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Abstract—This paper addresses the problem of binary decision diagram (BDD) minimization in the presence of don't care sets.
Specifically, given an incompletely specified function g and a fixed ordering of the variables, we propose an exact algorithm for
selecting f such that 7 is a cover for.g and the binary decision diagram for f is of minimum size. The approach described is the only
known exact algorithm for this problem not based on the enumeration of the assignments to the points in the don’t care set. We
show also that our problem is NP-complete. We show that the BDD minimization problem can be formulated as a binate covering
problem-and solved using implicit enumeration techniques. In particular, we show that the minimum-sized binary decision diagram
compatible with the specification can be found by solving a problem that is very similar to the problem of reducing incompletely
specified finite state machines. We report experiments of an implicit implementation of our algorithm, by means of which a class of
interesting examples was:solved exactly. We compare it with existing heuristic algorithms to measure the quality of the latter.

Index Terms—Binary decision diagrams, incompletely specified functions, minimization of logic functions, incompletely specified
finite state machines, state minimization, implicit logic computations.

1 INTRODUCTION
A completely specified. Boolean function f is a cover for
an incompletely specified function g if the value of f
agrees with the value of ¢ for all the points in the input
space where g is specified. This paper describes an exact
algorithm for selecting f such that f is a cover for g and the
binary decision diagram (BDD).for f has a minimum num-
ber of nodes (complemented edges are not considered
here). For a given ordering of the variables, the BDD for fis
unique [4] and the problem has a well defined solution.

We show that this minimization problem can be solved by
selecting a minimum sized cover for a graph that satisfies
some additional closure conditions. In particular, we show that
the minimum sized binary decision diagram compatible with
the specification can be found by solving a covering problem
that is very similar to the covering problem obtained using
exact algorithms for the reduction of incomplétely ‘specified
finite state machines (ISFSM) [8]. This similarity makes it pos-
sible to use implicit enumeration techniques developed for the
purpose of ISFSM reduction [10] to efficiently solve the BDD
minimization problem. The manipulation of the characteristic
functions of the sets of compatibles and prime compatibles,
represented with ROBDDs [2], allows the generation of very
large sets that cannot be enumerated explicitly, as it is demon-
strated in the experiments.
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The transformation presented in this paper and the algo-
rithms developed for the solution are important for practi-
cal and theoretical reasons.

From a practical point of view, there are applications in
learning and logic synthesis where a high-quality solution
is of paramount importance. This requires an exact algo-
rithm to find those solutions or at least to validate the qual-
ity of heuristic algorithms. :

For instance, in inductive learning applications, the ac-
curacy of the inferred hypotheses is strongly dependent on
the complexity of the result [1]. One possible and very ef-
fective representation scheme for inferred hypotheses is
BDDs. However, it was observed [14] that, when BDDs: are
used as the representation scheme, existing heuristic algo-
rithms for BDD minimization find solutions that are so far
from the minimum that it makes them of little value for this
particular application. :

The selection of the minimum BDD consistent with an
incompletely specified function is also important in logic
synthesis applications that use BDDs not only as a tool for
representing discrete functions but also to derive imple-
mentations that minimize some cost function. For instance,
timed Shannon circuits [12] use the structure of the BDD to
derive low power implementations and stand to gain from
algorithms for the reduction of BDDs. The same holds for
DCVS trees and multiplexer-based FPGAs.

An exact algorithm, even though unable to solve large
instances, helps to measure the quality of heuristic algo-
rithms by gauging them on instances where an exact solu-
tion can be found.

From a theoretical point of view, the transformation pre-
sented. in this work is an elegant characterization of the
problem. We show in Section 3 that the problem is NP-
complete, answering a question raised by Shiple et al. [17].
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Several heuristic algorithms for the problem addressed
here have been proposed. These algorithms are important
in applications where the available degrees of freedom in
the functions represented can be used to reduce the mem-
ory requirements of BDD based algorithms. The restrict
operator [7] and the constrain operator [6] (also known as
generalized cofactor [19]) are two heuristics used to assign
the don’t cares of a BDD. A comprehensive study of heuris-
tic BDD minimization has been presented in [17]. Another
heuristic algorithm has been reported in [5].

We are also aware of work for an exact algorithm [15]
based on the enumeration of the different covers that can be
obtained by all possible assignments of the don’t care points.
A pruning technique reduces the enumeration process
thanks to a result by Shiple that changing the value of a
function f of n variables on a minterm m cannot change the
size of the BDD for f by more than n nodes. The pruning is
performed implicitly.

It is worth pointing out that reducing the BDD size by as-
signing the don’t care points of an incompletely specified
function for a fixed ordering is a priori an orthogonal step to
the problem of finding the best variable ordering. They are
both formidable problems and, at present, we know of no
approaches, either heuristic or exact, that combine these two
types of optimization or try to assess their relative impact
and correlation. That objective, although important, is out-
side the scope of this work, where a fixed ordering of the
variables is assumed. It is also outside the scope of this paper
to compare the BDD size with other measures of complexity
of the implementation of an incompletely specified function.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces basic definitions on BDDs and Section 3
has a proof that BDD minimization is NP-complete. Sec-
tions 4, 5, and 6 describe, respectively, the compatibility
graph, closed clique covers, and the generation of a mini-
mum BDD. Minimization of BDDs is formulated as a vari-
ant of FSM minimization in Section 7, while an implicit al-
gorithm to compute a minimum closed cover is presented
in Section 8. Results and conclusions are offered, respec-
tively, in Sections 9 and 10.

2 PRELIMINARIES
A BDD is a rooted, directed, acyclic graph where each node
is labeled with the name of one variable. and every non-

terminal node #; has one else and one then edge that point to

then
i

else

the children nodes, n;"° and n;"", respectively. The termi-

nal nodes are n, and n,. By convention, we will draw the
else (zero) edge as the edge pointing to left (west) and the
then (one) edge as the edge pointing to right (east).

We define a minterm as any specific combination of in-
put values. We will use m; to denote the value that the ith
variable takes in minterm m. Any minterm m in the input
space induces a unique path in a BDD defined in the fol-
lowing way: Start at the root and take, at each node, the else
or the then edge according to the value assigned by min-
term m to the variable that is the label of the current node
until a terminal node is reached. A BDD corresponds to the
completely specified Boolean function f that has all the
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minterms in f,,, (and only these) inducing paths in the BDD
that terminate in #n,. A BDD is called reduced if no two nodes
exist that branch exactly in the same way, and it is never the
case that all outgoing edges of a given node terminate in
the same node. For a fixed ordering of the variables, the
reduced ordered BDD for a given Boolean function is
unique. This implies that reduced ordered BDDs are ca-
nonical representations of Boolean functions and we will,
therefore, use the notation #; to denote both the node in the
BDD and the Boolean function to which it corresponds.
Unless stated otherwise, we will use simply the term BDD
when we refer to a reduced ordered BDD.

