
Recursion-Driven Parallel Code Generation for Multi-Core Platforms

Rebecca L. Collins, Bharadwaj Vellore, and Luca P. Carloni

Department of Computer Science, Columbia University, New York, NY 10027

Email: {rlc2119,vrb2102,luca}@cs.columbia.edu

Abstract—We present Huckleberry, a tool for automatically
generating parallel implementations for multi-core platforms
from sequential recursive divide-and-conquer programs. The
recursive programming model is a good match for parallel
systems because it highlights the temporal and spatial locality
of data use. Recursive algorithms are used by Huckleberry’s
code generator not only to automatically divide a problem
up into smaller tasks, but also to derive lower-level parts of
the implementation, such as data distribution and inter-core
synchronization mechanisms. We apply Huckleberry to a multi-
core platform based on the Cell BE processor and show how it
generates parallel code for a variety of sequential benchmarks.

I. INTRODUCTION

Recursive and hierarchical models have been used in many

contexts for programming parallel systems, and are a natural fit

for exposing concurrency in a program because recursion con-

cisely captures patterns of dependencies and exposes temporal

and data locality [1], [2], [3], [4]. Modern multi-core platforms

feature chips with multiple processing cores connected by

powerful on-chip communication networks that enable high-

throughput low-latency data transfers between them. For ex-

ample, IBM’s Cell BE processor hosts one PowerPC core

and 8 Synergistic Processing Units (SPUs) together with an

Element Interconnect Bus that supports up to 205 GB/s of

data transfer and latency of only 50-100 nanoseconds [5], [6],

[7]. On-chip communication on these systems is an order of

magnitude faster than off-chip communication, and therefore

it makes sense to minimize the latter whenever possible.

We propose Huckleberry, a tool to enable automatic paral-

lelization that takes advantage of the new balance of commu-

nication costs that have come with multi-core architectures.

Huckleberry’s recursive parallel model supports interaction

between nested calls including data-dependencies between the

calls and mutually recursive functions that alter the nested

data access pattern. It does so by leveraging the powerful

mechanisms for inter-core communication and synchronization

that are typically provided by on-chip networks, while making

their use transparent to the programmer. Huckleberry abstracts

parallelism by allowing programmers to focus exclusively on

data partitioning. Fig. 1 illustrates the Huckleberry design flow.

The programmer provides one or more divide-and-conquer

recursive functions that employ Huckleberry’s Partition Li-

brary application programming interface (API). The code

generator takes these functions together with specifications of

the underlying architecture and returns a parallel implementa-

tion. The recursive task graph resulting from the combined

recursive functions of an application, called an R-Tree, is

used in the parallel implementation to: (1) break the problem

up into subproblems small enough to fit onto the chip, (2)

distribute data across the cores, and (3) coordinate data swaps

when necessary between the cores. Huckleberry also gives

the programmer the flexibility of specifying which core is

responsible for which task (through its parallel-index function

Code Generator

Huckleberry

Part i t ion Library

Tunable Parameters

 Max # Threads

 Granulari ty

P r o g r a m m e r Archi tecture
memory mode l

cores

size of local memory

Paral lel

Imp lementa t ion

schedule

d is t r ibuted

determinist ic

da ta -swaps

Using R-Tree to.. .
create smal l paral le l

subproblems

Opt imized

Local Code

Recursive

Code

Fig. 1: Huckleberry design flow.

fpi) and of reusing optimized local code that runs at the leaves

of the R-Tree (i.e. on individual cores). Decentralization is a

central idea to our approach, and is achieved by allowing cores

to calculate for themselves which tasks they are responsible

for, and when and with whom they should swap data. Our

experiments show that Huckleberry is able to automatically

generate a parallel implementation from sequential functions

for several benchmarks for a complex multi-core platform such

as the QS20 Cell Blade [8], which comprises 18 heterogeneous

distributed memory cores over two Cell BE chips. By keeping

as much communication local to each chip as possible, Huck-

leberry takes advantage of the performance edge delivered by

high-speed on-chip networks.

