
906 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

Fault-Tolerant Distributed Deployment of
Embedded Control Software

Claudio Pinello, Luca P. Carloni, Member, IEEE, and Alberto L. Sangiovanni-Vincentelli, Fellow, IEEE

Abstract—Safety-critical feedback-control applications may
suffer faults in the controlled plant as well as in the execution
platform, i.e., the controller. Control theorists design the control
laws to be robust with respect to the former kind of faults while
assuming an idealized scenario for the latter. The execution plat-
forms supporting modern real-time embedded systems, however,
are distributed architectures made of heterogeneous components
that may incur transient or permanent faults. Making the plat-
form fault tolerant involves the introduction of design redundancy
with obvious impact on the final cost. We present a design flow
that enables the efficient exploration of redundancy/cost tradeoffs.
After providing a system-level specification of the target platform
and the fault model, designers can rely on the synthesis of the
low-level fault-tolerance mechanisms. This is performed automat-
ically as part of the embedded software deployment through the
combination of the following three steps: replication, mapping,
and scheduling. Our approach has a sound foundation in fault-
tolerant data flow, a novel model of computation that simplifies
the integration of formal validation techniques. Finally, we report
on the application of our design flow to two case studies from the
automotive industry: a steer-by-wire system from General Motors
and a drive-by-wire system from BMW.

Index Terms—Automotive electronics, embedded control soft-
ware, fault tolerance, real-time embedded systems.

I. INTRODUCTION

EMBEDDED software has a pervasive presence in our
world, from a variety of consumer electronic products to

many safety-critical applications in industries such as manufac-
turing, health, aerospace, and automotive. Increasingly, embed-
ded software is taking over the role of mechanical and dedicated
electronic systems in engaging the physical world [1]. As more
than 98% of the 8.2-billion microprocessor/microcontroller
units shipped in 2000 were related to embedded applications
[2], embedded computing is becoming a key source of inno-
vation in engineered systems [3]. For instance, more than 90%
of the innovation (and hence value added) in a car is in elec-
tronics, and electronic components comprise more than 30% of

Manuscript received March 21, 2007; revised July 23, 2007. This work
was supported in part by BMW, by General Motors, by the National Science
Foundation under Award 0644202, and by the Center for Hybrid and Embedded
Software Systems (CHESS), which is funded by the National Science Founda-
tion under Award CCF-0424422. This paper was recommended by Associate
Editor Y. Paek.

C. Pinello was with the Department of Electrical Engineering and Com-
puter Sciences, University of California, Berkeley, CA 94720 USA. He is
now with Cadence Research Laboratories, Berkeley, CA 94704 USA (e-mail:
ClaudioPinello@Cal.Berkeley.edu).

L. P. Carloni is with the Department of Computer Science, Columbia
University, New York, NY 10027 USA (e-mail: luca@cs.columbia.edu).

A. L. Sangiovanni-Vincentelli is with the Department of Electrical Engineer-
ing and Computer Sciences, University of California, Berkeley, CA 94720 USA
(e-mail: alberto@eecs.berkeley.edu).

Digital Object Identifier 10.1109/TCAD.2008.917971

Fig. 1. General structure of a real-time control system.

a car’s manufacturing cost [4]. As the portion of the electronic
systems’ development cost that is related to embedded software
programming continues to grow, the distributed nature of many
new important classes of embedded applications adds a new
level of design complexity requiring the deployment of tightly
interactive concurrent processes on distributed (networked) ex-
ecution platforms.

The general structure of a real-time feedback-control system
is shown in Fig. 1: The controller is made of embedded software
that implements a set of control-law algorithms, runs on a
hardware execution platform, and interacts with the plant by
means of sensors and actuators. An execution platform is a het-
erogeneous system that is typically made of an infrastructure-
software layer (real-time operating systems, middleware, and
drivers) on top of an underlying hardware layer (a set of
processing elements, called the electronic control units or
ECUs,1 storage elements, and communication channels like
buses or crossbars). The hardware layer often has a distributed
nature that is inherited from the physical characteristics of the
plant. The design of an embedded system requires the definition
of the execution platform, through the selection and assembly
of its components, and the programming of the control soft-
ware. This consists of a set of concurrent processes (sometimes
called tasks in this paper), which implement the control law
and whose execution on the target platform must meet hard
real-time constraints [5]. This complex engineering task is
more challenging in the case of safety-critical applications, e.g.,
drive-by-wire in automobiles [6], due to the requirement of
making the design resilient to faults.

Technically, a fault is the cause of an error, an error is
the part of the system state that may cause a failure, and a
failure is the deviation of the system from its specification [7].
A deviation from the specification may be due to accidents

1The term ECU is widely used in automotive systems to indicate (packaged)
boards/computing nodes. Our work may be relevant to other domains as well.

