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ABSTRACT
Heterogeneity is a challenge to overcome in the design of
embedded systems. We presented in the recent past a theo-
ry for the composition of heterogeneous components based
on tagged systems, a behavioral (denotational) framework.
in this paper, we present an operational view of tagged
systems, where we focus on tag machines as mathematical
artifacts that act as finitary generators of tagged systems.
Properties of tag machines are investigated. A fundamen-
tal theorem on homogeneous compositionality is given as a
first step towards an operational theory of heterogeneous
systems.

Categories and Subject Descriptors: C.3.3 [Special-
purpose and application-based systems]: Real-time and em-
bedded systems.

General Terms: Theory.

Keywords: Heterogeneous reactive systems, tagged sys-
tems, distributed deployment, GALS.

1. INTRODUCTION AND MOTIVATION
Dealing with heterogeneity is a fundamental issue in the

agenda for embedded system research. In former papers [2]
and [3], we addressed the lack of an all-encompassing math-
ematical framework for reasoning about heterogeneous com-
position. We proposed a mathematical framework for mod-
eling heterogeneous reactive systems that provides a solid
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foundation to handle formally communication and coordi-
nation among heterogeneous components. This was done
by developing a compositional behavioral theory of heteroge-
neous tagged systems. Logical time, physical time of various
kinds, causalities, scheduling constraints, the simple local
ordering of events of each individual signal, as well as their
combination, can be captured by this formalism that was
inspired by [6]. This made it possible to study formally how
to deploy a specification into an implementation with dif-
ferent MoCC (Model of Computation and Communication),
often a distributed architecture, so that their behaviors are
equivalent. The theory was denotational. It dealt only with
behaviors captured by “traces”; its value was mostly in pro-
viding a mathematical machinery to prove theorems about
the correctness of particular methods and to develop solid
foundations to design.

Automatic verification or synthesis techniques require fini-
tary models or machines that act as generators of infinite
traces. Examples of finitary models are finite state machines
for synchronous systems. In this paper, a first step is made
towards the development of a machine-based theory of het-
erogeneous systems based on tag machines, finite represen-
tations of tagged systems. Tag machines are, to the best of
our knowledge, new mathematical objects and the analysis
of their properties is far from trivial. We begin by studying
in detail the map that associates each tag machine with the
tagged system collecting its behaviors or traces. Then, we
present a few examples on how to build tag machines for
several concurrency models: asynchronous, synchronous re-
active, Time-Triggered Architectures (TTA) and causality.
Finally, we deal with the fundamental issue of composition
of tag machines.

While our ultimate goal is to develop a theory of heteroge-
neous composition, we limit ourselves here to present homo-
geneous compositions. Even for this simpler case, there are
fundamental (and non trivial) issues to address: the most
important one is to relate parallel composition of tagged sys-
tems to an appropriate notion of product of tag machines.
It should indeed not be a surprise that this can be a prob-
lem. It is well known for example that asynchronous system-
s can be generated by means of “partial order automata”,
i.e., automata whose transitions are labeled by partial or-
ders; closely related are High level Message Sequence Charts
(HMSC) [4, 7], that are automata whose transitions are la-
beled with finite scenarios. For both cases, the product of
the corresponding automata does not generate the parallel
composition of associated asynchronous systems. This diffi-
culty is related to undecidability problems for those models.



Regarding this problem of relating parallel composition
of tagged systems and products of tag machines, we show
that while the product machine is always contained in the
parallel composition of the component machines, only under
particular assumptions (self-synchrony) on the machines to
be composed, the converse is true. This result is indeed of
interest even for already known models that are particular
cases of tag machines (e.g., the above examples of partial or-
der automata or HMSC, but also for performance evaluation
type of models). The ideas supporting the fundamental the-
orems presented here are borrowed from the work [8, 9] on
correct-by-construction deployment of synchronous designs
on Globally Asynchronous Locally Synchronous (GALS) ar-
chitectures; see also interface automata proposed in [1]. De-
cidability problems underpinning the problem of tag ma-
chines product not matching tagged systems parallel com-
position have been investigated, e.g., , in [7] and [4].

The paper is organized as follows: In Section 2, we recall
and summarize our behavioral theory of tagged systems. In
Section 3 we introduce the notion of tag machines and we
present the relation between tag machines and tagged sys-
tems. In Section 4 we deal with the homogeneous composi-
tion of tag machines. We introduce the definition of product
of tag machines and explore the conditions under which the
product of tag machines is equivalent to their parallel com-
position.

2. BACKGROUND ON TAGGED SYSTEMS
Throughout this paper, N = {1, 2, . . . } denotes the set of

positive integers; N is equipped with its usual total order ≤.
X 7→ Y denotes the set of all partial functions from X to
Y . If (X,≤X) and (Y,≤Y ) are partial orders, f ∈ X 7→ Y is
called increasing if f(≤X) ⊆≤Y , i.e., ∀x, x′ ∈ X : x ≤X x′

⇒ f(x) ≤Y f(x′).

2.1 Tag structures

Definition 1 (tag structure). A tag structure is a
triple (T ,≤,v), where T is a set of tags, and ≤ and v are
two partial orders satisfying the following property:

∀τ, τ ′ ∈ T : τ v τ ′ ⇒ τ ≤ τ ′. (1)

Partial order ≤ relates tags seen as time stamps, whereas
partial order v, called the unification order, defines how to
unify tags and is essential to express coordination among
events. Write

τ1 ./ τ2

if τ1 and τ2 possess a common upper bound in the unifi-
cation order, and denote by τ1 t τ2 the least upper bound.
Call ./ and t the unification relation and unification map,
respectively.