II. HUCKLEBERRY PROGRAMMING INTERFACE

Huckleberry is based on the C programming language,

supplemented by Huckleberry’s partition API. The constraints

on the programmer are as follows: foremost, we support only

recursive divide-and-conquer functions that have the property

that the divide step can be determined before the compute

steps (i.e. the partitioning of the data does not depend on

the data values; however, there can be data dependencies

between branches where several steps of the algorithm alter

the same data.). If a function has this property, as it is the

case for Bitonic Sort that we introduce as an example later in

this section, the programmer can modify it to be accelerated

by Huckleberry simply by wrapping all of the function’s

parameters with the API’s Partition data structures. In return,

Huckleberry abstracts away the details of implementing a

parallel algorithm. The programmer does not need to separate

the algorithm into independent tasks or consider architectural

details like the number of cores or the size of the local

memory. Huckleberry supports mutually recursive functions

that invoke one another, and multidimensional data in user-

defined types.

Machine Model. A distributed memory multi-core system

is made up of a set of N cores, each of which is associated

with a local memory whose capacity is denoted mi for core

ci. There may also be an organizer core (OC) dedicated to

sequential and administrative tasks. The capacity mi reflects

the available memory for data once space for the application

code and temporary buffers has been accounted for. The

978-3-9810801-6-2/DATE10 © 2010 EDAA

communicat ion network 0

Aggregate Memory V iew, M

OC

c
0

m
0

c
1

m
1

c
2

m
2

c
3

m
3

c
4

m
4

c
5

m
5

c
6

m
6

c
7

m
7

m
0

m
1

m
2

m
3

m
4

m
5

m
6

m
7

Fig. 2: Abstract machine model.

aggregate local memory, denoted M =
⋃

∀i mi, is the sum

total of the local memories of the cores. The value of mi is

processed by Huckleberry as an input parameter to generate

the parallel code and can be varied to change the granularity

of the parallel execution; mi can also vary depending on the

particular application. As in typical sequential programming

models, we keep the notion of data separate from memory:

The program input data set is denoted as I while D denotes the

working data set that is stored in the aggregate local memory

M at any given time during the execution of the program.

Finally, di denotes the subset of D that is stored in the local

memory space mi. Fig. 2 illustrates our machine model in an

abstraction of the Cell processor, with 8 SPE vector cores, and

one PowerPC core which serves as the OC.

Partition Library. The Partition API is the centerpiece

of the Huckleberry partition library. User-provided functions

must use partitions for all of their parameters. Partitions

support generic data structures, but annotate the actual data

with meta-information about the data; for example, array-

based metadata includes data type, dimensions, and where a

partition’s data begins and ends within each dimension. The

partition API includes the following functions:

• create_partition() creates and fills a partition;

• free_partition() frees the memory of a partition;

• left_half() copies a partition’s metadata into a new

partition, altering the new partition to only include the

original partition’s left half;

• right_half() inverse of left_half();

• copy_last_element() copies the last element of an array

into a new unit partition (a small data structure that is not

divided but is passed down the R-Tree intact);

• update_int() updates an integer unit partition;

• mydata_intersects() returns true if any part of two

partition sets intersect and false otherwise;

• mydata_contains() compares two sets of partitions, a

local and global set; returns true if the local set entirely

contains the global set, and false otherwise;

• partition_size() calculates the size of a partition based

on the number of dimensions in a partition and the begin

and end boundaries of each partition.

The partition library provides functions that perform oper-

ations on partitions to reduce their size for the divide step of

divide-and-conquer functions, including adjusting their data

pointers and keeping track of the original boundaries and

where the new reduced partition lies within them. Our initial

implementation of Huckleberry supports data that is arranged

in arrays of one or more dimensions. Data structures such as

trees could also be supported using the same concepts. For

example, left_half() and right_half() may take the left

l e f t - r ight pa t te rn le f t - r ight -sp l i t pat tern

quadran t pa t te rn

1

1 1

2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 5 6 3 4 7 8

1 5 2 6

1 2 1 3 1 4

2 1 2 2 2 3 2 4

3 1 3 2

4 1 4 2
3 1 3 2

4 1 4 2

1 1 1 2

2 1 2 2

1 3 1 4

2 3 2 4

3 3 3 4

4 3 4 4
3 3 3 4

4 3 4 4

2 42 3

1 3 1 4

3 7 4 8

Fig. 3: Patterns of recursively applied partition methods.

Algorithm 1 sort(Partition list, Partition dir)

idir ← extract int(dir)
left ← left half(list)
right ← right half(list)
sort(left, dir)
update int(dir, idir ∗ −1) // change directions for the next half
sort(right, dir)
update int(dir, idir ∗ −1)
merge(left, right, dir)
sort2(left, dir)
sort2(right, dir)

Algorithm 2 merge(Partition left, Partition right, Partition dir)

left of left ← left half(left)
right of left ← right half(left)
left of right ← left half(right)
right of right ← right half(right)
merge(left of left, left of right, dir)
merge(right of left, right of right, dir)

and right subtrees of the tree structure (assigning the root node

to one of the halves).