0278-0070/$25.00 © 2008 IEEE

PINELLO et al.: FAULT-TOLERANT DISTRIBUTED DEPLOYMENT OF EMBEDDED CONTROL SOFTWARE 907

occurring during system operations (faults) or designers’ mis-
takes (bugs). Theoretically, all bugs can be eliminated before
the system is deployed, and practically, they are minimized
by using design environments that are based on sound models
of computation (MoCs) like the synchronous paradigm [8].
These have well-defined semantics that enable the application
of formal validation techniques [9]–[11]. On the other hand,
faults must be addressed online as the system is operating.

We classify faults in two categories that are relevant for
feedback-control systems: plant faults and execution platform
faults. Plant faults, including faults in sensors and actuators,
must be handled at the algorithmic level by control theorists
who know the stability requirements of the plant and its con-
trollable/uncontrollable modes and can employ estimation tech-
niques and adaptive control methods. For instance, the control
of a drive-by-wire system might require handling properly a tire
puncture or the loss of one of the four brakes.

Faults in the execution platform may affect the infrastructure-
software layer or the underlying hardware layer. For instance,
a loss of power may turn off an ECU momentarily or forever.
Making the controller fault tolerant involves the introduction of
redundancy in the design by replicating platform components
as well as embedded software processes. Redundancy has an
obvious impact on costs: While choosing a faster microproces-
sor, duplicating a bus, or replicating some embedded software
may not affect sensibly the overall cost of a new airplane, their
impact may be striking for high-volume products like the ones
of the automotive industry.

The analysis of the tradeoffs between higher redundancy and
lower costs is a challenging hardware–software codesign effort
that designers of fault-tolerant systems for cost-sensitive appli-
cations must face aside from making decisions on the following
points: 1) how to introduce redundancy and 2) how to deploy
the redundant design on a distributed execution platform. Be-
cause these two activities are both tedious and error prone,
designers often rely on off-the-shelf solutions to address fault
tolerance, like time-triggered architectures [12]. These allow
the application to be unaware of fault-tolerant mechanisms,
which are transparently provided by the architecture to cover
the platform faults. Thus, designers may focus on avoiding
design bugs and tuning the control algorithms to address the
plant faults. However, the rigidity of off-the-shelf solutions may
lead to suboptimal results from a design cost viewpoint.2

A. Contributions and Paper Organization

We present a design methodology for safety-critical embed-
ded control applications and a companion design flow called
Safety-Critical Real-time APplications Exploration (SCRAPE)
[13], [14]. This interactive software environment assists de-
signers with the exploration of the redundancy/cost tradeoffs
and the derivation of the final fault-tolerant implementation.
In Section II, we give an overview of SCRAPE with the help
of a paradigmatic feedback-control application, the inverted-
pendulum control system. SCRAPE has a formal foundation
on fault-tolerant data flow (FTDF), a novel synchronous and

2Although centered on a synthesis step, our approach does not exclude the
use of predesigned components like TTA modules, protocols like TTP, or fault-
tolerant operating systems. These can be part of a library of building blocks that
designers use to further explore the fault-coverage/cost tradeoff.

deterministic MoC that we describe in Section III. Determinism
and synchrony simplify the integration of formal validation
techniques in the design flow. Our approach is based on the
principle of separation of concerns. Designers start specifying
the application functionality without committing to a specific
execution platform and, therefore, independently from the
faults that it may suffer.3 This decoupling enables reuse of the
control algorithms on new versions of the product or different
products. At later stages, designers define a possible architec-
ture for the target execution platform, identify the expected set
of platform faults (fault model), and annotate the embedded
software processes to express their relative criticality. While
the FTDF model is fault-model independent, currently, SCRAPE

supports only two fault models: fail-silent execution plat-
forms and platforms that produce detectably faulty results. In
Sections III and V-A, we discuss how to extend them to random
errors and Byzantine faults.

The algorithm specification, the process criticality, the plat-
form architecture, and the fault model are processed simultane-
ously by SCRAPE in order to achieve the following.

1) Automatically deduce the necessary software replication.
2) Distribute each process on the execution platform.
3) Derive an optimal scheduling of the processes on each

ECU to satisfy the overall timing constraints.
When combined, the three steps (replication, mapping, and

scheduling) give the automatic fault-tolerant deployment of
the embedded software on the distributed execution platform
(Section IV). The deployment is robust with respect to both
permanent and transient faults in the execution platform. A
final validation step checks if the result satisfies the timing con-
straints for the control application (Section V). If this is not the
case, precise guidelines are returned to the designers who may
use them to refine the control algorithms, upgrade (and increase
the redundancy of) the platform, and/or revisit the fault model.
In Section VI, we apply SCRAPE to two case studies developed
in collaboration with two major automotive companies.