Condition (1) is equivalently rephrased as follows: if τ1 ./ τ2

is a unifiable pair, then τi ≤ (τ1tτ2), for i = 1, 2. Therefore,
Condition (1) expresses that unification is causal with re-
spect to partial order of time stamps: the result of the unifi-
cation cannot occur prior in time than its constituents. Con-
dition (1) has the following consequence: if τ1 ≤ τ ′

1, τ2 ≤ τ ′
2,

τ1 ./ τ2, and τ ′
1 ./ τ ′

2 together hold, then (τ1tτ2) ≤ (τ ′
1tτ ′

2)
must also hold. This will ensure that the system obtained
via parallel composition preserves the agreed order of its
components, see below.

Example 1 (tag structures).

1. Take T = {.}, the singleton set, with ≤=v being the triv-
ial order. As we shall see, this trivial tag structure will be
used in modeling asynchrony, we denote it by Ttriv.

2. Take T = N, with ≤ being the usual (total) order, and v
being the flat order. Therefore, τ1 ./ τ2 ⇔ τ1 = τ2, thus tag
unification is by superimposition, like in the original tagged
systems model by Lee and Sangiovanni-Vincentelli [6]. This
tag structure will be used in modeling synchrony (tags are
reaction indices), we denote it by Tsynch.

3. Take T = R+, with ≤ being the usual (total) order, and
v being the flat order. Therefore, τ1 ./ τ2 ⇔ τ1 = τ2.
This tag structure will be used in modeling time-triggered
systems (tags are dates from real-time), we denote it by
Ttta.

4. Take T = R+, with ≤=v being the usual (total) order.
Therefore, τ1 ./ τ2 always holds and τ1 t τ2 = max(τ1, τ2).
This tag structure will be used in capturing execution times
(tags will indicate earliest possible dates for execution of
events), we denote it by Twcet.

5. Let V be some underlying set of variables, and set No =def

N∪{−∞}. Define a dependency to be a map: δ : V 7→ No.
Take for T the set of all dependencies, with ≤=v are such
that δ ≤ δ′ iff ∀v : δ(v) ≤ δ′(v). Note that δ t δ′ =
max(δ, δ′). This tag structure will be used in modeling
dependencies or scheduling: δ(v) = n indicates that “tag δ
cannot occur prior the n-th occurrence of variable v” (we
take the convention that n = −∞ indicates the absence of
dependency), see Example 2 below for a formal definition.
We denote the above tag structure of dependencies by Tdep.

In Examples 1.1 – 1.3, tags can synchronize iff they are equal.
This is the synchronization mechanism used in most formalisms
dealing with functional aspects. In contrast, tags can always syn-
chronize in Examples 1.4 and 1.5, but their unification function
is non trivial. The reader may get the impression that this sec-
ond class is rather dedicated to performance evaluation. This is,
however, wrong: Tdep belongs to this second class and is used
in composing systems while taking causality into account—this
is not related to performance evaluation but is part of functional
specification. �
2.2 Tagged systems

Let V be an underlying set of variables with domain D.
For V ⊂ V finite, a V -behavior, or simply behavior, is an
element:

σ ∈ V 7→ N 7→ (T × D), (2)

meaning that, for each v ∈ V , the n-th occurrence of v in
behavior σ has tag τ ∈ T and value x ∈ D. For v a variable,
the map σ(v) ∈ N 7→ (T ×D) is called a signal. For σ a be-
havior, an event of σ is a tuple (v, n, τ, x) ∈ V ×N×T ×D
such that σ(v)(n) = (τ, x). Thus we can regard behav-
iors as sets of events. Call a clock any increasing function
(N,≤) 7→ (T ,≤). We require that, for each v ∈ V , the first
projection of the map σ(v) (it is a map N 7→ T ) is a clock
and we call it the clock of v in σ. Thus, the clock of v yields
the tags of the successive events of signal σ(v).

Definition 2 (tagged systems). A tagged system is
a triple P = (V, T , Σ), where V is a finite set of variables,
T is a tag structure, and Σ a set of V -behaviors.

Consider two tagged systems Pi = (Vi, T , Σi), i ∈ {1, 2} with
identical tag structure T . Let t be the unification function
of T . For two events ei = (vi, ni, τi, xi), i ∈ {1, 2}:

write e1 ./ e2 iff v1 = v2, n1 = n2, τ1 ./ τ2, x1 = x2 = x
for e1 ./ e2, define e1 t e2 = (v, n, τ1 t τ2, x)



The unification map t and relation ./ extend point-wise to
behaviors. Then, for σi, i ∈ {1, 2} a Vi-behavior, define, by
abuse of notation:

σ1./σ2 iff σ1|V1∩V2 ./ σ2|V1∩V2 ,

and then

σ1tσ2 =def

�
σ1|V1∩V2 t σ2|V1∩V2

�
∪ σ1|V \V2 ∪ σ2|V2\V1 ,

where σ|W denotes the restriction of behavior σ to the vari-
ables of W . Finally, for Σ1 and Σ2 two sets of behaviors,
define their conjunction

Σ1 ∧ Σ2 =def {σ1tσ2 | σi ∈ Σi and σ1./σ2} (3)