Repeatedly applying the partition library methods to data

results in a partition pattern. Fig. 3 shows three patterns that

break larger data structures down into smaller pieces in a

divide-and-conquer fashion. The patterns use the same library

methods, but in different combinations. For example, the left-

right partition pattern shows how data is broken down if

left_half() and right_half() are used to partition data into

halves once for each branch, while the left-right-split pattern

uses left_half() and right_half() twice per branch.

Example. Bitonic Sort is a divide-and-conquer algorithm

where a list of elements is sorted by first sorting its two

halves in opposite directions, and then merging the two halves

together [9], [10]. While having a complexity of O(n log2 n),
which is slightly less efficient than O(n log n) sorting

algorithms like Merge Sort or average-case Quick Sort, Bitonic

Sort is a popular parallel sorting algorithm because the order

of its compare-and-swap operations is not data dependent.

Alg. 1 and 2 show a recursive implementation of Bitonic

Sort written with the Huckleberry API which consists of three

mutually-recursive functions. Sort2(), not shown, is the same

as sort() except that it omits the first two recursive calls.

The dir partition provides the direction that the list should be

sorted in, and is a unit partition. This example demonstrates

how data partitioning is expressed statically by the program-

mer at a high level of abstraction, while the generated parallel

code adapts partitions dynamically to runtime parameters

(input size, available memory, etc.). Notice that the functions

lack exit conditions. Huckleberry inserts function wrappers

around recursive functions which manage the exit condition

based on the runtime size of the Partition data compared

Local i ty Wrapper

Dis t r ibute Data Wrapper

Concurrency Wrapper

Which subproblem should be

executed next?

How should data be

distr ibuted?

Local Core: Am I responsible

for the next task?

Do I ho ld data that another

core needs for the next task?

Executed Sequentially by the Organizer

Executed Concurrently by Parallel Cores

Recursive

Code

Recursive

Code

Exchange Data

Recursive

Code

Opt imized

Local Code

Stage 1

Stage 2

Stage 3

Fig. 4: Stages in a Huckleberry-generated parallel application.

with the available memory in the underlying architecture. Exit

conditions are necessary in the code executed at the leaves of

the R-Tree, and are provided by the programmer.

Optimized Local Code. The programmer may provide an

optimized implementation to be used once a partition is small

enough to fit in a single core’s local memory. We call this a

local code because it is executed when all of the relevant data

is in a core’s local memory space. Since local code is executed

sequentially, it can be optimized using standard sequential

coding techniques which may be specifically designed for the

hardware in use (e.g. vectorized code for Cell’s SPEs). In

this work, we do not address how local code is optimized,

but we recognize that optimized local code is essential for

good overall performance because it will be repeated many

times during execution. In the Bitonic Sort example, for each

instance of sort() that is called on a platform with 16 cores,

local_sort() is called 1 time, local_merge() 10 times, and

local_sort2() 4 times for each core (and 16, 160 and 64

times on all cores together). Thus, performance improvements

in the local code can translate into significant overall improve-

ments. Our Bitonic Sort benchmark experiences more than a

10x speedup when switching between recursive unoptimized

code and (non-recursive) optimized local code.

III. HUCKLEBERRY PARALLEL CODE GENERATOR

The code generated by Huckleberry creates a flow of

execution that passes through three major stages (Fig. 4).

All stages are generated by refactoring the original recur-

sive program with wrapper functions that make different

scheduling decisions, which are implemented as follows: (1)

the user provides a recursive function called myprog(); (2)

the code generator inserts a wrapper by replacing calls for

myprog() with wrapper_myprog(), including within the body

of myprog() itself; (3) wrapper_myprog() performs book-

keeping steps and then calls myprog(). Interleaving calls to

myprog() and wrapper_myprog() in this way has the effect

of executing some extra code around each of the instances

of myprog(). For each of the three stages, there is a wrapper

and a separate copy of the original recursive function. The

current implementation of Huckleberry assumes that the input

recursive functions correctly partition data so that each branch

covers a proper subset of the data of its parent. Partition set

size is used in the exit conditions of the wrappers.