B. Related Work

While there is an extensive literature on fault tolerance
for distributed systems [15], [16], our approach focuses on
embedded control applications, and it is closer to the works by
Izosimov et al. [17]–[19]. They address the problem of transient
faults in the processing elements, assuming a model that com-
bines time-triggered communication protocol [20] and cyclic
static scheduling of the processors. The use of static schedules,
particularly with transparent recovery [21], can provide high
determinism and simplify debugging, typically at the expense
of performance and schedulability. In [17], reexecution (time
redundancy) and replication (space redundancy) are optimized
automatically to improve schedulability. In [19], they refine
this approach to include checkpointing, thus reexecuting only
the parts of a process that were affected by transient faults,
rather than the entire process. A method to explore the tradeoff
between higher schedulability and higher transparency, using
only reexecution, is proposed in [18].

Our approach differs in a number of aspects. First, we
tackle primarily permanent faults (using replication only) on

3Only the sensor/actuator set is defined so that control laws can be devised.

908 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

both processors and channels. We check for faults at each
communication and mask faults by space redundancy. This
gives coverage against transient faults as well, typically with
higher overhead than time redundancy. We consider more gen-
eral architecture topologies, whereas they consider a single
(fault-tolerant) broadcast bus, based on TTP. Our model is
more abstract and can be applied to both event and time-
triggered protocols [22]. It models mutual exclusion but does
not address specific protocol constraints, like time slots reuse
or priority-based arbitration. In fact, we build on the work in
[23] extending the model in different ways and implementing
automation of the methods. First, we introduced FTDF, a MoC
that specifically targets real-time control systems where sensors
and actuators have distinct roles and cannot be duplicated
automatically. In particular, in [23], the failure of a sensor even
if replicated cannot be tolerated because the data-flow subset
depending on that sensor could not be executed. In FTDF,
instead, different processes can have different firing rules and
can execute in spite of the failure of some sensors. Moreover,
processes can have different criticalities and require more or
less fault tolerance, and degraded modes of operation can be
modeled. In SCRAPE, designers can select the scheduling policy
between the following: 1) time-triggered schedules (providing
transparency properties as in [17] and [21]) and 2) dynamic
schedules (where processes are activated by data arrival or
aborted by watchdogs, thus resulting in higher schedulability).
Finally, we extended the synthesis algorithm to cope with
replica determinism.

II. PROPOSED METHODOLOGY AND DESIGN FLOW

The SCRAPE design flow covers various phases from the
conception of the control algorithms to the validation of the
automatic deployment on the target execution platform. It is
organized in the following six main stages: 1) definition of the
control strategy; 2) identification of process criticality; 3) speci-
fication of the execution platform and its fault model; 4) specifi-
cation of the fault behavior; 5) fault-tolerant embedded software
deployment; and 6) validation of the system implementation.

The first four stages are interactive because it is essential to
rely on the experience of the designers and their knowledge of
the specific features of the given control application. However,
the fault-tolerant deployment of embedded software and the
validation of the final system implementation are error-prone
tasks, whose complexity grows dramatically with the problem
size. Hence, these stages are fully automatic, as detailed in
Sections IV and V. Fig. 2 shows the main stages of SCRAPE.
In the rest of this section, we describe each stage with the
help of a simple example that we will use throughout this
paper.

Running Example: Inverted-Pendulum Control System.
The plant is the inverted pendulum, and the controller attempts
to keep it around the vertical unstable position. The pendu-
lum controller at the top-left of Fig. 2 is specified according
to FTDF, which is a synchronous monoperiodic MoC. Each
periodic execution is a three-phase reaction, whose phases are
described as follows.

1) Sampling: The input actor acquires from the (redundant)
sensors separate measures of the pendulum position and
assesses the position reliably through “sensor fusion.”

Fig. 2. SCRAPE interactive design flow.

2) Controlling: Controller actors execute the software
processes implementing two types of control laws (coarse
and fine) and arbitrate the value to be actuated.

3) Actuating: The output actor balances the actuation effort
among the (redundant) actuators that issue commands to
the electronics (A/D converters or pulsewidth-modulation
drivers) to set the motor torque.

The actuator updates are applied to the plant at the period
end to reduce jitter, a well-known technique in real-time control
[24], [25].

A. Definition of the Control Strategy

This initial design stage is mainly in the field of expertise
of the control theorists who define the control goals, identify
the type and number of sensors and actuators, and specify the
control algorithms and their period Tmax. The algorithms deal
with faults in the plant, the sensors, and the actuators [26].
There is yet no specific assumption on the type of execution
platform or on the type of faults that it may exhibit.

Running Example. The FTDF at the top-left of Fig. 2 uses
three sensors to determine the position (angle) of the inverted
pendulum. The actuation occurs through a pair of motors that
apply their torque on a common shaft, around which the pen-
dulum revolves. The following two control laws execute every
300 time units to bring the measured position error to “zero.”

1) A coarse (bang-bang) controller: It applies maximum
positive or negative torque based on the sign of the error
(i.e., whether the pendulum is to the left or right of the
desired position).

2) A fine (linear) controller: It applies a torque proportional
to the position error.