The level of a node n;, £(n;) is the index of the variable
tested at that node under the specific ordering used. The
level of the terminal nodes is defined as N + 1, where N is
the number of input variables. The maximum level of a set s
of nodes, £,,..(s), is the maximum level of all the nodes in s.
Since BDDs are canonical representations for Boolean func-
tions, given a completely specified function #, the level of 7,
L(h) is the level of the node that represents h. This is true
even if & is a function not represented in a specific BDD
under consideration. A BDD is called complete if all edges
starting at level i terminate in a node at level i + 1. The
level of a function h, L(h), is defined as the level of a BDD
node that implements h. If 1, is a node in the BDD and m a
minterm, n{m) will be used to denote both the value of
function n; for minterm m and the terminal node that m
reaches when starting at #;. This notation is consistent be-
cause the two terminal nodes stand for the constant func-
tions 0 and 1. The index 0 will be reserved for the root of the
BDD. Therefore, if m is a minterm and F is the BDD for f,
no(m) represents the value of f for minterm .

A three Terminal BDD (3TBDD) is defined in the same
way as a BDD in all respects except that it has three termi-
nal nodes: n,, 1,, and n,. A 3TBDD F corresponds to the in-
completely specified function f that has all minterms in fg,
fao and £, terminate in n,, n,, and n,, respectively.

A finite state machine is incompletely specified if the desti-
nation or the output of some transition is not specified. State
minimization of an ISFSM is the problem of finding an FSM
with a minimum number of states that, for any input se-
quence, agrees with the original one on every completely
specified output, ie., for every input sequence produces out-
put sequences compatible with those of the original one. Two
states are compatible if the output sequences of the FSM ini-
tialized in the two states are compatible for every input se-
quence. A set of states is a compatible (or are compatible) if, for
each input sequence, there is a corresponding output sequence
which can be produced by each state in the compatible.

A compatible cover of an FSM is a set of compatibles
such that every state of the FSM is in at least a compatible.
The implied set of a compatible under an input is the set of
states reachable in one transition from the states of the
compatible under the input. A set of compatibles is a closed
cover if it is a cover such that each implied set of every
compatible is contained by a compatible in the cover. A
compatible dominates another compatible if it contains it
and its implied sets are the same as those of the dominated

1. A complete BDD will not, in general, be reduced.
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compatible. Compatibles that are not dominated by any
other compatible are called prime compatibles and are suf-
ficient to minimize the states of an FSM. Compatibles that
are not -properly contained in any other compatible are
called ‘maximal compatibles and they are always prime
compaitibles. -

The standard procedure for FSM state minimization is to
compute all prime compatibles and, then, find a closed cover
of them by solving a binate covering problem, i.e., a matrix
where rows encode covering and closure conditions that
must be satisfied by a minimum number of compatibles
represented as columns intersecting the rows in which the
compatibles occur. We refer to [11] for a complete treatment
of FSM state minimization.

3 COMPLEXITY OF THE PROBLEM
Consider the problem of minimum BDD identification.
PrOBLEM: MINIMUM BDD IDENTIFICATION (MBI)

INSTANCE: A set of minterms, labeled either positive or
negative and an integer K.

QUESTION: For a given fixed ordering, is there a BDD with
less than K nodes that satisfies all the examples, i.e., a
BDD for a function whose on-set contains the min-
terms labeled positive and whose off-set contains the
minterms.labeled negative?

Takenaga and Yajima [18] proved that this problem is
" NP-complete, by reduction from graph K-colorability. The
problem we address in this paper is the following:

PrOBLEM: EXACT BDD MINIMIZATION (EBM)
INSTANCE: BDDs for functions f,, and fy. and an integer K.

QUESTION: Is there a BDD with less than K nodes that im-
plements a function that is a cover for f?

PROOF THAT IT 18 IN NP (due to Shiple [17]). Guess a BDD
with fewer than K nodes. Check whether the guessed
BDD implements a function that is a cover of f. This
check can be done in time and space upper bounded
by the product of the sizes of the BDDs for f,, and fy.
and of the guessed BDD. This product is polynomial
in the input size. O

PROOF THAT IT 1S NP-HARD. Suppose we could solve this

problem in polynomial time with a deterministic al-

- gorithm. Then, we can also solve the MBI problem. To
prove the result, wé need to prove two facts.

Fact 1. The BDD for a given function f of v variables cannot
have more than n X v internal nodes, where n is the number

of minterms in f [15].
PROOF OF FACT 1. To verify this, consider all the paths
through the BDD defined by all the minterms. in f.
This set of paths has to go through each internal node
in the BDD for f at least once. Otherwise, there are
nodes other than the constant node 0 in the BDD that
-are only reached by minterms in the off set of f,
thereby implying that the BDD is not reduced. Be-
cause a minterm can only traverse v internal nodes,
we obtain immediately the above result. L1
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FACT 2. A BDD of a function f: B” — B represented by n min-
terms can be constructed in O(nzvzlog 1) operations.

PROOF OF FACT 2. Build the BDD of f from the minterms by
doing the following: First, OR together:each pair of
minterms. Then, OR. the results together and keep
doing this until the final result is computed. The
number of such iterations k is logarithmic in n. At it-

eration i, one needs to perform no more than n/ (Zi)

operations on BDDs no larger than v x 27" (the latter
size is explained by Fact 1 that the BDD for f cannot

have more than n x v internal nodes). Therefore, per
i1

iteration one needs no more than n/ (2")7;2’;12;2
no'2 elementary opera’tioh, that is upper bounded

by n’0" because i < log n. Since there are only log n it-
erations, the result can be built in time and space

n2z;2log n. O

It follows from Fact 2 that the BDDs for f,, and fog
can be constructed in time polynomial in the size of
the input instance of the MBI problem we want to
solve. This implies that the BDD for f;. can also be
constructed in polynomial time in the size of the input

- of the MBI problem because it can be obtained by
polynomial time bounded BDD operations. To solve
an: MBI problem, simply transform it into an-EBM
problem and solve it. The resulting solution will rep-
resent directly the answer to the original problem. . O

After we reported this result [13], we were informed that
an earlier proof had been published in a technical report by
Sauerhoff and Wegener [16]. Our result has been obtained
independently and provides a different proof. In [16], it is
also proven that, under the hypothesis that NP # P, the
problem has neither approximation schemes nor polyno-
mial time approximation algorithms yielding solutions
larger than the minimum by only a constant factor or a
slowly increasing function. Finally, Hirata et al. proved in
[9] the related result that MBI is NP-hard (differently from
[18]) and that there is a constant & > 0 such that no polyno-
mial algorithm can approximate MBI within the ratio n®
unless P = NP. ’

Incidentally, the polynomial time procedure outlined in
the proof of Fact 2, together with the results in [16] directly
imply the result of Hirata et al., as the authors themselves
point out in the concluding remarks of [9].

4 THE ComPATIBILITY. GRAPH

Previous algorithms [15] for this problem used directly: the
BDD representation of f, and f.g The exact approach de-
scribed in this paper uses the 3TBDD F that corresponds to
the incompletely specified function f. F is assumed to be
complete. If necessary, F is made complete by adding extra
nodes that have the then and else edges pointing to the same
node. In general, the resulting 3TBDD is no longer reduced.
Moreovet, we suppose that the 3TBDD does not use com-
plemented edges.
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DEFINITION 4.1. Two nodes n; and n; in F are compatible (n; ~ ;)
iff no minterm m exists that satisfies ni(m) = n, A nm) =n,
or nim) = n, A n(m) =n,.

This definition implies that n, and #, are not compatible
between them and that n, is compatible with any node in a
3TBDD.