The homogeneous parallel composition of P1 and P2 is then
defined as follows:

P1 ‖P2 =def (V1 ∪ V2, T , Σ1 ∧ Σ2) (4)

The homogeneous parallel composition is associative and
commutative. For technical reasons, we will also need an
intermediate form of parallel composition that we call gos-
sip parallel composition:

P1 ‖P2 =def (V1 ∪ V2, T , Σ1∧Σ2), where (5)

Σ1∧Σ2 =def {(σ1, σ2) | σi ∈ Σi and σ1./σ2}
The reason for considering (5) is that P1 ‖P2 comes up with

natural projections π1 and π2 defined by πi(σ1, σ2) =def σi.
In contrast, no projection can be associated with ‖ un-
less tag unification is by superimposition (see Example 1.4).
Clearly, P1 ‖P2 can be recovered from its gossip variant: just
replace each pair (σ1, σ2) by σ1 t σ2.

Example 2 (tagged systems). The reader is referred to [2]
for a more detailed discussion.

1. We first consider tagged systems with Ttriv as tag struc-
ture, see Example 1.1. Their behaviors have the form σ :
V 7→ (N 7→ ({.} × D). Thus, all events have identical
tag. Therefore, in this model, there is no synchronization
constraint relating events associated to different variables.
This is a suitable model for communication via unbounded
fifos, i.e., for asynchrony.

Consider two identical asynchronous tagged systems P = Q
having two variables, b of boolean type with values in {f,t}
and x of integer type, and a single behavior given by:

b : t f t f t f . . .
x : 1 1 1 . . .

Using our notations, this single behavior is formally given
by:

σ(b)(2n − 1) = t, σ(b)(2n) = f, and σ(x)(n) = 1.

Of course, since, for tag structure Ttriv, homogeneous paral-
lel composition is by intersection, we have P ‖Q = P = Q.

2. Consider the tag structure Tsynch introduced in Example 1.2.
Tsynch defines synchronous systems. Indeed, provided that
all clocks are strictly increasing, the tag index set Tsynch

organizes behaviors into successive reactions as explained
next. Call reaction a maximal set of events of σ with iden-
tical tag. Since clocks are strictly increasing, no two events
of the same reaction can have the same variable. Regard a
behavior as a sequence of reactions: σ = σ1, σ2, . . . , with
tags τ1, τ2, · · · ∈ Tsynch. Thus Tsynch provides a global,
logical time basis: this feature characterizes synchrony.

Consider two synchronous tagged systems Ps and Qs hav-
ing two variables, b of boolean type with values in {f, t},
and x of integer type. Assume that each system possesses
only a single behavior, equal to:

Ps :
b : t f t f t f . . .
x : 1 1 1 . . .

Qs :
b : t f t f t f . . .
x : 1 1 1 . . .

In the above description, each behavior consists of a se-
quence of successive reactions, separated by vertical bars.
Each reaction consists of an assignment of values to a subset
of the variables; a blank indicates the absence of the consid-
ered variable in the considered reaction. These behaviors
can be expressed formally in our framework as follows:

Ps :

8><
>:

σ(b)(2n − 1) = (2n − 1, t)
σ(b)(2n) = (2n, f)

σ(x)(n) = (2n − 1, 1)

Qs :

8><
>:

σ(b)(2n − 1) = (2n − 1,t)
σ(b)(2n) = (2n, f)

σ(x)(n) = (2n, 1)

Now, the synchronous parallel composition of Ps and Qs,
defined by intersection: Ps ‖Qs =def Ps ∩ Qs, is empty.
The reason is that Ps and Qs disagree on where to put
absences for the variable x. Formally, they disagree on
their respective tags.

3. Consider the tag structure Tdep associated with dependen-
cies in Example 1.5. Consider two tagged systems Pδ and
Qδ having two variables, b and x, as above. Assume that
each system possesses only a single behavior, equal to:

Pδ :
b : t ↗f t ↗f t ↗f . . .

↓ ↗f ↓ ↗f ↓ ↗f . . .
x : 1 1 1 . . .

Qδ :
b : ↗t f ↗t f ↗t f . . .

↗ t ↓ ↗t ↓ ↗t ↓ . . .
x : 1 1 1 . . .

The meaning of the directed graph is, for example and with
reference to Pδ, to state that “the 2nd occurrence of x de-
pends on the 3rd occurrence of b”. For this model, an event
has the form e = (v, n, δ, x), with the following interpreta-
tion: event e has v as associated variable, it is ranked n
among the events with variable v, and it depends on the
event of variable w that is ranked δ(w). The special case
δ(w) = −∞ is interpreted as the absence of dependency.
We take the convention that, for e = (v, n, δ, x) an event,
δ(v) = n− 1. Thus, on σ(v), the set of dependencies repro-
duces the ranking (and corresponding branches are implicit
in the above diagram). Corresponding formal descriptions
therefore are:

Pδ :

8><
>:

σ(b)(2n − 1) = ((x,−∞),t)
σ(b)(2n) = ((x, n), f)

σ(x)(n) = ((b, 2n − 1), 1)

Qδ :

8><
>:

σ(b)(2n − 1) = ((x, n − 1), t)
σ(b)(2n) = ((x,−∞), f)

σ(x)(n) = ((b, 2n), 1)

The parallel composition Pδ ‖Qδ is expected to yield:

Pδ ‖Qδ :
b : ↗t f ↗t f ↗t f . . .