B. Identification of Process Criticality

Designers identify different levels of criticality for the vari-
ous processes. For example, essential processes provide highly
safety-critical functionality, advanced processes provide safety-
critical functionality with higher performance, and optional
processes provide nonsafety-critical functionality.

Advanced and essential processes may express some redun-
dancy by sharing common functionality. Then, in the absence
of faults, they may both contribute to the actuated values. Arbi-
tration processes combine such redundant values. Typically, an
arbiter is as critical as the most critical of its input processes.

PINELLO et al.: FAULT-TOLERANT DISTRIBUTED DEPLOYMENT OF EMBEDDED CONTROL SOFTWARE 909

Running Example. The bang-bang controller is assigned
higher criticality due to its robustness to actuator variability,
However, the fine controller yields better performance with re-
duced chattering. Hence, the “arbiter” selects the fine-controller
result whenever it is available, and it defaults to the coarser
result otherwise. In this case, the “arbiter” process is as critical
as the coarse-controller process.

C. Specification of the Execution Platform and Its Fault Model

Designers use execution platforms with two types of com-
ponents: ECUs and channels (see Fig. 2, top right). We model
this as a platform graph PG = (P,C,D), where P is the set
of ECUs, C is the set of channels, and D ⊂ P × C is the set
of edges representing the interconnections among the compo-
nents. A fault model defines the class of expected faults that
should be tolerated on a given PG. The FTDF algorithm does
not need to be aware of the fault model of the underlying plat-
form.4 A fault model specifies also the number and combination
of faults to be tolerated [27]. This is done based on a statistical
analysis of the various components, e.g., mean time between
faults and mean time between repairs. As in [23], we use failure
patterns to capture the combination of the subsystems’ failures
of interest. A failure pattern f is a subset of vertices of PG that
may fail together during the same reaction. A set F ⊂ 2P∪C

of failure patterns identifies the fault scenarios that must be
tolerated.

Running Example. Consider the platform in Fig. 2 for
the inverted-pendulum controller. If we need to tolerate
the failure of at most one ECU at a time, then, F =
{ ∅, {ECU0}, {ECU1}, {ECU2}}, where the empty failure
pattern ∅ denotes absence of faults.

D. Specification of Fault Behavior and Mapping Constraints

The fault behavior captures the system fault mitigation strat-
egy. For each failure pattern, designers specify which subset
of the functionality must be guaranteed execution based on
the process criticality (fault-tolerance binding). Typically, all
processes must run in the absence of faults. As faults become
more severe, the execution of less critical processes can be
dropped. The fault-tolerance binding dictates how the system
functionality degrades as faults occur. The functional binding
is a set of mapping constraints and performance estimates indi-
cating how to map each FTDF vertex. Together, these bindings
specify the requirements for a redundant deployment of the
FTDF on the platform graph PG.

Running Example. The desired fault behavior is as follows:
1) execution of the entire FTDF for the empty failure

pattern;
2) when an ECU fails, we can drop execution of the linear

controller (and of the sensor/actuator actors mapped on
the faulty ECU).

The functional binding constrains sensor and actuator
processes on the ECUs connected to those I/O.

4The examples and the automation tools presented in this paper assume fail
silence, i.e., components either provide correct results or do not provide any
result. However, FTDF is fault-model independent: More complex models can
be integrated in our approach by adding support for error detection and voting
mechanism in the implementation of communication media (see Section III).

Fig. 3. Synthesized solutions for the pendulum example.

E. Fault-Tolerant Embedded Software Deployment

This stage is the core of the design automation in SCRAPE.
It includes the following three steps: process replication, map-
ping, and scheduling. We replicate processes based on the
fault model and their criticality. Assuming fail-silent execution
platforms, a single replica of a process may be sufficient. For
other fault modes, more replicas may be needed to compare
results and prevent error propagation (see footnote 4). Then,
the various replicas are mapped to resources and are scheduled.
The higher the parallelism, the larger the freedom in scheduling.
To drive the scheduler toward better solutions, designers can
set additional precedence constraints. Other optimizations are
described in the sequel. Optimal or efficient scheduling depends
on accurate knowledge of the worst-case data-transmission
times on the channels and the worst case execution time
(WCET) of the processes [28], [29].

Running Example. The synthesized redundant deployment
is shown in Fig. 3(a), where each column corresponds to a
distinct resource. A series of rectangles (representing processes
and messages) is assigned to a column in an order that is
compatible with the data dependences specified in the FTDF
(indicated by the arrows across the rectangles). The rectangle
height is proportional to process/message duration. The dia-
gram shows that the application runs at the rate of once every
355 time units. Fig. 3(b) shows an optimized solution with a
reaction time of 260 time units.