DEFINITION 4.2. Two nodes n; and n; in F are common sup-
port compatible (n; =~ n;) iff there exists a completely
specified function h such that h ~ n; and h ~ n; and

L(h) = max(L(n;), L(ny)).
The definition implies that n, # n, and n, =~ n, for any

node n;.

It is important, at this point, to understand the relation-
ship between these two concepts. First, note that the com-
pletely specified function & referred in Definition 4.2 does
not necessarily correspond to any node in F. In fact, in most
cases, 1 will not correspond to any node in F, since most
nodes in F correspond to incompletely specified functions.

The relationship between compatibility and common
support compatibility (CSC) is given by the following
lemma:

LEMMA 4.1. If n; = n;, then n; ~ ;.

PROOF. If n; + n, then there is a minterm m such that
n,(m) # n(m). Any completely specified function h
will assign a unique value to m and, therefore, cannot
be compatible with both 7; and ;. O

The reverse implication of Lemma 4.1 is not true, in gen-
eral. Fig. 1 illustrates a situation where two nodes are com-
patible but are not CSC. Nodes »; and n; are compatible be-
cause no minterm leads to #, for one of these nodes and to
n, to the other. However, n; and n; are not common support
compatible because no completely specified function h that
only depends on the second variable is compatible with
both of them.

However, when two nodes belong to the same level,
common support compatibility and compatibility are
equivalent:

LEMMA 4.2. If L(n;) = L(n;), then n; ~ n; = n; = n;.

PROOE. The completely specified function h required to sat-
isfy Definition 4.2 can be obtained by setting

how =m; Uny and hy = h,, - Since h depends only

o Ton

on the variables common to the supports of n; and 1,

it can be used in Definition 4.2 to show that n; = n;, O

The motivation for the definition of common support
compatibility can now be made clear. Assume that two
nodes belong to different levels and are compatible. In
principle, they could be replaced by a new node that im-
plements a function compatible with the functions of each
node. In general, this function may depend on variables
that are not on the support of the node at the higher level.
Assume this node is n;. Later, when we try to build the re-
duced BDD, edges that are incident into 1 will need to go
upward, against the variable ordering of the BDD. On the
other hand, if both nodes are common support compatible,
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Fig. 1. Nodes n;and n;are compatible but not common support compatible.

then they can be replaced by a node that implements the
completely specified function h referred to in Definition 4.2.
Because this function only depends on the variables com-
mon to the supports of both nodes, this problem will not
arise. ‘ )

The concept of common-support compatibility can be
extended to sets of nodes in the natural way:

DEFINITION 4.3. The nodes in the set s; = {ny, n,, ..., ng} are
common support compatible iff there exists a completely
specified function h such that (h ~ n))iz,... s and L) =
-Emax(si)'

DEFINITION 4.4. A set of nodes that are common support compatible
is called a compatible set or, sinply, a compatible.

The definition of a compatible implies that any two
nodes that belong to a compatible are pairwise common
support compatible. The reverse implication is not true, but
the next lemma holds.

LEMMA 4.3. Let s; be a set of nodes belonging to the same level.
Then, s; is a compatible iff all nodes in s; are pairwise com-
mon support compatible.

PrOOF. To prove the if direction, note that, by the hypothe-
sis, it can never happen that given a minterm m there
are two nodes n; and 1y in s; that are CSC and satisfy
nm) = n, and m(m) = n,. This would violate Lemma 4.1.
The function h that is needed to prove that s; is a
compatible set is the function h that has the value 0
for m if some n; exists that satisfies n,(m) = n, and has
the value 1 for m if some ;. exists that satisfies m(m) =
n, (the value for minterms not defined in this way can
be chosen arbitrarily). Moreover, L(h) = L,,(s;), since
all nodes of s; are at the same level as h. If one does
not assume that all nodes of s; belong to the same
level, it is not guaranteed that h satisfies L(h) 2
[mm(s;), and one can build coun{ferexamples to the

lemma.
To prove the only if direction, note that if s; is a
compatible, then the function h referred to in Defini-

tion 4.3 is compatible with any pair of nodes in s,
- thereby showing that they are pairwise CSC. O
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Fig. 2. Example of compatibility graph with labels. For clarity, only labels involving the edges (gs, gs) and (gg, g7} are shown.

DEFINITION 4.5. The compatibility graph, G = (V, E), is an
undirected graph that contains the information about
which nodes in F can be merged. Except for the terminal

node n,, each node in F will correspond to one node in V

with the same index. The level of a node in G is the same as
else
i

the level of the corresponding node in F. Similarly, g

th th
and g;"" and n;""

else
i

are the nodes that correspond to n

Graph G is built in such a way that if nodes #; and n; are
common support compatible, then there exists an edge
between g; and g;. An edge may have labels. A label is a set
of nodes that expresses the following requirement: If nodes
g and g; are to be merged, then the nodes in the label also
need to be merged. There are different types of labels that
come from different requirements. A label of type ¢ (e) rep-
resents the requirement that the fhen (else) nodes also have
to be equivalent. For example, in Fig. 2, the ¢ label in the
edge between g; and g; means that nodes g3 and g, can only
be merged if nodes g5 and gg are also merged. This labeling
of the edges in the compatibility graph is inspired by the
standard procedure for finite state machine reduction. A
label of type | specifies a related requirement, but it in-
volves nodes at different levels in the decision diagram.
Fig. 2 also shows an example of an I label that, in this case,
specifies that nodes g, and g, can only be merged if nodes
g7 and gg are also merged. The need for labeling. of the
nodes is given by the following two lemmas, that also jus-
tify the algorithm by which graph G is built:

LEMMA 4.4 If L(n;) = L(n;), then

else

n ~ 71; - (ni else then t'hen

zn] AT zn] )

PROOF . By contradiction. Since F is complete, the successors
are at the same level. Therefore, by Lemma 4.2,
n'* 4 nflsg =u" 4 nf-’gg and a minterm #i can be
selected in such a way that w5 (m) 4 n;lse(m) and
M iy = 0- The existence of this minterm shows that
n; n; and, therefore, that n, # n;. A similar argu-

ment is true for the then branch. Therefore,

/!
Tlflse ;,é T”l; se nfhen % n;hen = n, ﬁé Tl}-.
O
LEMMA4.5. If L(n;) < L(n;), then
(. else then - else . then
ni~nj:>(ni ~11]-/\7’Li ~1’ZjA1’Li, = N, )

PROOF. By contradiction. If nflse # 1, then, for any com-

pletely specified functions % at level L(n;) or higher, a
minterm m can be selected in such a way that
n®(m) 4 h(m) and m £(nyy = 0- This minterm shows
that n, + h, thereby showing that n, # n;. Identi-

cally for the then branch. If n™ # n™" then, by
Lemma 4.2, there are minterms w and m such that

w5 (w) 4 n M (w) A W gy = 0

and
else then _
n. (m) £ (mya Moy = 1.