Locality Wrapper. The locality wrapper stage decides what

part of the problem should be executed next when the initial

input problem size is too large for the aggregate local memory

Algorithm 3 loc_wrapper_myprog(data). In the Bitonic Sort exam-
ple, data for loc_wrapper_sort() includes list and dir.

if |data| ≤M then
call dd wrapper myprog()

else
loc myprog(data)

end if

Algorithm 4 loc_merge(Partition left, Partition right, Partition dir)

left of left ← left half(left)
//(more initializations...)
loc wrapper merge(left of left, left of right, dir)
loc wrapper merge(right of left, right of right, dir)

Algorithm 5 dd_wrapper_myprog (data, depth). Let m be the size
of data assigned leaf nodes.

if |data| ≤ m then
i← fpi(id seq)
if data has not been already sent then

send data to core i
end if

else
dd myprog(data, depth)

end if

id seq[depth]← id seq[depth] + 1

M of the cores. This step is executed only by the OC, and it

is executed sequentially to preserve the causal dependencies

in the recursive program while maximizing data locality. The

steps of the locality wrapper are shown in Alg. 3. Note that

the wrapper is application-independent, and will look the same

for any program myprog. Alg. 4 illustrates how the locality

wrapper is wrapped into the merge() function from Alg. 2,

with merge() renamed to loc_merge() in order to distinguish

it from its counterparts which are called by the concurrency

and distribute data wrappers. The locality wrapper checks

that the problem size is small enough for M by iterating

through a list of the input partition parameters and calculating

their size based on the partition_size() subroutine from

the partition library. When the exit condition is met (i.e. the

size is small enough), the locality wrapper calls the next stage,

the distribute data wrapper. The divide-and-conquer myprog()

function ensures the problem size is reduced with each step.

Distribute Data Wrapper. The distribute data wrapper

distinguishes between individual cores and their neighbors.

The distribute data stage starts with a problem that will fit

in the aggregate local memory of the N cores, and breaks the

problem up into N pieces based on the application’s R-Tree.

For example, a divide-and-conquer function that divides its

input two ways can be represented as a binary tree, whose

leaves correspond to instances of the function that reach the

exit case. Each node in the tree is uniquely assigned to a

specific core that is determined by calling the parallel-index

function (fpi) on the node’s position in the tree. Fpi operates

on two parameters: depth and sibling order id (e.g. left child

0, right child 1) of a node and its parents in the R-Tree.

The distribute data wrapper (shown in Alg. 5) does

several things. First, it keeps track of the current sib-

ling id at each level of the tree with an array id seq[]
and the current depth. Id seq[depth] is incremented every

time dd_wrapper_myprog() is called. Dd_wrapper_myprog()

includes depth as an input parameter; for example,

dd_wrapper_merge(left of left, left of right, dir) becomes

Algorithm 6 con_wrapper_myprog (data,depth).

context switch if necessary
if |data| ≤ m then

i← fpi(id seq)
if i is rank then

if mydata contains(data) then
wait for data

end if
local myprog(data) //not to be confused with loc myprog()

else if mydata intersects(data) then

send data to core i
end if

else
con myprog(data, depth)

end if
id seq[depth]← id seq[depth] + 1

dd_wrapper_merge(left of left, left of right, dir, depth + 1).

The minimum possible depth is determined by the size of each

core’s local available memory. Second, the wrapper applies fpi

to identify which core is responsible for the next data. Last,

it keeps track of which data it has already sent to the cores.

Data may be revisited several times in the R-Tree, but it only

needs to be transferred to the chip once.

Concurrency Wrapper. The concurrency wrapper is sim-

ilar to the data distribute wrapper because it starts with the

same data, uses the same fpi function, and handles depth and

id seq[] in a similar fashion. However, while the data dis-

tribute wrapper is executed once on the OC, the concurrency

wrapper is executed in parallel on each core over the global

data set that is shared among the cores. Each core is aware of

its own rank in the group. In addition to identifying which

core is responsible for each task, the concurrency wrapper also

organizes synchronization among the cores and data swapping.

Data swapping is needed when one core must read or modify

data that has already been modified by another core, i.e. there

is a data dependency between tasks assigned to different cores.