F. Validation of the System Implementation

Finally, the mapped design must be validated. While there
has been progress on correct-by-construction methods that
complete the validation effort in the mapping phase, trace-based
functional simulation remains the most common approach:
Parts of the system are simulated to assess the time needed to
react to a fault or the deviation of a control set point in response
to a fault. Our FTDF library enables functional simulation
with the injection of faults as omission errors. Formal methods
for static verification assess the WCET and check whether
the deadlines are met. The validation techniques supported in
SCRAPE are discussed in Section V.

Running Example. Fig. 4 shows the results of the timing
analysis for the different failure patterns. For example, when
ECU3 fails (last diagram), none of its processes executes. Note

910 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

Fig. 4. Pendulum’s timing analysis across the failure patterns, by rows: no
faults, ECU1 fails, ECU2 fails, and ECU3 fails. No task runs on faulty ECUs.

Fig. 5. Fine controller with state memory. Criticality χ is in the dotted boxes.

that, for any failure pattern in F , at least one of the two
actuator actors (“C1ACTm0” and “C1ACTm1”) completes the
execution before 260 time units.

III. FTDF

FTDF is a MoC for specifying safety-critical feedback-
control applications. It is an extension of the classic data-flow
[30], [31] models. Its structure enables formal analysis and
automatic/semiautomatic synthesis techniques for obtaining an
efficient fault-tolerant implementation of the application under
design.

A. MoC

The basic building blocks of an FTDF are actors and commu-
nication media. FTDF actors represent processes that exchange
data tokens at each periodic reaction with synchronous seman-
tics [8]. FTDF communication media provide a fault-model-
independent communication semantics.
Definition 1: An FTDF is a graph G = (V,E) with (V =

A ∪ M) and E ⊂ (A × M) ∪ (M × A), where A is the set of
actors and M is the set of communication media.
G is bipartite, and actors are always connected via a com-

munication medium. Each edge e = (m,a) ∈ E (respectively
e = (a,m) ∈ E) corresponds to an input (respectively output)
port of actor a. Figs. 5 and 6 are examples of FTDF graphs. The
set of actors is partitioned into seven sets as A = AS ∪ AAct ∪
AI ∪ AO ∪ AT ∪ AA ∪ AM , corresponding to six regular actor
types (sensors, actuators, inputs, outputs, tasks, and arbiters,
respectively) and the state-memory actors.

Fig. 6. Fine controller reads current and previous angle.

Sensor and actuator actors correspond to software drivers
that read and update, respectively, the sensor and actuator
devices interacting with the plant. Input actors perform sensor
fusion, i.e., they read results coming from multiple sensors and
compute a robust measurement of the quantity of interest by
using some deterministic algorithm of designers’ choice, e.g.,
the median value. With sensor fusion, designers can sample the
quantity of interest by using sensors with different precision,
accuracy, cost, and reliability. Output actors are used to balance
the load on the actuators. Task actors perform general computa-
tion. Arbiter actors are similar in function to input actors: They
fuse values that come from actors with different criticality and
that must reach the same output actor5 [e.g., braking command
and antiblocking system (ABS)]. Sometimes, arbiters imple-
ment fixed-priority multiplexers like in the pendulum example.
Finally, state memories are special actors that operate as one-
reaction delays, thus expressing data dependences between
events belonging to consecutive reactions.
Definition 2: Given an FTDF graph G and a vertex v ∈ V ,

neig+(v) = {w ∈ V s.t. (v, w) ∈ E} is the set of successor
neighbors of v, and neig−(v) = {w ∈ V s.t. (w, v) ∈ E} is the
set of predecessor neighbors of v. The set neig(v) of all the
neighbors of v is the union of the two sets.

Clearly, v ∈ M ⇒ neig(v) ⊂ A, and symmetrically, v �∈
M ⇒ neig(v) ⊆ M because G is bipartite. The definition ex-
tends to sets in the natural way: neig(S) = ∪v∈S neig(v).
Definition 3: Given an FTDF graph G and an actor v ∈ A,

the successor actors of v are succ(v) = neig+(neig+(v)), and
the predecessor actors are pred(v) = neig−(neig−(v)).

The following rules specify the set of valid actor composi-
tions to obtain a legal FTDF graph.6

Definition 4: An FTDF graph G is “legal” if the following
conditions are met.

1) G contains no causality cycles, i.e., if graph G′ =
(V ′, E′), where V ′ = V \ AM , and E ′ = E ∩ (V ′ × V ′)
is acyclic.

2) ∀v ∈ AI , pred(v) ⊂ AS ∪ AM ∧ ∀v ∈ AS , and
succ(v) ⊂ AI .

3) ∀v ∈ AAct, pred(v) ⊂ AO ∧ ∀v ∈ AO, and succ(v) ⊂
AAct ∪ AM .