These minterms can be chosen to differ only in the
value of the variable x,, ) and lead to incompatible

i
terminal nodes. Therefore, n; cannot be compatible

with any function h such that £L(h)

>= L(n;), thereby
showing that n; # n,. O

The previous two lemmas justify the following algo-
rithm to build the compatibility graph.
Algorithm 4.1
1) Initialize G with a complete graph except for edge (¢, £,)
that is removed.
2) If L(g;) = L(g;), then the edge between g; and g; has
two labels: an e label with {gflse, g;lse} and a ¢ label

then _then

with { 8 1 8; ’

C3)If L(gy) < L(g)) edge (gi &) has an [ label with
{8’ielsg, 81?}’6”, g]} (by Lemma 4.5).

4) For all pairs of nodes (g, g;), check if the edge between

nodes g; and g; has a label that contains {g, g} and

_there is no edge between g, and g. If so, remove the

edge between g; and g;. Repeat this step until no more

changes take place.
Fig. 3 shows an example of the 3TBDD F obtained from f

defined by the following sets: f,,, = {011, 111}, £, = {010, 110,
101} and the corresponding compatibility graph. Fig. 4
shows the three steps required to compute the final compati-
bility graph. The initial graph (Fig. 4a) is complete, except for

} (by Lemma 4.4).

the edge between nodes g,, g,. Fig. 4b shows the result after
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g, go

Fig. 3. The 3TBDD F and the compatibility graph G. Nodes g5 and g, are not shown on the compatibility graph since they are common support

compatible with every node in the graph.
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Fig. 4. The three steps required to compute the final compatibility graph shown in Fig. 3. To avoid excessive cluttering, edge labels and nodes g5

and g, are not shown.

the first step, when all edges with labels containing {g,, g,}
are removed. For example, the edge between g; and g, with ¢
label {g,, g,} is removed. The same happens with the edge

between g, and g,, with I label {g,, g, g.}. This step removes
all edges that should be removed involving nodes in the
bottom two levels. The second step removes all edges that
are to be removed involving nodes in the bottom three lev-
els and the fourth step removes all remaining edges. In
general, the procedure will require N steps, where N is the
number of input variables, and each step requires a maxi-
mum of | E| operations. Therefore, the procedure has total

complexity given by O(N | V1%, where V is the number of
nodes in the 3TBDD.
The existence of an edge in the compatibility graph is

related with common support compatibility and with com--

patibility between pairs of nodes. In particular, if two nodes
are common support compatible, then there will be an edge
between these two nodes. The existence of an edge implies
that the two nodes are compatible. However, given that
compatibility is a weaker notion than common support

compatibility, the reverse is not true. This is formally stated
in the following lemma:

LEMMA4.6.n;~n; = Je € Es.t.e=(g;, &) =>n ~n;

PROOF. The first implication follows from Lemmas 4.4 and
4.5 and the algorithm definition. Given these lemmas,
the algorithm only removes edges that are between
nodes that are not CSC. Let us prove the second im-
plication by contradiction. Now, let I = L(n;) and | =
L(n;) and assume that n; £ n; and that I < J. Then,
there exists a minterm m such that n,(m) + n ;(m). Let
My My oo T, e the sequence of nodes defined by
minterm m in the BDD between the level Tand N + 1,

efarlins at n;. Let »n be the sequence of

077 00 T Py

nodes defined by minterm m between level J and N + 1

starting at node n;. Then, because n, and n,  are
N+1 N+1

the terminal nodes and there is no edge between
them, after k steps, the edge between node Sonais and

node g, will have been removed because of
e
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20

Lg, o

Fig. 5. Nodes n, and ng are not common support compatible but the compatibility graph does have an edge between the corresponding nodes.

condition 2. This will happen for k such that N + 1 —k
>= ], For k such that N + 1 =k < J, the edge between
Lanr s and 8, will have been removed because of con-

dition 3. O

It is important to note that the reverse implications are
not true. In particular, the existence of an edge between two
nodes in G does not imply that they are common support
compatible. Consider the 3TBDD shown in Fig. 5.

For this 3TBDD, the algorithm described above does not
remove the edge between nodes g, and g5 because there are
long range dependencies that cannot be found by the sim-
ple minded algorithm used to prune away edges. The edge
between g, and gs has the following ! label: {gs, g5, g2}-

The edge between g, and g5 has the I label {g5, g4} and the
edge between g, and g5 has the [ label {g5 g3}. Because 75 is
compatible with both #; and #, the edge between g; and gs
and the edge between g, and g5 are never removed. Moreover,
ny and 71, are compatible. Therefore, the edge between g
and g5 is never removed. However, no function depending
only on the last variable can be compatible with 7, and,
therefore, ny and #5 are not common support compatible.

Despite the fact that an edge between two nodes does
not imply common support compatibility, this graph can be
used to formulate a closed clique covering problem that
yields the solution to the problem. This is done by defining
an extra restriction on the type of cliques that can be used to
cover the graph. :

5 CLosED CLIQUE COVERS

A clique of graph G is a completely connected subgraph of
G. To any set s of nodes that is a clique of G there are associ-
ated class sets. If the nodes in s are to be merged into one,
the nodes in its class sets are also required to be in the same
set. Let's;, = {gil, 8, - giw} be a set of nodes that form a

clique in G. The following are the definitions of the ¢, ¢, and

I classes of s;. In some cases, we may blur the distinction
between the nodes gs of G and the corresponding nodes ns

of F. Strictly speaking, cliques are defined on sets of gs and
compatibles on sets of ns.

DEFINITION 5.1. The e class of s;, C(s;) is the set of nodes that are
in some e label of an edge between a node g; and gy in s
with L{ng) = L(1) = Linas{S)-

DEFINITION 5.2. The ¢ class of s;, C{(s;) is the set of nodes that are

in some t label of an edge between a node g; and g in s;
with E(nk) = .E(?’l]) = Lmax(si).

DEFINITION 5.3. The 1 class of s;, C((s;) is the set of nodes that are
in some 1 label of an edge between a node g; and g in s,
with L(n;) # L(ny)

LEMMA 5.1. If a set s; of nodes are a clique of G and Ci(s;) C s,
then s; is a compatible set.

PROOF. Let k be the maximum level of any node in s;. The
definition of Ci(s;) implies that Cy(s;) includes all the
nodes of s; atlevel k that are descendents of some
node in s;. Call these nodes the foundation of s; Be-
cause these nodes are a clique of G (or else they

wouldn’t be in g;), they are all pairwise compatible, by
Lemma 4.6. Because they are at the same level,
Lemma 4.2 implies that they are pairwise CSC. There-
fore, by the result of Lemma 4.3, these nodes are a
compatible set. Thie implies that there evists.a com.

pletely specified function & at the level £, (s;) that is

compatible with every node in the foundation of s;. To
finish the proof, we need to show that this function

‘must be also compatible with every other node in s;.
To show this, assume that & is not compatible with

some node 1; in.s;. Then, there must exist a minterm m
such that n;(m) # h(m). This minterm defines a path
in the BDD that goes through a node 7; in the foun-

dation of s;. Since m(m) # h(m), ny and h are not
- compatible, which violates the assumption that / is
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compatible with every node in the foundation of s,

Therefore, # must be compatible with every node in s;,
thereby satisfying Definition 4.3. |

Note that a clique of G that does not satisfy the condition
in Lemma 5.1 is not necessarily a compatible set. For in-
stance, in the example in Fig. 5, the nodes {g;, ¢1, £», g5} are a
clique of G but are not a compatible set, because g3 € Cy({g,
81 82 85 but gs € {go, g1, g2 gs}-

The algorithm that selects the minimum BDD compati-
ble with the original function works by selecting nodes of G
that can be merged into one node in the final BDD. If a set s
of nodes in G is to be merged into one, the set s has to be a
compatible set. Therefore, it has to be a clique of G satisfy-
ing Definition 5.3. The objective is to find a set of cliques
such that every node in G is covered by at least one clique.
However, to obtain a valid solution, some extra conditions
need to be imposed.