In the Bitonic Sort example shown in Alg. 1 and 2, the sort()

function calls recursive merge() and sort2(). Because differ-

ent recursive functions may use different partition patterns, the

divide-and-conquer pattern may be disrupted when switching

between different recursive functions as is the case when

switching between sort() and merge(). The concurrency

wrapper handles context switches by recalculating the correct

depth depending on the data size and resetting the values of

id seq[] to 0 for elements beyond the new depth. The steps of

the concurrency wrapper are shown in Alg. 6. Data is swapped

with a push handshake protocol: a core that needs data simply

waits to proceed until another core sends data, and the sending

core will not send data until it has reached the same node in

the R-Tree as the first core. The downside of this protocol is

that some concurrency may be lost because the sending core

does not send data as soon as it is available.

Example: Traversing the R-Tree. Fig. 5 shows an example

of the recursive call tree, or R-Tree, constructed for Bitonic

Sort from its three functions sort(), merge(), and sort2().

The OC initially traverses the locality stage tree until it reaches

a point where the data size is less than M . Next, the OC

continues in the distribute data stage. For example, with N = 2
cores and an overall input problem size |I| = 2M , the data

size in a sub-sort tree is reduced to |I/2| after branching. To

 sort t ree, s

sort sort merge sort2sort2

s(I)

R-Tree for Bitonic Sort

concurrency

s tage s(I/2)

m e r g e t r e e , m

merge merge

 sor t2 t ree , s2

sort2sort2merge

local i ty stage

dis t r ibute data

s tage

no more

data to

d is t r ibute

s(I/2)

c0 c1

c0 c1

c0c0 c1

c1

Fig. 5: Traversing the R-Tree.

distribute data, it is not necessary to traverse the entire tree; it

is possible to stop the traversal when all of the data has been

distributed once. Once data has been moved into M , the cores

exchange data if necessary as they traverse the concurrency

stage tree. Execution returns to the locality stage tree once the

complete subtree has been executed in the concurrency stage

tree. The distribute data and concurrency stage trees use fpi

to determine which core is responsible for which data and

tasks. In the distribute data stage in Fig. 5, the first leaf task

is assigned to core fpi(depth = 1, sibling − id = 0) = c0. A

different fpi function might assign the first leaf to another core,

for example, if N > 2. Note that it is also possible to tune

the granularity smaller so that the OC traverses deeper and

distributes multiple smaller data partitions to the cores. Since

merge() uses a different partition pattern than sort() and

sort2(), it is necessary to schedule data exchanges throughout

the concurrency tree traversal. Calls to merge() also change

the depth context since it is invoked on the entire data set.

IV. EXPERIMENTS

To evaluate our initial implementation of Huckleberry we

use the QS20 Cell Blade [8] because of its flexibility and

computational power and because it is representative of

the class of distributed-memory multi-core platforms. Each

QS20 features two Cell BE processors together with 1GB

of XDRAM. Originally designed for the PlayStation 3 game

console, Cell processors currently make up two thirds of the

processors in IBM Roadrunner, the fastest supercomputer in

the Top500’s list [11]. We use Huckleberry to derive parallel

implementations targeting the QS20 for four benchmarks:

1. Smith-Waterman Sequence Alignment is a dynamic pro-

gramming algorithm which computes a similarity score be-

tween two sequences such as DNA sequences [12], [13].

The algorithm involves filling in a matrix m starting from

the top-left corner with m[i, j] values that are function of

m[i−1, j], m[i, j−1], and m[i−1, j−1]. Using Huckleberry

we implement it with a combination of the quadrant pattern

on its 2D data and the left-right pattern on its 1D data.

2. Black-Scholes is an algorithm for stock-option pricing.

We implemented using the left-right pattern to distribute data.

3. One-Dimensional FFT is implemented based on the ‘four-

step’ method [14] with the bit-reversal algorithm [15]. The

input array is regarded as a matrix, and the FFT is computed

by performing smaller FFTs on the matrix rows and columns.

For the FFT we used the left-right pattern.

4. Bitonic Sort is implemented as described in Section II.

All these benchmarks are amenable to a divide-and-conquer

specification, but they are different in nature and stress our

1 2 4 8 16

Number of Cores

0

5

10

15

S
p

ee
d

u
p

Bitonic Sort, 128K integers

Bitonic Sort, 1M integers

Black-Scholes, 1M options

FFT, 8M points

FFT (No sequential execution)

Smith-Waterman 16K seq

Fig. 6: Scaling cores: speedup when D and
mi are fixed and the number N of available
cores scales up.