4) ∀v ∈ AS , neig−(v) = ∅, and ∀v ∈ AAct, neig+(v) = ∅.
Ignoring the technicalities related to the use of memory

actors, this definition states that a legal FTDF must start with
sensor actors (AS) and end with actuator actors (AAct), the
results of sensor actors must be combined using input actors

5Note that we advocate running nonsafety-critical tasks, e.g., door con-
trollers, on separate hardware. However, some performance-enhancement tasks,
e.g., lane-keeping and stability enhancements, may share sensors and actuators
with critical tasks (steer-by-wire). It may be profitable to have them share the
execution platform as well.

6Some basic rules (e.g., all input and output ports of an actor should be
connected, data types should be matched, etc.) are common to most data-flow
models and are assumed implicitly here.

PINELLO et al.: FAULT-TOLERANT DISTRIBUTED DEPLOYMENT OF EMBEDDED CONTROL SOFTWARE 911

(AI), and actuator actors must be driven by output actors (AO).
Figs. 5 and 6 are examples of legal graphs.

Actors communicate by exchanging tokens over unidirec-
tional (possibly many-to-many) communication media. Each
token consists of two fields: 1) Data—the actual data it trans-
ports and 2) Valid—a Boolean flag indicating the outcome of
fault detection on this token. When Valid is “false,” either no
data are available for this reaction or the available data are not
correct. In both cases, the Data field is ignored. New tokens
are produced whenever an active element (a regular actor or a
memory actor) fires. Each actor has a Boolean firing rule which
determines whether enough input tokens are valid for it to fire.
Actors in AS ∪ AAct ∪ AO ∪ AT ∪ AM always use the AND

firing rule, i.e., they require all inputs. Designers may specify
partial firing rules for input and arbiter actors. For example,
in Fig. 5, the input actor reading data from the three sensors
may produce a valid result even when one of the sensors cannot
deliver data (e.g., if the sensor is mapped on a faulty ECU).
Similarly, the arbiter actor may fire with just the bang-bang
result available.

Actors fire in an order that satisfies the data dependences that
are captured by the arcs in the FTDF graph G. The synchronous
semantics [8], [31], [32] implies that the firing activity occurs as
a sequence of reactions. Before an actor (notably a sensor actor)
can fire a second time, all the actors (including the actuator
actors) must complete the current reaction. This behavior re-
quires at most a single-place buffer for communication between
actors.

Actors may be replicated for redundancy purposes: All repli-
cas of the same source actor write to the same medium, and
all destination actors read from it. Media act both as mergers
and repeaters that deliver either the single “merged” result to all
destinations or an invalid token if no correct result is determined
during this reaction. This abstraction nicely encapsulates any
fault-detection and fault-recovery mechanisms in the underly-
ing execution platform. Using communication media, actors
always receive exactly one token per input, possibly invalid,
and the application behavior is independent of the type of faults
in the execution platform. Based on the firing rule of each
destination, they may or may not be able to fire when some
inputs are invalid. An actor that fires executes its sequential
code, which is as follows:

1) stateless (state must be stored in memory actors);
2) deterministic (identical inputs generate identical outputs);
3) nonblocking (once fired, it does not await for further

tokens, data, or signals from other actors);
4) terminating (bounded WCET).

A memory provides its state at the beginning of a reaction
and has a source actor, possibly replicated, that updates its state
at every reaction. State memories are analogous to latches in a
sequential digital circuit: They store the results produced during
the current reaction for use in the next one. Actors that need to
keep state across reactions must have one output and one input
connected to a memory like in Fig. 5, where the fine controller
computes the derivative of the pendulum position. Fig. 6 shows
an alternative way to compute the derivative, where the fine
controller reads both the current and the previous values of the
pendulum position. Making memories external to regular actors
simplifies the task of keeping them coherent after actor (and
memory) replication and in the presence of faults.

How to implement a communication medium depends on
the type of faults that can affect the arrival of input tokens
at each period.7 Communication media must be distributed to
withstand platform faults. Typically, this distribution means
having a repeater on each source ECU and a merger on each
destination ECU. The number of potential messages between
the redundant repeaters and mergers may become very large,
but channel broadcasting helps reduce the traffic greatly.

B. Expressing Criticality and Redundancy

FTDFs are designed to be independent from the fault model,
i.e., the type of faults that the execution platform may exhibit.
Designers specify how the system should behave in the pres-
ence of such faults, labeling FTDF graphs with actor criticality
χ : A → N, as shown in Figs. 5 and 6. Criticality inversion
happens when a critical actor needs input data from less critical
actors whose execution may not be guaranteed for some failure
patterns. A criticality assignment is strictly proper if, ∀v ∈
A, ∀w ∈ pred(v) χ(w) ≥ χ(v).

Definition 5: A criticality assignment of a legal FTDF G is
proper if, ∀v ∈ A \ (AI ∪ AA),∀w ∈ pred(v) χ(w) ≥ χ(v).

Note that input and arbiter actors may have partial firing rules
that allow execution when some or even all source actors are not
providing data. This is the rationale for desiring at least a proper
criticality assignment in practical cases.