↗ t l ↗t l ↗t l . . .
x : 1 1 1 . . .

The reason for the double causality between x and f-occurrences
of b is that the n-th x causes the (2n)-th b (i.e. the n-th
f-occurrence of b) in Pδ whereas the (2n)-th b causes the
n-th x in Qδ. Formally, by the max rule for composing



dependency tags (see Example 1.5), the unique behavior of
Pδ ‖Qδ is written:

Pδ ‖Qδ :

8><
>:

σ(b)(2n − 1) = ((x, n − 1), t)
σ(b)(2n) = ((x, n), f)
σ(x)(n) = ((b, 2n − 1), 1)
σ(x)(n) = ((b, 2n), 1)

In conclusion, the single behavior of Pδ ‖Qδ possesses causal-
ity loops and may be considered pathological and thus “re-
jected”. Note that, in our model, dependencies induce a
preorder, not a partial order. This should not be a surprise
since preorders compose, whereas partial orders don’t as
shown by the above example.

�
3. TAG MACHINES

In this section, we introduce tag machines as the funda-
mental tool to develop an operational theory of heteroge-
neous systems. In a first part, we study the modeling of the
“progress of tags” by means of heaps of tag pieces. Heaps
of pieces were originally introduced in [10] as a model for
Mazurkiewicz trace languages. They were further used in
[5] for performance evaluation studies. Here we adapt this
notion to the more general context of tags. Then, in a sec-
ond part, we introduce tag machines by taking values into
account.

3.1 Heaps of tag pieces

Definition 3 (algebraic tag structure). A tag struc-
ture (T ,≤,v) is called algebraic if T is equipped with an in-
ternal binary operation written • and called concatenation,
such that:

1. (T , • ) is a monoid with unit 1;

2. Concatenation • is compatible with both orders ≤ and
v :

τ1 ≤ τ ′
1 and τ2 ≤ τ ′

2 ⇒ (τ1 • τ2) ≤ (τ ′
1 • τ ′

2).

τ1 v τ ′
1 and τ2 v τ ′

2 ⇒ (τ1 • τ2) v (τ ′
1 • τ ′

2).

Algebraic tag structures are generically denoted by bT ,
where T refers to the underlying set of tags.

Definition 4 (tag pieces). Let V be a finite subset of

V. A V -tag piece (or simply tag piece) is a tuple (bT , V, µ),

where bT is an algebraic tag structure, V is a finite set of
variables, and µ is a matrix µ : V × V 7→ T .

By abuse of language, the considered piece is denoted by
µ. Pieces operate on vectors of tags as follows. Let

~τ = (τv)v∈V

be a vector of tags belonging to T and indexed by the set V
of variables. The result of applying µ to ~τ is another vector
of tags, written ~τ • µ, whose v-th coordinate (~τ • µ)v is given
by

(~τ • µ)v =def
vmax

w∈V
(τw • µwv) (6)

where vmax denotes the maximum with respect to unifi-
cation order v. Note that the map (~τ , µ) 7→ ~τ • µ is partial,

since the maximum vmax is not always defined. For M
a finite alphabet of tag pieces, concatenation operation (6)
allows to define the Kleene closure M∗, we call it the heap
of tag pieces generated by M .

Example 3 (heaps of tag pieces). We detail the generic
pieces from Example 1 and show how they operate. This is illus-
trated in Fig. 1.

1. Take Ttriv = {.} equipped with the trivial binary operation.
Pieces do not increment tags—we regard them as having
“zero-thickness”, as shown in Fig. 1, first diagram. Pieces
are infinitely flexible and fall down to adjust as shown.

2. Take (Tsynch, +). Since v is the flat order, for (6) to be de-
fined, τw • µwv must not depend on w. For this property to
be invariant when extending heaps, we must have that ~τ it-
self must have all its component equal and vmaxw∈V µwv

must not depend on v. Therefore, there is actually a unique
form for synchronous pieces, namely:

if v = w then µsynch
vw = 1 else µsynch

vw = 0

The integer tag is incremented by 1 for each new piece, i.e.,
pieces model reactions. The presence/absence of a variable
in a reaction is shown in Fig. 1 by a grey/white box, for
the considered variable. It will be formally encoded by the
concept of “support” we introduce below in Definition 5.

3. Take (Ttta, +). The same comments hold, and the natural
class for tta pieces is

if v = w then µtta
wv = δ else µtta

wv = 0,

where δ is some positive increment of physical time.

4. Take (Twcet, +). Since v=≤ in Twcet, operation (6) is now
a total function and no condition is required on pieces. Op-
eration (6) instantiates as

(~τ • µ)v =def max
w∈V

(τw + µwv)

i.e., we get the max-plus linear rule for performance evalu-
ation.

5. Take (Tdep, +), where the + is meant component-wise, for
each variable v ∈ V ; then, augment No with 0 so that the
dependency defined by ∀v, 1(v) = 0 is the unit of Tdep.
Coordinates of ~τ as well as entries of the matrix µ are de-
pendencies, i.e., maps V 3 v 7→ No. Since pieces represent
tag increments, we first specialize matrices µ as follows:

∀w, v, ∀u ⇒ µwv(u) ∈ {ε, 0, 1}, (7)

where ε =def −∞ encodes the absence of dependency. The
generic concatenation rule (6) specializes as

∀u ∈ V : (~τ • µ)v(u) = max
w∈V

(τw(u) + µwv(u)) (8)

In (8), µwv(u) is to be interpreted as “the increment brought
by µ, from w to v, regarding the dependency on u”. In
order for µ to model increments of dependencies as graph-
ically specified such as in Fig. 1 and Fig. 3, µ should be
taken as follows (symbol ε denotes −∞ and notation “x/y
if a/b” is a short hand to mean “x holds if a holds and y
holds if b holds”):

• µvv(v) = 0/1 if v has no event/an event in µ.