DEFINITION 5.4. A set S = {sy, s)... 5,} of sets of nodes in G is
called a closed clique cover for G if the following con-
ditions are satisfied:

1) Scovers G:Vg;e G3s;e S:g;€ s,

2) All s, are cliques of G : Vg, g € s :
edges(G).

3) Sis closed with respect to the e and # labels:

Vs;ie S3sie 5:Cfs) < siAVs;e S3s;€ 5:Csy) Sj-

4) All sets in S are closed with respect to the I labels:
Vs;e S:Cys) s

8» &) €

6 GENERATION OF A Minmmum BDD

From a closed clique cover for G, a reduced BDD R is ob-
tained by the following algorithm:

Algorithm 6.1

1) For each s; in S, create a BDD node in R, r;, at level
-Emax(si)'

2) Let the nodes in R that correspond to sets s; contain-
ing nodes that correspond to terminal nodes in F be
the new corresponding terminal nodes of R.

3) Let the else edge of the node 7; go to the node 7; that
corresponds to a set s; such that C(s;)) = s;-

4) Let the then edge of the node r; go to the node 7, that

corresponds to a set s; such that Cy(s;) € Sj-
LEMMA 6.1. R is an Ordered BDD compatible with F.

PROOF. Since the cover is closed, Steps 3 and 4 are always
feasible. Any path in F that leads to a 1 or a 0 will lead
to the corresponding terminal node in R. Finally, there
will never be edges going upward in R because the
node that results from a set s; is at the lowest level of
all the nodes in s;. O

Using an efficient data structure to keep the cover infor-
mation, this algorithm can be executed in time linear on the
number of nodes in the original BDD. In practice, this is of
limited interest, since the procedure of actually finding the
minimum cover may take exponential time. In fact, finding
the minimum cover is the only step that is computationally
inefficient, but it is unavoidable since we know that the
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problem is NP-complete. The requirement that the mini-
mum cover must be closed implies that the covering prob-
lem to be solved is binate. We refer to [11] for an extended
survey on covering problems.

Now, the main result follows: Let B be the set of all
BDDs that represent functions compatible with the incom-
pletely specified function f. Then, the following result
holds:

THEOREM 6.1. For a given variable ordering, the BDD induced
by a minimum closed cover for G is the BDD in ‘B with
minimum number of nodes.

PROOF. Given the result in Lemma 6.1, it is sufficient to prove
that there exists at least one closed cover of cardinality
equal to the size of the minimum BDD in B.

Let U be a BDD in B with minimum number of
nodes k. For each node in U, u;, create a set s; such that
giisin s;iff n; ~ u; and L(n;) < L(u;). Let S = {5y, 55... 4.
We will show that S satisfies all the conditions in
Definition 5.4:

1) (S covers G) We show that the assumption that

some g; at level I is not in some set of S leads to a
contradiction: Let m be a minterm that defines a

path in F that starts at the root and goes through n;,.
Let M be the set of all minterms that have the same

values as m for x;...x.4. Each one of these minterms
will define a path in U that goes through some

node u; in U at a level equal or higher than I. Since

n, + u; (by the hypothesis), there exists a minterm
m’ e M such that u,(m’) + h,.(m’). For this minterm
m’, ny(m’) + uy(m’), thereby contradicting the as-
sumption that U is compatible with F.

2) (All s; € S are cliques of G) Since each node in s; is
compatible with a completely specified function
(u;), they satisfy Definition 4.3 and, therefore, by
Lemma 4.1, they are a clique of G.

3) (S is closed with respect to the e and ¢ labels) Let u;

beanodein U, u, = uflse and u, = ufhe". Letb; = {g;
€ 51 £(g)) = Lina(s:)). For each node g; € by, n; ~

. . 1 th
implies u, ~ nj * and u, ~ n; " Therefore, C,(s;)

s, and C(s;) < sp-
4) (S is closed with respect to the I labels) Suppose

Ci(s;)  s;. Then, there must be a node n,, such that

else then

w & s; or g, 3 S;.
else
w

8w € s;atlevel | < L(u;) and g
Assume the first is true and let n°* = n,; n, is not
compatible with u; (or else it would be in s;) and

depends only on the variables {xy,;...x,}. Therefore,
there exists a minterm m such that u,(m) + n,(m)

and m; = 0. This minterm shows that n, + u,
which contradicts the hypothesis that g,, is in s;.

Therefore, S is a closed clique cover for G and it has
cardinality k. O
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Fig. 6. The 3TBDD F, the compatibility graph G and a solution A. Node g5 was arbitrarily included in compatible {gs, g, gs}-

As an example, S = {{g0, g1, 82}, 184} {82 &5 &), (&} s a
closed cover for the example depicted in Fig. 3 and induces
the BDD R shown on the right side of Fig. 6.

7 FORMULATION OF BDD MiINIMIZATION AS FSM |
REDUCTION

The definition of a closed cover is very similar to the stan-
dard definition of a closed cover used in the minimization
of finite state machines (FSMs). If the graph of a 3TBDD is
viewed as the state transition graph of an FSM, the algo-
rithms developed for the minimization of FSMs can be used
with some modifications. The two important differences to
consider are:

1) The definition of the ¢ and £ classes and the closure
requirement in point 3 of Definition 5.4 are different
from the definitions used in standard FSM minimiza-
tion. In BDD minimization, only nodes at the highest
level in some compatible define the e and t classes,
while in standard FSM minimization all nodes in a
compatible set are involved in the definition of these
classes.

2} The requirement in point 4 of Definition 5.4 means
that some sets of nodes that satisfy the definition of a
compatible set in the FSM case do not satisfy the con-
ditions for BDD minimization.

These two changes can be incorporated into existing al-
gorithms for FSM minimization. In particular, the closure
conditions with respect to the e and t labels are similar to
the closure conditions imposed in standard FSM minimiza-
tion. The restriction imposed by condition 4 in Definition 5.4
simply eliminates some cliques of the compatibility graph
from consideration and can be implemented by a filtering
step. )

Let F be the 3TBDD that should be minimized, and con-
sider the FSM with a state transition graph (STG) obtained
from F in the following way:

e Initialize the STG with a graph isomorphic to the
3TBDD, with nodes Sy, Sy, ..., S, S,, S, each one corre-
sponding to one node in F.

¢ Add anew node, Sp

¢ Add transitions from S,, S,, and S, to Sy labeled ~/0,
—/1, and —/—, respectively.

¢ Add a transition from Syto S;labeled —/-.

As an example, consider the FSM obtained from the
3TBDD in Fig. 3, shown in Fig. 7.

This transformation leads to our final important result.
Let M be the incompletely specified FSM with the state
transition graph obtained from F by the procedure outlined
above and let G’ be the compatibility graph for this finite
state machine built in the following way:

o There is an edge between nodes g/ and g in G’ if states

n] and n} are compatible, in the FSM reduction sense.
o Edges of G’ are labeled in accordance with Algorithm 4.1.