1 2 4 8 16,1 16,2 16,3
Number of Cores (, Number Data Sets from Off-chip)

0.01

0.10

1.00

10.00

S
p

ee
d

u
p

 C
o

m
p

a
re

d
 t

o
 1

 C
o

re

(l
o

g
a

ri
th

m
ic

)

Bitonic Sort, 8K integers

Black-Scholes, 8K stock options

FFT, 16K points

Smith-Waterman, 256 seq.

Single

Core

Multi

Core

Data

Swap

Fig. 7: Scaling task granularity: speedup
when I is constant, but mi is scaled down,
forcing more cores to work on the problem.

1K 8K 64K 1M 16M
Input Data Size (logarithmic)

0.0

0.2

0.4

0.6

0.8

1.0

D
a

ta
 P

ro
ce

ss
ed

 p
er

 S
ec

o
n

d

Bitonic Sort

BlackScholes

FFT

Smith-

Waterman

Single

Core

Multi

Core

Data

Swap

Fig. 8: Scaling data size: mi remains fixed,
while I scales up, normalized w.r.t. the high-
est throughput instance in that benchmark.

approach in different ways. Notice that we focus on evaluating

the overhead and trade-offs of communication rather than on

optimizing local single-core code to get the best performance.

Scalability. Fig. 6 shows the performance speedup for large

problem sizes as the number of cores is increased. These prob-

lem sizes require multiple stages in the locality wrapper. The

Black-Scholes benchmark performs almost ideally, which is

expected, since the benchmark is an example of an “embarrass-

ingly parallel” program. This demonstrates that the overhead

of partitioning and distributing the problem in the absence

of inter-core communication is very low. The overhead of

inter-core data passing and synchronization is more difficult to

quantify with respect to alternative implementations; however,

using double-buffering to hide the overhead is a potential

solution in both cases, though we do not implement it here.

Two curves for Bitonic Sort are shown; the Bitonic Sort

benchmark achieves slightly more than a 5x speedup with

16 cores for the smaller problem size (128K integers), but

the speedup degrades as the problem size increases. We

believe that the size of local memory plays a role in the

parallel speedup in this case because a hand-coded recursive

implementation was able to compute larger problems on a

single core than the Huckleberry-generated implementation,

and achieved a speedup closer to 7x with larger problem sizes.

Reducing local memory usage is one of our future goals.

For the Smith-Waterman benchmark, speedup is limited by

data dependencies of the algorithm. Namely, imposing the

dependencies of high levels of the hierarchy onto lower levels

causes some cores to wait for data exchanges longer than is

necessary. This behavior may be improved by changing the

data swap protocol. The FFT benchmark achieves a speed-up

of 5x, though notably, increasing 4 to 8 and 8 to 16 cores does

not significantly improve performance; as per Amdahl’s law,

matrix transpose and multiplication operations are performed

sequentially on the OC in our implementation, even though

performance is near ideal when the sequential operations are

excluded. We expect that algorithmic optimizations and the

use of huge page sizes will reduce the time consumed by

these operations, as suggested by Chow et al. [16].

Problem Granularity. Fig. 7 shows how performance

changes as the problem granularity becomes finer. The prob-

lem is small enough to fit in the local memory of a single core,

but more cores are recruited for their additional computational

power. For example, the Black-Scholes curve corresponds to

pricing 8K stock option values. With one core, all options are

calculated by this core; with four cores, each core calculates
8K
4

= 2K options. Cases 16,2 and 16,3 correspond to each

core calculating 256 and 128 options, respectively.

The curves are highlighted in three groups. In the first, data

is small enough to fit on a single core; in the second, data is

small enough to fit entirely in the aggregate local memory

space; in the third, data is swapped on and off the chip.

Breakpoints between groups occur at different places for the

benchmarks. For example, Bitonic Sort requires many inter-

core data exchanges. During data exchanges, temporary buffers

take up some of the local memory space, and limit the size of

the input data that can be assigned to a single core.

The benchmarks perform strikingly differently. The Black-

Scholes benchmark improves almost linearly as more cores are

utilized (note the logarithmic y-axis). However, data swapping

eventually becomes a bottleneck as the problem granularity is

reduced. The Smith-Waterman benchmark’s speedup improves

slightly as N is increased to 16, but is relatively flat. Perfor-

mance of the FFT benchmark first improves and then degrades

as granularity is increased, while the Bitonic Sort benchmark

performs best when the entire problem is handled on one

core, For all benchmarks, the cost of additional off-chip data

swapping outweighs the benefits of increased concurrency.