• For w, v, u not all identical, µwv(u) = ε/0 if there is
no dependency/if there is a dependency from w to v
in µ. Note that, subject to the constraint that w, v, u
are not all identical, µwv(u) does not depend on u.

See Fig. 1 for an illustration of this. The piece shown in this
figure above the downward arrows is now detailed. We use
the following conventions: u denotes an arbitrary variable
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Figure 1: Heaps of tag pieces corresponding to Ttriv, Tsynch, and Tdep, respectively. The downward arrows
indicate how pieces “fall” to grow heaps. The piece on the top of each heap, i.e., the last piece that has
fallen, is shown also above the arrows. The numbers 1, 2, 3 on the third diagram refer to index set No, see
Example 3.5. The reader is referred to Fig. 3 at the end for a detailed construction of the third heap.

and ā denotes b or c, and similarly for b̄ and c̄. With these
conventions, applying the above rules for chosing µ yields:

µaa(a/ā) = 0/ε , µab(u) = 0 , µac(u) = ε
µba(u) = ε , µbb(b/b̄) = 1/0 , µbc(u) = 0
µca(u) = ε , µcb(u) = 0 , µcc(c/c̄) = 1/0

(9)

Regarding the height of the heap, we have the following
formulas, where τa, etc., are the coordinates of ~τ :

τa(a) = 3 , τa(b) = 1 , τa(c) = ε
τb(a) = ε , τb(b) = 2 , τb(c) = ε
τc(a) = ε , τc(b) = 1 , τc(c) = 3

and therefore rule (8) with µ as in (9) yields ~τ ′ = ~τ • µ such
that

τ ′
a(a) = 3 , τ ′

a(b) = 1 , τ ′
a(c) = ε

τ ′
b(a) = 3 , τ ′

b(b) = 3 , τ ′
b(c) = 3

τ ′
c(a) = ε , τ ′

c(b) = 2 , τ ′
c(c) = 4

As an example of this calculus, we detail the calculation
of the term τ ′

c(b). To apply (8), we compare the results of
the right hand side of this formula, for the three choices
w = a, b, c:

w = a : τa(b) = 1 , µac(b) = ε yields ε
w = b : τb(b) = 2 , µbc(b) = 0 yields 2
w = c : τc(b) = 1 , µcc(b) = 0 yields 1

which yields τ ′
c(b) = 2, as expected. Rule (8) indeed imple-

ments the concatenation of basic Message Sequence Charts
(MSC).

�
So far we have considered heaps of tag pieces without at-
tached events and values. We now introduce pieces that
carry events with values attached to them, we call them tag
machines.

3.2 Defining tag machines

Example 4 (tag machines). Consider Example 3.5 and the
third diagram of Fig. 1 where the case of heaps of pieces modeling
dependencies is discussed. The falling piece shown in this figure
adds two events to the pre-existing behavior, for the two variables
b and c, respectively. To this end, the piece of formula (9) must

be enriched as follows (we have removed the first column of µ as
a is not an event of this piece):

µab = 0 , µac = ε
µbb = 1 , µbc = 0
µcb = 0 , µcc = 1
xb , xc

(10)

where xb ∈ D and xc ∈ D are the values carried by the events
associated with variables b and c, respectively. It remains to for-
malize how these new events are concatenated to the pre-existing
behavior in a way consistent with the third diagram of Fig. 1. �

Definition 5 (tag machine). A (V, T )-labeled tag piece
is a pair � = (µ, ν), where µ is a V -tag piece with algebraic

tag structure bT and ν ∈ V 7→ D. The domain of partial
function ν is denoted by V� and is called the support of �.
If v ∈ V� we say that � has an event for v. The set of all
(V, T )-labeled tag pieces is denoted by M(V, T ).

A tag machine is a finite automaton whose transitions are
labeled by labeled tag pieces. Formally, a tag machine is a

tuple A = (S, s0, V, bT ,M, ∆), where:

• S is a finite set of states and s0 ∈ S is the initial state;

• V is a finite set of variables with finite domain D;

• bT is an algebraic tag structure;

• M is a finite set of (V, T )-labeled tag pieces;

• ∆ ⊆ S ×M × S is a transition relation.

Write s
�

>s′ to indicate that (s,�, s′) ∈ ∆, and s
�

> if

s
�

>s′ holds for some s′.

Whenever convenient, SA, VA, etc, will refer to the different
components of the tuple building tag machine A.

Regarding M as a finite alphabet yields the language
L(A) ⊆ M∗, where M∗ denotes the free monoid over M.
For w = �1 • . . . •�K ∈ L(A), write s w >s′ if

s
�1 >s1

�2 >s2 . . . sK−1
�K >s′



Concatenating the pieces of a word w ∈ L(A) yields a be-
havior in the form of a “heap of labeled tag pieces” σ(w)
that we need to define now.