FTDF graphs can express redundancy through the replication
of one or more actors. All the replicas of an actor v ∈ A are
denoted by R(v) ⊂ A. Note that any two actors in R(v) are of
the same type and must compute the same function.8

Definition 6: An FTDF graph G is “redundant” when some
actors are replicated, i.e., ∃v ∈ A s.t. R(v) �= {v}.

IV. FAULT-TOLERANT SOFTWARE DEPLOYMENT

In this section, we first formalize the problem of correctly
deploying an FTDF application on a distributed execution
platform that can exhibit (both transient and permanent) faults.
Then, we propose an algorithm to solve it automatically. Fi-
nally, we discuss some optimizations to improve the solution’s
quality. Our approach is based on introducing redundancy
via software replication. We replicate both actors and data
transmissions, and we map and schedule the replicas on re-
sources that do not fail simultaneously. Hence, at least one
replica of every critical computation/communication completes
successfully and contributes to the “survival” of the feedback-
control application. Software replication has its costs: program
memory, CPU, and bus cycles. We rely on guidelines from the
designer and replicate only computation and communication
for the most critical subsets of the control application. Another
option to reduce the run-time resource demands (CPU and bus
cycles) is passive replication, which is discussed in [14].

7Assuming fail silence, merging amounts to selecting any of the valid results,
typically the first one received; assuming value errors, majority voting is
necessary on the nominally identical results of the different replicas of the
source actor; assuming Byzantine faults, we need rounds of voting (consensus
problem [33]). If a majority cannot be elected, then the medium presents an
invalid token to all destinations.

8This rule is motivated in Section V-A where we explain replica determinism.

912 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

A. System Specification

The various inputs for the SCRAPE design flow (Fig. 2)
can be captured formally in a system-specification tuple
(G, Tmax,PG, F, χ, ψ, µ, τ), where the variables are defined as
follows.

1) G is the FTDF graph, as of Definition 1, specifying the
control algorithms and Tmax is its execution period.

2) PG = (P,C,D) is the platform graph that specifies the
topology and connectivity of the execution platform,
where P is the set of ECUs, C is the set of channels, and
D ⊂ P × C is the set of edges connecting them.

3) F ⊂ 2P∪C is the finite set of failure patterns including
the empty failure pattern, e.g., set F = {∅, f1, . . . , fK}
contains K + 1 failure patterns. The faults to be tolerated
can be derived through statistical analysis.

4) The fault behavior (χ, ψ) specifies which tasks should
be guaranteed execution under the different failure pat-
terns in F , where χ:A → N, ψ:F → N label actors
and architecture components with a criticality. Given a
set of faults fo ⊂ P ∪ C, let Fo = {f ∈ F, s.t. fo ⊆ f}
be the covering failure patterns and ψo = min ψ(Fo)
the minimum criticality. Then, the fault behavior re-
quires that at least one replica of each actor a, such
that χ(a) ≥ ψo, be executed when the set of faults fo

occurs.
5) µ:V → 2P∪C is the mapping-constraint function that

specifies on which vertices of PG can a given vertex of G
be mapped. Some actors may require special resources
that are not available at all ECUs. For instance, the
sensor and actuator actors need direct access to the I/O
resources. Also, µ can be used to guide the synthesis
tool. In Section VI, we illustrate how designers can use
the specification tuple to improve the synthesis results
interactively.

6) τ :V × P ∪ C → N is the performance annotation.

These are used to specify the estimated WCET and worst-
case transmission time (WCTT) of actors on ECUs and com-
munication on channels.

Running Example. For brevity, we do not offer the for-
mal description of G and PG for the inverted-pendulum con-
troller, but rather refer to Figs. 5 and 2, respectively. Let
us consider the failure of at most one ECU at a time: F =
{ ∅, {ECU0}, {ECU1}, {ECU2}}. An upper bound on the
probability of system failure is given by the probability that
any of the fault combinations not in F occurs: F̄ = 2P∪C \
F = 2{ECU0, ECU1, ECU2, CH0, CH1} \ F . If this value is too
high, we may need to move some of the elements of F̄
into F or perform a more detailed analysis, e.g., based on
fault trees [34]. Correspondingly, the desired fault behavior
(χ, ψ) is

χ(a) =
{

0, if a ∈ AS ∪ AAct ∪ {fine CTRL}
1, otherwise

ψ(f) =
{

0, if f = ∅
1, otherwise

.

Each ECU in Fig. 2 has access to one position sensor. ECU0
and ECU2 each have access to one of the two torque actuators.

Fig. 7. Communication between ECU0 and ECU2 is routed via ECU1.

The mapping constraints indicate that the sensor and actuator
processes execute only on their own ECU, i.e.,

v Sensi Act0 Act1 ∈ M otherwise
µ(v) {ECUi} ECU0 ECU2 P ∪ C P

.

For each process, function τ provides a finite WCET value
for each ECU, where it can be executed, and the ∞ value
otherwise.