Data Processing Throughput and the Role of Local

Memory. Fig. 8 plots the performance of the benchmarks as

the input data size scales up, but granularity is fixed. The

results in Fig. 8 show why Bitonic Sort performs better with

smaller data sizes in Fig. 6. For input sizes that do not require

data swapping, the benchmark throughput increases with the

input size, but once data is large enough to require data

swapping, the throughput drastically decreases. For the other

three benchmarks throughput stays steady as the input size

increases beyond what will fit on a chip. We infer that since

data swapping is not the bottleneck for these benchmarks, a

good balance of communication and computation has been

achieved.

V. RELATED WORKS

Many programming models and tools for the Cell proces-

sor, which is a representative distributed memory multi-core

platform, have been proposed in recent years [6], [17], [18],

[19]. Huckleberry provides a C-based approach to accelerating

recursive divide-and-conquer functions. Our vision is that

functions compiled in Huckleberry can be combined with

stream or SIMD functions compiled with other tools that

are more appropriate for those models. Programming dis-

tributed memory multi-core platforms has distinct challenges:

(1) hardware may not provide cache-coherency, (2) the on-

chip communication network is an important system resource

which must be used effectively, and (3) the number of cores

is likely to scale much higher in future generations, thus

requiring new algorithms that avoid single-point bottlenecks.

Huckleberry addresses these challenges for the programmer by

abstracting parallelism through data partitioning and creating

an efficient parallel implementation that leverages the capa-

bilities of on-chip networks to distribute application code and

data at runtime in a scalable and transparent way.

Huckleberry follows a number of works in recursive par-

allel programming. The Sequoia programming language uses

hierarchical program design to leverage data locality in the

memory hierarchy of parallel system, and also supports the

Cell architecture [1], [2]. In Sequoia, different layers of

the hierarchical tree are associated with different levels of

memory. Concurrent tasks are isolated and do not synchronize,

but communicate through their parent task (which may be

mapped to the same core). The Sequoia compiler plays a

role in optimizing the parallel implementation. The Huckle-

berry compiler, in contrast, performs no optimizations, but

is paired with a distributed application-independent runtime

library that has access to the aggregate memory view and

partition metadata on local cores. Compilers can parallelize

divide-and-conquer programs by analyzing memory references

to detect dependencies [20], [21]. Cilk is an expressive general

purpose C-based parallel programming language that includes

support for recursion [22]. Cilk does not abstract parallelism

from the programmer to the same extent that Huckleberry

does; the programmer must expose parallelism in applications

through the use of thread keywords such as spawn and sync.

Other works, including NESL and Algorithmic Skeletons

which are described below, optimized the recursive model for

vector processors of the mid-1990s which presented relatively

high inter-node communication costs (throughput around 1

Gbps and application-level latency at 40-100 microseconds).

Our work is novel with respect to NESL, a nested parallel pro-

gramming language [4], because in Huckleberry data passing

and inter-core synchronization are determined at runtime via a

distributed decision making process which is fully integrated

with the distributed tasks. Algorithmic Skeletons capture ab-

stract communication patterns of parallel programs, and are

intended to be developed separately from the algorithmic

specification of an application by systems and application

experts, respectively [23]. The divide-and-conquer skeleton,

which supports the parallelization of recursive programs, is

implemented with SPMD parallelization based on the pow-

erlist data structure [3]. Huckleberry’s implementation does

not separate the recursive algorithm from the application’s

communication pattern, but instead models the communication

after partition patterns.

VI. CONCLUSIONS

As multi-core systems of the future scale up to large

numbers of cores, there is a need for tools that can abstract

away the process of separating a program into parallel tasks.

Our goal with Huckleberry is to create such a tool for recursive

divide-and-conquer programs. Using Huckleberry, we generate

parallel implementations of four different benchmarks for the

Cell architecture. In our experiments, the speedup available

from parallelization is affected by the interaction of data

dependencies and workload requirements with the amount of

local memory. Some benchmarks that parallelize effortlessly,

like Black-Scholes option pricing, scale well regardless of the

size of local memory. Other benchmarks, like Bitonic Sort,

clearly perform better with larger local memory.

