winter Simul. Conf., 2012, article 284.

[21] K. Vanmechelen, S. De Munck, and J. Broeckhove,

‘‘Conservative distributed discrete event simulation

on amazon EC2,’’ in Proc. 12th IEEE/ACM Int. Symp.

Cluster Cloud Grid Comput., 2012, pp. 853–860.

YoungHoon Jung is currently working toward a
PhD in computer science at Columbia University,
New York, NY, USA. His research focuses on distri-
buted embedded systems and cloud systems,
including applications, system optimization, and sys-
tem simulation. Jung has an MBA in management
information systems from Chungnam National Uni-
versity, Daejeon, Korea. He is a student member of
the IEEE and the Association for Computing Machin-
ery (ACM).

Michele Petracca is a member of the consulting
staff at Cadence Design Systems, San Jose, CA,
USA, where he works on technology and methodol-
ogy development for the top-down design of elec-
tronic systems. His research focuses on design
methodologies for complex SoCs. Petracca has a
PhD in electronic engineering from Politecnico di
Torino, Turin, Italy.

Luca P. Carloni is an Associate Professor in the
Department of Computer Science, Columbia Univer-
sity, New York, NY, USA. His research interests
include SoC platforms, multicore architectures, sys-
tem-level design, embedded software, and dis-
tributed embedded systems. Carloni has a PhD in
electrical engineering and computer sciences from
the University of California Berkeley, Berkeley, CA,
USA. He is a senior member of the IEEE and the
Association for Computing Machinery (ACM).

h Direct questions and comments about this article
to YoungHoon Jung, Department of Computer Science,
Columbia University, New York, NY 10027 USA; jung@
cs.columbia.edu.

IEEE Design & Test40

Embedded Systems and Cloud Computing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