Note that the structure of graph G’ reflects the compati-
bility between states of M defined as for FSM reduction.
Therefore, G’ can be computed using the standard proce-
dures for FSM minimization. However, this means that G’ is
not isomorphic to G, defined by Algorithm 4.1. In particu-
lar, any two nodes that are at different levels in G” are com-
patible for FSM reduction, and so G always has an edge
between g/ and g7 if £(g]) # £(g}) and, therefore, the sec-
ond implication in Lemma 4.6 is not true, in general.

The following lemma establishes that the cliques of G
and the cliques of G’ that are closed with respect to the !
class are exactly the same.

LEMMA 7.1. A set s} ={g; ..., } is a clique of G’ satisfying
G s U 5 =1{8y,---84, ) 15 4 clique of G satisfying
Cs) C s

PROOF. Since the edges of G’ are a superset of the edges of G
and the labels are the same, it is clear that, to any

clique of G containing Ci(s;), there corresponds a
clique of G’ satisfying that condition. To prove the
other direction, note that, for any two nodes in G’ at
the same level, the presence of an edge in G’ implies
that they are compatible, both in the sense of FSM re-
duction and according to Definition 4.1. Therefore, the
rightmost implication of Lemma 4.6 is valid for nodes
that are at the same level. The proof of Lemma 5.1
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only uses this implication for nodes at the same level,

namely the nodes in the foundation of s; defined in
that lemma. Therefore, Lemma 5.1 is still true if G is
replaced by G, implying that any set s! in G’ that sat-
isfies C,(s{) < s/ corresponds to a compatible of G’, ac-
cording to Definition 4.3. Therefore, the corresponding
set s;in G is a clique. Because the labels are the same for

any edges common to both G and G, C(s;) = s;. O
COROLLARY 7.1. A minimum closed cover for M satisfying Defi-

nition 5.4 when G is replaced by G’ induces a minimum

BDD compatible with F, in accordance with Theorem 6.1.

PROOF. Since the compatibles that can be part of the cover
are the same in both G’ and G, this result follows di-
rectly from Theorem 6.1. O

8 ImpPLICIT COMPUTATION OF A MiNIMUM CLOSED
COVER

We will use the unified implicit framework proposed in
[10].2 Implicit techniques are based on the idea of operating
on discrete sets by their characteristic functions represented
by binary decision diagrams (BDDs) [4].

To perform state minimization, one needs to represent
and efficiently manipulate sets of sets of states. With n
states, each subset of states is represented in positional-set
form, using a set of n Boolean variables, x = x;x,...x,. The
presence of a state s, in the set is denoted by the fact that
variable x; takes the value 1 in the positional-set, whereas x;
takes the value 0 if state s, is not a member of the set. For
example, if n = 6, the set with a single state s, is represented
by 000100 while the set of states s)s3s5 is represented by
011010.

A set of sets of states S is represented in positional nota-
tion by a characteristic function y: B" — B as: yg(x) = 1 if
and only if the set of states represented by the positional-set
x is in the set S. A BDD representing ys(x) will contain
minterms, each corresponding to a state set in S. As an ex-
ample, Tuple, ;(x) denotes all positional-sets x with exactly k
states in them (i.e., Ix| = k). For instance, the set of single-
ton states is Tuple, 1(x), the set of state pairs is Tuple, 5(x), the
set of full states is Tuple, ,(x), and the set of empty states is
Tuple, o(x). An alternative notation for Tuple,, ;(x) is Tuple(x).

Any relation R between pairs of sets S; and S, can be

represented by its characteristic function R : B" x B” — B
where R(x, y) = 1 if and only if 25,0 =1, x5, (y)=1, and

the element of S; represented by x is in relation R with the

element of S, represented by y. A similar definition holds
for relations defined over more than two sets. For example,
we represent the state transition graph (STG) of an FSM by
the characteristic functions of two relations:

1) the output relation A, where input i, present state p
and output o are in A(i, p, 0) if there is an edge from p
with input/output label i/0, and

2. 3x(F) (Vx(F)) denotes the existential (universal) quantification of func-
tion F over variables x; = denotes Boolean implication; < denotes XNOR; —
denotes NOT.
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Fig. 7. The STG that corresponds to the 3TBDD F defined in Fig. 3.

2) the next state relation 7, where input i, present state p,
and next state n are in relation I(i, p, n) if there is an
edge from p to n with input label i.
PROPOSITION 8.1. Set equality, containment, and strict-
containment between two positional-sets x and y are ex-
pressed by:

=y =[] e v x2n=T]o =)
k=1 k=1

and (x D y)=(x2y) (x #y).

PROPOSITION 8.2. Given two sets of positional-sets, comple-
mentation, union, intersection can be performed on
them as logical operations (—, +, -) on their characteristic
functions.

DEFINITION 8.1. The substitution in the function F of variable
x; with variable y; is denoted by:

[ = il F = Fx1 s Xict, Yir Xiv1s - %)

and the substitution in the function F of a set of variables
X = X1X,...X, with another set of variables y = y1y...y, is
obtained simply by:
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Lo(p) = r(p)
k=0
do {

k=k+1
} until £k+1(p) = »Ck(p)

Lig1(p) = [n — pdp, i [Lr(p) - T (4, p,n)]

Fig. 8. Computation of array L.

Level(p,u) = 0
for (i =0;¢ < k;i4++) {

for (=147 <k;j++){

for each state Tuple, (p) € Li(p) {

for each state Tupley(u) € ([u — p]L;(p)) {
Level(p,u) = Level(p,u) + (Tupler(p) - Tuplei(u))

Fig. 9. Computation of the relation Level(p, u).

x> ylF=la = nlbe - vl = vl F
PROPOSITION 8.3. The maximal of a set y of subsets is the set

containing subsets in y not strictly contained by any other
subset in y, and can be computed as:

Maximal (y) = y(x)- 7 [(y Dx) Z(.‘/)]

8.1 Implicit Generation of Compatibles

It has been shown in Section 7 that, given a BDD minimiza-
tion problem, it is possible to generate a companion FSM
whose closed covers of compatibles correspond to closed
clique covers of the BDD, if:

e FSM compatibles that do not satisfy the L-closure are
discarded, and

¢ FSM compatible closure is replaced by E-closure and
T-closure.

Our starting point is the fully implicit algorithm for exact
state minimization reported in [10], to which we refer for a
complete description of the implicit computations. In the
sequel, we discuss the modifications needed to generate

closed clique covers of the BDD.

8.2 Implicit Computation of L-Closure

We compute as in [10] the set of compatibles ((c), where
((c) = 1 iff c is the positional set representing a compatible
of the companion FSM. When minimizing an FSM obtained
from an instance of BDD minimization, one must delete
from C(c) the compatibles c that are not closed with respect

to their I-class. The I-class, G(c), of a compatible c is the set
of nodes that are in some I-label of an edge between nodes

gjand g in ¢ with £(g;) < L(gp). If £(g;) < L(gy), then edge (g; &)

has the Llabel {g¢*, 87", ¢,}.