ACKNOWLEDGEMENTS

This research is partially supported by DARPA MTO un-

der grant ARL-W911NF-08-1-0127 and the NSF (Award #:

0811012). The authors thank Georgia Institute of Technology,

its Sony-Toshiba-IBM Center of Competence, and the NSF,

for access to their Cell Broadband Engine resources.

REFERENCES

[1] K. Fatahalian et al., “Sequoia: Programming the memory hierarchy,” in
Proc. of ACM/IEEE Conf. on Supercomputing, Nov. 2006.

[2] T. J. Knight et al., “Compilation for explicitly managed memory
hierarchies,” in Symposium on Principles and Practice of Parallel
Programming. ACM, Mar. 2007, pp. 226–236.

[3] J. Misra, “Powerlist: A structure for parallel recursion,” ACM Trans.
Program. Lang. Syst., vol. 16, no. 6, pp. 1737–1767, Nov. 1994.

[4] G. E. Blelloch, “Programming parallel algorithms,” Communications of
the ACM, vol. 39, no. 3, pp. 85–97, Mar. 1996.

[5] M. Gschwind et al., “Synergistic processing in Cell’s multicore archi-
tecture,” IEEE Micro, vol. 26, no. 2, pp. 10–24, 2006.

[6] J. Kahle et al., “Introduction to the CELL multiprocessor,” IBM J. Res.
Develop., vol. 49, no. 4-5, pp. 589–604, Sep. 2005.

[7] M. Kistler, M. Perrone, and F. Petrini, “Cell multiprocessor communi-
cation network: Built for speed,” IEEE Micro, vol. 26, no. 3, pp. 10–23,
2006.

[8] A. K. Nanda et al., “Cell/B.E. Blades: Building blocks for scalable, real-
time, interactive, and digital media servers,” IBM J. Res. Dev., vol. 51,
no. 5, pp. 573–582, 2007.

[9] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction
to Algorithms. McGraw-Hill, 2001.

[10] B.Gedik, R.Bordawekar, and P.Yu, “CellSort: High performance sorting
on the Cell processor,” in Very Large Data Bases Conf., Sep. 2007.

[11] K. J. Barker et al., “Entering the petaflop era: the architecture and perfor-
mance of Roadrunner,” in Proc. of ACM/IEEE Conf. on Supercomputing,
Nov. 2008, pp. 1–11.

[12] T. F. Smith and M. S. Waterman, “Identification of common molecular
subsequences,” J. Mol. Biol., vol. 147, no. 1, pp. 195–197, Mar. 1981.

[13] O. Gotoh, “An improved algorithm for matching biological sequences,”
J. Mol. Biol., vol. 162, no. 3, pp. 705–708, Dec. 1982.

[14] D. H. Bailey, “FFTs in external of hierarchical memory,” in Proc. of
ACM/IEEE Conf. on Supercomputing, Nov. 1989, pp. 234–242.

[15] D. Jones, “Decimation-in-time (DIT) Radix-2 FFT,” Sep. 2006, connex-
ions Web site http://cnx.org/content/m12016/1.7/.

[16] A. Chow, G. Fossum, and D. Brokenshire, “A programming example:
Large FFT on the Cell Broadband Engine,” IBM, Tech. Rep., May 2005.

[17] M. Ohara et al., “MPI microtask for programming the Cell Broadband
Engine processor,” IBM Syst. J., vol. 45, no. 1, pp. 85–102, Jan. 2006.

[18] M. D. McCool, “Data-parallel programming on the Cell BE and the
GPU using the RapidMind development platform,” in GSPx Multicore
Applications Conf., Oct. 2006.

[19] Gedae, http://www.gedae.com/.
[20] M. Gupta et al., “Automatic parallelization of recursive procedures,” Intl.

J. of Parallel Programming, vol. 28, no. 6, pp. 537–562, 2000.
[21] R. Rugina and M. Rinard, “Automatic parallelization of divide and

conquer algorithms,” in Symposium on Principles and Practice of
Parallel Programming, May 1999, pp. 72–83.

[22] R.Blumofe et al., “Cilk: An efficient multithreaded runtime system,” J.
of Parallel and Distrib. Comput., vol. 37, no. 1, pp. 55–69, Aug. 1996.

[23] S. Gorlatch, “Programming with divide-and-conquer skeletons: A case
study of FFT,” J. Supercomput., vol. 12, no. 1-2, pp. 85–97, Jan./Feb.
1998.

	Main
	DATE'10
	Front Matter
	Table of Contents
	Author Index