Let σ ∈ V 7→ N 7→ (T ×D) be a finite behavior, meaning
that, for each v ∈ V , the map σ(v) ∈ N 7→ (T × D) has
{1, . . . , `v} as a domain, for some finite integer `v. For σ a
finite behavior, let the following map:

tail(σ) : V 3 v 7→ σ(v, `v) ∈ (T × D)

be the tail of σ. Then, for ~� ∈ V 7→ T × D and � = (µ, ν)
a labeled tag piece, decompose ~� = (~τ, ν′) and set

~� •� =def (~τ • µ, ν) (11)

and, finally:

σ •�(v, n) =def

8<
:

σ(v, n) if n ≤ `v

[tail(σ) •�] (v) if n = `v + 1
undefined if n > `v + 1

(12)

Observe that � adds an event for v in σ •� iff � has an
event for v. The set of all so obtained behaviors is denoted
by ΣA. The map

L(A) 3 w 7→ �(w) ∈ ΣA (13)

induces a tag system

PA = (V, T , ΣA). (14)

4. HOMOGENEOUS COMPOSITION OF TAG
MACHINES

In this paper, we restrict our analysis of composition of
tag machines to the parallel homogeneous case, i.e., we con-
sider compositions of tag machines that have the same tag
structure. We are interested in studying under which condi-
tions the parallel composition defined in Equation 4 can be
computed as the product of tag machines.

For � = (µ, ν) and �
′ = (µ′, ν′) two labeled tag pieces,

set U =def V ∪ V ′ and W =def V ∩ V ′ and say

� ./ �′ iff ∀(w, v) ∈ W × W ⇒
�

µwv ./ µ′
wv

ν(v) = ν′(v)

and then set

� t �′ =def

�
µ t µ′, ν t ν′�

where

(µ t µ′)wv =def

8<
:

µwv t µ′
wv if (w, v) ∈ W × W

µwv if (w, v) ∈ (V × V ) \ (W × W )
µ′

wv if (w, v) ∈ (V ′ × V ′) \ (W × W )

(ν t ν′)(v) =def

�
ν(v) if v ∈ V
ν′(v) if v ∈ V ′ \ W

Definition 6 (product of tag machines). For A1

and A2 two tag machines defined over the same algebraic

tag structure bT , their product A1 × A2 is a tag machine

A = (S, s0, V, bT ,M, ∆), such that:

• S = S1 × S2 and s0 = (s0,1, s0,2) is the initial state;

• V = V1 ∪ V2;

• M = {�1 t �2 | (�1,�2) ∈ M1 × M2 and �1 ./ �2}

• ∆ ⊆ S × M × S is the set of tuples t = (s,�, s′) such
that � = �1 t �2 and �i ∈ ∆i, for i ∈ {1, 2}.

Again, in order to have projections at hand, we shall need
a gossip product

A1 ×A2 (15)

where M is replaced by its gossip version

M =def {(�1,�2) | (�1,�2) ∈ M1 ×M2 and �1 ./ �2}

4.1 Self-synchronization and a fundamental
theorem

Regarding the product of tag machines as defined in Def-
inition 6, we always have the inclusion

PA1×A2 ⊆ PA1 ‖PA2 (16)

but the converse is generally not true. What are the prac-
tical consequences of this? The right model of two com-
municating tag machines PA1 and PA2 is PA1 ‖PA2 , not
PA1×A2 . The reason is that PA1×A2 implies an extra pro-
tocol to synchronize the transitions of the two automata,
something generally not provided by a communication medi-
um implementing the MoCC corresponding to tag structure
T —see the discussion in the introduction. There are, how-
ever, favorable situations we discuss in this section.

Referring to the map L(A) 3 w 7→ �(w) ∈ ΣA defined in
(13), it may be the case that there exists a word w′ ∈ M∗

such that �(w′) = �(w) but w′ 6∈ L(A).

Definition 7 (self-synchronizing). Let w and w′ be
two words of the free monoid M(V, T )∗. If �(w′) = �(w)
holds, write w′ ∼ w. Call self-synchronizing a tag machine
A such that L(A) is ∼-closed.

This is an important property as we shall see later. For T =
Tsynch or T = Ttta, all tag machines are self-synchronizing—
this property indeed characterizes synchronous MoCCs. This
no longer holds for other MoCCs of Example 1. The above
property is justified by the following result:

Theorem 1. If A1 and A2 are self-synchronizing, then

1. PA1×A2 = PA1 ‖PA2 ;

2. PA1×A2 is also self-synchronizing.

Proof. Let us prove the first property. We shall prove
the following stronger property involving gossip variants:

PA1 × A2 = PA1 ‖PA2 . (17)

Clearly, (17) implies statement 1 of the theorem. The fol-
lowing diagram holds:

L(A1)

�
����

L(A1 × A2)
π1oo π2 //

�
����

L(A2)

�
����

PA1 PA1 × A2 PA2

PA1 ‖PA2

π1

eeLLLLLLLLLL
T

π2

99ssssssssss

(18)



where πi, for i ∈ {1, 2}, denotes the ith projection associated
to a gossip product or parallel composition, and � denotes
the map defined in (13). We first prove the existence of the
converse inclusion

S
in the bottom part of the diagram. To

this end, pick (σ1, σ2) ∈ PA1 ‖PA2 . Let w1 be any word

belonging to L(A1) ∩ �
−1(σ1). Since σ1 ./ σ2 and since

A2 is self-synchronizing, there exists w2 ∈ L(A2) ∩ �−1(σ2)
such that w1 ./ w2, seen as words. Therefore, (w1, w2) ∈
L(A1 ×A2) such that πi(w) = wi for i ∈ {1, 2}. Clearly,
�(w) ∈ PA1 × A2 and �(w) = σ. This proves the converse
inclusion ∪ in the bottom part of the diagram. From this,
(17) follows immediately.