It is shown next how to capture the information on the
level of the nodes. By construction, an FSM obtained by
BDD minimization is represented by a direct acyclic STG
rooted at the unique reset state r; each node has two succes-
sors, except the terminal node that has a self-loop. Fig. 8
illustrates a procedure to build an array £L(p), that partitions
the FSM states based on their distance from the root: L(p) is
the set of states associated to the nodes having a distance k
from r. Starting from r and visiting in breadth-first order the
STG, one computes iteratively the array elements Ly(p),
using the transition relation TG, p, n). In fact, state n is a
successor of state p iff 3i I(i, p, n).

Using the informations stored in L(p), one defines the
order relation Level(p, u), for each couple of states (p, ) in
the FSM. States p and u are in relation Level(p, u) iff the dis-
tance of p from r is less than the distance of u from 7, i.e.
formally

Level(p, u) =1 = Ji Fj {i <)) | Lp) - L)} 1)

Fig. 9 illustrates the procedure to compute the global rela-
ton Le'zael(ia, u)

A compatible ¢ is pruned from the set of compatibles C(c) if:

1) ¢ contains states p and u that are in the order relation
Level(p, u), -
2) ¢ does not.contain all the successors of p.

Hence, the filtered set of compatibles is given by:
C(c) = C{c) -
£ {EIu[Tuplel(p) - Tupley (1) - (c 2 p) - (c 2 u) - Level(p, u)]
In[3i (i, p,n)-(c 2 )]} ' @)
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Max_Level(e,¢') =0
Cj(c) = C(C)
for (j=k—-1,=0;7-——-){

n=1

Cj(c) = Cj(c) — 3 MLj(e, )]

N N
ML (e, ¢y = Cie) - L) - Y (I -en))- [[Hch = [en - 3l - Ly ()]}
Maz_Level(e, ') = Maz_Level(e, ') + Mﬁnjz(lc, )

Fig. 10. Computation of the relation ((c).Max_Level(c, ).

8.3 Implicit Computation of E-Closure and T-Closure

In standard FSM minimization, one requires closure with
respect to implied sets. Given a compatible ¢, an implied set
under input 7 is the set of next states from the states in ¢
under i. Instead, in the case of BDD minimization, one must
compute the implied sets only from the states in ¢ of highest
" level. This requires a change in the computation of the rela-
tion of the implied classes F (c, i, n), which is used by the
following procedures:

1) the computation of primes,
2) the set up of the binate clauses in the covering table,
3) the construction of a reduced FSM.

The new computation for F (c, i, n) is described by the fol-
lowing equation:
Fe, i, n)=3p (3C[Cc) - Max_Level(c, ¢') - (¢ 2p)] - TG, p, n)}-
3
Subsets of states ¢ and ¢’ are in relation Max_Level(c, ¢'), iff ¢’
is the subset of ¢ that contains the states of ¢ of maximum
level, i.e., the states having the largest distance from r in the
STG of the FSM.

The computation of the relation ({c).Max_Level(c, ') is
based on the availability of L(p) and is summarized in Fig. 10.
For each level j starting from the maximum to the mini-
mum, a relation MLy(c, ¢’) is determined performing N bit-
wise conjunctions, where N is the number of states. The nth
element of ¢’ is 1 iff the nth element of ¢ is 1 and it has level
j- MLyc, ¢’) represents the pairs (¢, ¢) such that ¢ is a com-
patible that contains at least one state at level j and no state
at level greater than j, and ¢’ has exactly the states of ¢ of
level j. Before examining level j —1, Max_Level(c, ¢’) is up-
dated adding the elements in MLy(c, ¢), and the sets ¢ al-
ready in ML{c, ') are removed from C{(c). Notice that the
time complexity of the computation depends only linearly
from the explicit parameters N, number of states, and k,
number of levels in the STG representation.

8.4 Example

Fig. 7 illustrates the companion FSM obtained from the
3TBDD I shown in Fig. 3. The FSM has two pairs of incom-
patible states ({S3, S4}, {S,, S.}), while its set ((c) contains 575
compatibles. After filtering away by means of (2) the com-
patibles c that are not closed with respect to their I-class, 32
sets of compatibles are left:

{Sf}/ {Sa}/ {So/ Sf}/ {Sz}/ {SZI Sf}/ {Sx}r {er Sz}/ {Sx/ SZ/ Sf}/ {S)cl Su}/

{Sw S 1Sy Sor Sgh, 1S5}, (Ss, S, (S5, Sy S} S5, Si S S

{Ss, Sur Sols 1S5, Sy S, (S5, Sy Sor Sg, {4l {4, S5}, {S3),

{S3/ Sv S}, {S3 Sy S, S {Sa SshiSa S5 Sy Sabs

{S3, S5, Sur 5oy St ASah (S}, (51, SahASw S Ssb, {Sols {Sor S, Sal-

Using the computation of the implied classes ¥ (c, i, ) of
(3), the following eight primes are identified from the pre-
vious 32 compatibles:

{SO}/ {SOI Sl/ SZ}/ {S]}r {S]/ S4/ SS}/ {SZ}/ {531 551 Sx/ Sz/ S }/ {54}1
[85/ le So/ S }

Among the eight primes, there are two essential primes:
{53/ SSI le Sz/ Sf}/ {SSI er So/ Sf}

and six nonessential primes:

{Sol, {So Sy, Sab, {51}, (S1, Sa, S5}, {Sa), {S4)-

After solving the binate covering problem, two nonessential
primes are chosen:

{S[J/ Sl/ Sz}/ {Sll S4r 55}
Hence, the final reduced FSM has the following four states:

Ry < {Sp, 51, So}

Ry < {51, S4, Ss}

Rz &~ {53/ 55/ er Szr Sf}

Ro — {SSI er Sor Sf}
and is described by the following state transition table:

ORR, -

1R\R; -

ORR, -

1RyR, -

-RR, O

-R,R, 1
This state transition table induces the BDD R shown on the
right side of Fig. 6. R is an exact solution of the BDD mini-
mization problem.

9 RESULTS

Starting from the program I1SM for implicit state minimiza-
tion [10], we developed IMAGEM, a new program based on
the theory described in this paper for exact BDD minimiza-
tion. In particular, we transformed the implicit algorithm
for exact state minimization in a new algorithm for the
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TABLE 1
RESULTS ON MACHINE LEARNING PROBLEMS