Up to this point we used only the fact that A2 is self-
synchronizing. If, furthermore, A1 is also self-synchronizing,
then the same argument can be used to prove the second
statement. �

Remark. Note that, in proving statement 1, we did not
use the fact that both components are self-synchronizing:
only one would suffice. More generally, if n components
are considered, then it would suffice that n − 1 components
be self-synchronizing in order for the composition being mir-
rored by heaps of pieces. Also, as a consequence of Theorem
1, for T = Tsynch or T = Ttta, equality holds in (16). �

4.2 An effective criterion for self-synchronization
The definition of self-synchronizing involves traces and is

therefore not effective—it cannot be checked directly on the
structure of the considered tag machine. Theorem 2 below
fills this gap.

Say that two (V, T )-labeled pieces � = (µ, ν) and �
′ =

(µ′, ν′) are consistent, written � []�′, if, for every variable
v ∈ V� ∩ V�′ , we have ν(v) = ν′(v) and ∀w ∈ V ⇒ �wv =
�

′
wv . In words, the two pieces agree on the common part of

their supports, when seen as functions. (Consistency rela-
tion [] should not be confused with unifiability relation ./.)
If � []�′ holds, we can define their intersection �∩�′ as the
common restriction of � or �′ to V� ∩ V�′ , and their union
� ∪ �′ as being the labeled piece that agrees with � on V�
and with �

′ on V�′ .

Theorem 2. Consider the following conditions:

SS1 A is deterministic: s
�

>si, i = 1, 2 ⇒ s1 = s2.

SS2 A is closed under sequential decomposition:

s0
�

>s2

∃�1,�2 ∈ MA

such that � = �1 •�2

9=
;⇒

� ∃s1 ∈ S such that

s0
�1 >s1

�2 >s2

SS3 Let �1 and �2 belong to MA and be such that �1 []�2.
Then, �1 decomposes as �1 = (�1∩�2) •�′

1, for some
�

′
1 ∈ MA.

SS4 Let �1 and �2 belong to MA and be such that s0
�1 >s1,

s0
�2 >s2, and V�1

∩ V�2
= ∅. Then, there exists

s3 ∈ S such that:

s1

�2

!!B
BB

BB
BB

B

s0

�1

>>||||||||

�2 !!B
BB

BB
BB

B

�1∪�2 // s3

s2

�1

>>||||||||

If A satisfies conditions SS1–SS4, it is self-synchronizing.

The proof of this theorem relies on Lemma 1 below. For
v = �1 • . . . •�K a word of L(A), set Vv =def

SK
k=1 V�k

. If
v ∈ L(A) and � ∈ L(A) are such that V� ∩ Vv = ∅, define
v ∪ � =def (�1 ∪ �) • . . . •�K .

Lemma 1. Assume SS4. Let � ∈ L(A) be such that s v >sK ,

s
�

>s′, and V�∩Vv = ∅. Then, there exists a state s′K such
that

sK

�

!!B
BB

BB
BB

B

s

v
??~~~~~~~~

�
��?

??
??

??
?

v∪� // s′K

s′
v

>>||||||||

Proof. Write �1 ∼ �2 for two labeled tag pieces sat-
isfying SS4 and extend ∼ by taking its transitive closure:
this yields a commutation equivalence relation. Repeatedly
applying SS4 yields the following commutative diagram:

s

�

��

�1 // s1

�

��

�2 // s2

�

��

. . . sK−1
�K //

�

��

sK

�

��
s′

�1 // s′1
�2 // s′2 . . . s′K−1

�K // s′K

This proves the Lemma. �
Proof of Theorem 2. Pick w ∈ L(A) and let w′ ∈ M(V,T )∗

be such that �(w′) = �(w). We need to prove that w′ ∈
L(A) as well. Write s0

w >s to mean that w = �1 . . .�n

and s0
�1 >s1 . . . sn−1

�n >s.

Call atomic a labeled piece � ∈ MA such that no non
trivial decomposition � = �1 •�2 exists, where �1,�2 ∈
MA. Set σ =def �(w). By SS2, σ can be obtained as the
image of a word of L(A) composed of atomic pieces only,
call such a decomposition an atomic decomposition.

Suppose that two different atomic decompositions of σ
exist, say, σ = �(wa) = �(w′

a), for wa 6= w′
a two atomic

decompositions. Let �1 and �
′
1 be the heads of wa and w′

a,
respectively, and let wa \ �1 and w′

a \ �′
1 be the associated

residuals. We have �1 []�′
1. Three cases can occur:

1. V�1
= V�′

1
, and thus �1 = �

′
1. In this case, by SS1

these two pieces must lead to the same state, and we
can repeat the proof with a shorter word.



2. ∅ 6= V�1
∩ V�′

1
6= V�1

∪ V�′
1
. By SS3, �1 is decom-

posable within MA, thus contradicting the atomicity
of �1.