# 7#* # # # IMAGEM

example | orig. compat. filtered prime red. | heuristic | CPU time

states compat. | compat. | states (sec)

dnfa © 64 | 2.435821e+12 1332186 89 14 16 517.29

dnfb 36 | 4.853883¢408 2987 94 6 12 11.85

dnfe 40 | 2.291224e+08 2613 102 10 15 12.94

dnfd 93 | 1.137739%e+20 | 9.517899¢4-08 - - 23 timeout

dnfe 63 | 2.102303e+13 141179 509 6 12 217.29

dnff 62 | 2.184367e+11 92027 357 15 22 151.8

xor3 9 179 14 7 6 6 0.1

xord 17 14975 118 13 6 6 0.43

xorb 24 608255 267 36 9 10 1.37

xorf 40 | 3.355914e+08 1329 170 13 20 13.98

xor7 57 | 2.791115e+11 3076 640 15 31 88.16

xor8 94 | 1.539147e+17 164929 21830 17 45 9041.11

ex.paper 10 575 32 8 4 4 0.17

TABLE 2
RESULTS ON PROBLEMS FROM ESPRESSO BENCHMARK SUITE

i # # # # IMAGEM
example orig. compat. filtered prime red. | heuristic | CPU time
states compat. | compat. | states (sec)
alul 95 | 1.025649e+4-21 841993 1204 6 6 7409.97
brl T4 2.99581e+18 799173 329 6 11 1313.91
br2 51 | 5.937363e+14 53687 78 3 8 14.59
clpl 50 | 1.467671e-+13 7559 | 39 3 13 12.39
de2 46 | 8.277148e+10 8831 98 8 12 57.66
exp 54 | 2.695432e+11 10638 25 3 3 31.34
exps 71 1.8345e+10 3810 125 43 44 44.79
in0 151 | 2.622416e+25 1680740 1323 42 44 18201.76
in3 173 | 5.060229¢+39 587880 12 9 14 1755.21
inc 35 | 1.119744e4-07 364 26 12 13 3.84
intb 189 | 4.884137e+46 | 3.891123e+14 - - 69 spaceout
markl 71 | 7.487812e+18 8049 35 4 5 41
newapla 52 1.24299e+12 3252 33 10 11 41.5
newaplal 57 | 8.766887e+14 8733 63 6 6 141.66
newapla2 19 93311 137 6 5 5 0.49
newbyte 16 20735 127 9 5 5 0.41
newcond 165 | 3.825623e+31 | 7.484552e+12 - - 54 | spaceout
newcpla2 39 | 3.396557e+08 477 68 10 21 5.72
newcwp 16 10367 106 10 6 11 0.39
newtpla 94 | 1.265561e+4-23 411525 148" 7 23 469.14
newtplal 39 6.912e+09 1441 31 4 5 4.45
newtpla2 26 3149279 158 9 9 9 0.9
newxcplal 39 | 4.470682e+09 1473 35 5 10 5.13
p&2 16 15551 102 10 7 7 0.4
prom1 65 | 5.189184e+09 382 77 50 50 30.04
prom2 33 | 2.17728e+08 446 38 12 12 3.33
sex 28 | 1.679616e+07 419 16 5 5 1.62
spla 155 | 1.647427e+39 | 1.401835e+12 - - 8 spaceout
squn 41 | 1.05336e+07 173 43 19 19 9.13
t4 68 | 5.108787e+14 31775 157 9 11 89.98
vg2 150 | 3.655064e+36 | 4.038678e+07 - - 14 timeout
wim ‘14 4319 82 8 6 6 0.26

implicit computation of a minimum closed cover, ‘as de-
scribed in Section 8.

To ‘experimentally evaluate the algorithms presented in
this paper, we assembled two sets of problems: The first set

derives directly from a machine learning application and
the second set was obtained from a logic synthesis bench-
mark. In all the problems, the original ordering specified
for the variables was the ordering used.
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For the first set of problems, 12 completely specified
Boolean functions f; were used as the starting point. For
each of these functions, a randomly selected set of min-
terms was designated as the care set, resulting in a set of
incompletely specified Boolean functions g;. The original
objective was to identify the set of problems for which it is
possible to recover exactly the original functions f; from the
incompletely specified functions g; thereby characterizing
the conditions under which it is possible to infer the origi-
nal function from a training set [14]. For the purposes of
this work, the functions g; are used solely as a set of incom-
pletely specified functions. An advantage that exists for this
set is that upper bounds on the size of the solution are well
defined because the BDD sizes for the f; are known. Under
certain conditions, these upper bounds tend to become
tight, with high probability, as the size of the problem in-
creases, providing a welcome check for the results obtained.

The second set of problems was obtained by selecting a
subset of the problems that are distributed with Espresso [3],
a well-known two-level minimizer. More specifically, we
included in this set of problems the functions that are the
first output from each of the PLAs that are included in the
industry subset of the Espresso benchmark suite. From this
set, we eliminated all the functions that have a null don’t
care set, since, for these functions, the problem is trivial.

Table 1 summarizes the results obtained from running the set
of machine learning problems and Table 2 the ones from the
problems derived from the Espresso benchmark suite. The last
entry in Table 1 is denoted ex.paper and simply refers to the case
that has been presented in the paper to illustrate the theory.

For each example of a 3TBDD, the number of states of
the companion FSM is reported in the column denoted “#
orig. states.” This number is always equal to the number of
nodes of the 3TBDD plus one because a new node is added
to the STG, as explained in Section 7. The following two
columns report the number of compatibles of the FSM (i.e.,
the cardinality of the set ((c)) and the number of compati-
bles after filtering as per Section 8.2 (i.e., the ones which are
closed with respect to their I-class). This step reduces the
number of compatibles of many orders of magnitude.

Then, after the number of primes, in column “# red.
states,” we report the number of states of the reduced FSM.
This number coincides with the number of nodes of the
final BDD and represents the exact solution of the BDD
minimization problem. Instead, the column denoted with
the label “heuristic” presents the solutions obtained using
the restrict operator [7], a well-known heuristic algorithm
for BDD minimization; equal solutions are obtained using
the constrain operator [6] (also known as generalized co-
factor [19]).> Other proposed heuristic algorithms [17] were
uninteresting for comparison purposes, since, for these
problems, they always obtained results equal or worse than
results obtained by the restrict operator. Therefore, IMAGEM
is the first exact algorithm that helps to evaluate the quality
of the heuristics for BDD minimization on an interesting set
of examples.

Moreover, as we discussed in Section 1, there are specific
applications, as for instance inductive learning, where, from

3. Notice that the sizes of the BDD obtained by the heuristic algorithms
have been measured without considering complemented edges.
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one side, BDDs are used as very effective representation
scheme, but, on the other side, heuristic algorithms return
unsatisfactory solutions. The results reported in Table 1
show that IMAGEM returns the exact solution for a class of
nontrivial problems.

The last column contains the time spent by IMAGEM to
find the solution: All run times are reported in CPU sec-
onds on a DEC Alpha (300 Mhz) with 2Gb of memory. For
all experiments, “timeout” has been set at 21,600 seconds of
CPU time and “spaceout” at 2Gb of memory.

10 CONCLUSIONS

This paper addresses the problem of binary decision dia-
gram (BDD) minimization in the presence of don't care sets.
Specifically, given an incompletely specified function g and
a fixed ordering of the variables, we propose an exact algo-
rithm for selecting f such that f is a cover for g and the bi-
nary decision diagram for f is of minimum size. We show
that the minimum-sized binary decision diagram compati-
ble with the specification can be found by solving a prob-
lem that is very similar to the problem of reducing an
ISFSM. The approach described is the only known exact
algorithm for this problem not based on the enumeration of
the assignments to the points in the don’t care set.

We show that this minimization problem can be formu-
lated as a binate covering problem and solved using im-
plicit enumeration techniques. We have implemented this
algorithm and performed experiments, by means of which,
exact solutions for an interesting benchmark set were com-
puted. In particular, we could solve exactly some nontrivial
examples from the learning literature, where quality of the
solution is of paramount importance.

The current bottleneck of our implicit computation is the
step from filtered compatibles to prime compatibles. It
would be interesting to study new techniques for the im-
plicit computation of prime compatibles or of a superset of
them in order to enlarge the set of examples that can be
solved exactly.
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