3. ∅ = V�1
∩ V�′

1
. Then, �(wa \�1) and �(w′

a \ �′
1) are

two suffixes of σ, having s1 and s′1 as respective initial
states. Therefore, �(wa \ �1) ∩ �(w′

a \ �′
1) is also a

suffix of σ. Consider wa,1 =def wa \ �1, and set

k1 =def min(k | k > 1, V�k
∩ V�′

1
6= ∅)

Such an index exists. Set va,1 =def �1 • . . . •�k1−1.
The support of word va,1 has empty intersection with
that of �′

1. Let sk1 be the state reached by va,1.

By Lemma 1, we still have sk1
�′

1 >, and therefore
�

′
1 []�k1

, but, now, these two pieces do not have dis-
joint supports, so we conclude as for case 2.

Therefore the theorem is proved by induction. �
Comment. Condition SS1 prohibits hiding state variables
that are stored in registers, this is a mild and simple request.

Conditions SS2,3,4 are satisfied by all tag machines for
T = Tsynch or Ttta. Indeed, all pieces are atomic for these
MoCCs since logical or physical time is increased by one unit
by each piece.

In contrast, the above conditions are generally not satis-
fied for T = Ttriv or Twcet or Tdep. Being self-synchronized is
a non trivial property for tag machines having those MoCCs.
This property is undecidable in general. Still, synthesizing
this property by adding proper signaling or protocols in or-
der to enforce the conditions SS2,3,4 of Theorem 2 is sketched
in Section 4.3. Its systematic study is the subject of future
work.

4.3 Illustrative example
Figure 2 shows an example of a tag machine A using Tdep.

The 1st diagram shows the automaton. It has 4 states and
its labeled tag pieces are �1,�2,�3,�4, shown on the re-
maining part of the figure. We have L(A) = (�1�2)

∗
�3�4.

We have �(�1�2�1�2) = �(�1�2�3�4), thus A is not self-
synchronizing. The reader can verify that A violates condi-
tion SS3 of Theorem 2, for the pair (�1,�3), since �1 []�3,
�1 ∩ �3 = �3 but no piece � ∈ MA such that �1 = �3 •�
does exist.

To see how Theorem 2 can be used to make tag machine A
self-synchronizing, let us first focus on condition SS3. Add
to MA the labeled piece �5 shown on the bottom part of the
figure. We have �1 = �3 •�5, thus A satisfies SS3. How-
ever, the resulting tag machines does not satisfy SS2. To
correct this, an additional transition is added that allows
our enriched tag machine A+ to actually perform first �3

and then �5: this is shown in the bottom left diagram of
figure 2. The resulting tag machine A+ satisfies all condi-
tions of Theorem 2; hence it is self-synchronizing. Finally,
A+ possesses as set of traces the same set of traces as A.

We could easily redraw the same example in the context of
the timed tag systems model based on Twcet, whose nature
is very similar to that of Tdep. We leave this as an exercise
to the reader.

µ2
µ3

µ4

µ1

x y

µ5

x y

x y

x y

µ1

µ2

µ3

x y

µ4

µ2
µ3

µ4

µ1

µ5

Figure 2: Example: tag machine A (top left) and
its self-synchronizing modification A+ (bottom left),
which has same set of traces as the original one.

5. CONCLUSION
We presented a new concept in embedded system de-

sign: tag machines. Tag machines are finitary generators
of tagged systems traces. As such, they form an important
object upon which we will build a theory of composition of
heterogeneous systems.

In this paper, we reviewed the notion of tagged systems
and explored the relationships between tag machines and
tagged systems. We introduced the notion of product of
tag machines and gave conditions for tag machines product
to be equivalent to parallel composition of tagged systems.
The condition is non trivial and requires the machines to be
self-synchronizing.

Future work includes the notion of heterogeneous com-
position and how to compute this with operations on tag
machines so that, coupled with the heterogeneous behav-
ioral theory developed for tagged systems, we will have a
complete theory of heterogeneous systems giving raise to
a formally sound and effective methodology for correct-by-
construction deployment.



APPENDIX
Details of the tetris game of Fig. 1
We show in Figure 3 a movie of the tetris game that builds
up the heap shown on the third diagram of Fig. 1.

1

2

3

4

1

0

2

3

1

0

2

1

0
b caa cb

0

} ~τ 1 µ1{

} ~τ 2 µ2{

} ~τ 3 µ3{

} ~τ 4 µ4{

Figure 3: A movie of the tetris game that builds up
the heap shown on the third diagram of Fig. 1.

Detailed formulas follow, with the same conventions as for
Example 3.5:

τ0 =

2
4 0 ε ε

ε 0 ε
ε ε 0

3
5 µ1 =

2
4 1/0 ε ε

ε 1/0 ε
ε ε 1/0

3
5

τ1 = τ0 • µ1 =

2
4 1 ε ε

ε 1 ε
ε ε 1

3
5 µ2 =

2
4 1/0 ε ε

ε 0/ε 0
ε ε 1/0

3
5

τ2 = τ1 • µ2 =

2
4 2 ε ε

ε 1 1
ε ε 2

3
5 µ3 =

2
4 1/0 ε ε

0 1/0 ε
ε ε 1/0

3
5

τ3 = τ2 • µ3 =

2
4 3 ε ε

1 2 1
ε ε 3

3
5 µ4 =

2
4 0/ε 0 ε

ε 1/0 0
ε 0 1/0

3
5

τ4 = τ3 • µ4 =

2
4 3 3 ε

1 3 2
ε 3 4

3
5
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