B. Redundant Mapping and Scheduling

Given a set of control algorithms specified as an FTDF graph
G and an execution platform graph PG, we use another graph
to model the redundant allocation (mapping) of actors and
communication on the execution platform.

A mapping of G on PG is a directed graph L = (LV , LE)
whose vertices in LV are elements of (P ∪ C) × V , where V =
A ∪ M is the set of vertices of G and P ∪ C is the set of vertices
of PG. The presence of a vertex l ∈ LV , with l = (r, v), means
that actor or medium v is mapped to resource r. In a redundant
mapping, the replicas of a same actor can be mapped to multiple
resources. For a given actor or medium v ∈ V , the set �(v) =
{r ∈ P ∪ C, s.t. (r, v) ∈ LV } denotes the set of vertices of PG
where v is mapped. An edge e ∈ LE , with e = (l1, l2), where
l1 = (r1, v1) and l2 = (r2, v2), models data transfer from l1 to
l2. These data transfers may reflect one of the following two
possible cases.

1) Two actors are mapped on a same ECU, and the first
delivers data to the second; no channel is involved, i.e.,
r1 = r2 ∈ P and v1, v2 ∈ A.

2) One actor mapped on an ECU transmits or receives data
on a channel, i.e., r1 ∈ P, r2 ∈ C, v1 ∈ A, v2 ∈ M or
r1 ∈ C, r2 ∈ P, v1 ∈ M,v2 ∈ P .

A mapping must satisfy edge consistency: Edge e ∈ LE

connects vertices l1 = (r1, v1) and l2 = (r2, v2) only if the
associated FTDF elements depend on one another, i.e., if
(v1 ∈ A ∧ v2 ∈ succ(v1)) ∧ (r1 = r2 ∈ P) or if ((v1, v2) ∈
E) ∧ ((r1, r2) ∈ D ∨ (r2, r1) ∈ D). These reflect the previous
two cases of actor-to-actor communication on a same ECU
through memory and the dependency between an actor and a
communication medium.

Some platform graphs PG may need the use of routing to
transmit data between pairs of ECUs. For instance, in Fig. 7,
if two communicating actors are mapped on ECU0 and ECU2,
respectively, then we need an additional routing actor on ECU1
to relay the message from channel CH0 to channel CH1. The
redundant mapping may contain such routing actors. Routing
actors may introduce causality cycles, as discussed in [35].
However, these cycles are only apparent: As soon as one of the
source tasks generates the data, this enables at least one of the
routing actors in the cycle, thus enabling all the others. In fact,

PINELLO et al.: FAULT-TOLERANT DISTRIBUTED DEPLOYMENT OF EMBEDDED CONTROL SOFTWARE 913

each routing actor has only one input communication medium,
and it can fire as soon as at least one of its source actors
produces the data. Platforms with a buslike communication
infrastructure do not need routing actors because all ECUs are
connected to the same set of buses. Because the redundant
mapping L preserves the dependences in the application G, it
contains no causality cycles. Therefore, if we neglect memory
actors, L defines a partial order.

A schedule S is defined as a pair of functions (g(·), h(·)),
with g : P → Ā∗ and h : C → M̄ ∗, where Ā∗ and M̄ ∗ are the
sets of ordered subsets of A and M , respectively. For each
ECU p ∈ P , g(p) denotes the sequence of actors that run on p,
thereby defining a total order on actors mapped on p. Similarly,
∀c ∈ C, h(c) defines a total order on data communication
mapped on channel c. A pair (L,S) is called a deployment.

To avoid deadlock, the total orders defined by S must be
compatible with the partial order in L. To avoid causality
problems, memory actors execute before any other actor, thus
using the results of the previous reaction. Schedules based on
total orders are called static: There are no run-time decisions
to make, each ECU and each channel controller simply follows
the schedule. However, in the context of a faulty execution plat-
form, an actor may not receive enough valid inputs to fire, and
this lack of inputs may lead to starvation. Like in [23], we solve
this problem by skipping an actor if it cannot fire and by skip-
ping a communication if no data are available. We support both
flexible static schedules and time-triggered static schedules: In
the first model, as soon as we skip actors and communications,
we evaluate the firing rule of the next actor or communication in
the schedule; in the second one, we wait for the predetermined
start time of the next actor or communication.

Given the system specification, a synthesis algorithm derives
a fault-tolerant deployment, i.e., a redundant mapping LFT and
its associated schedule SFT.

Currently, the synthesis and verification algorithms are de-
rived assuming fail silence, i.e., components provide either
correct results or no results at all. This is a desirable fault
behavior as it offers strong fault containment, i.e., faults do not
propagate outside the faulty subsystem. Fail-silent very-large-
scale-integration platforms can now be realized with limited
area overhead and virtually no performance loss [36]. Software
methods can provide good coverage too [37].

C. Mapping Synthesis

Before tackling the problem of synthesizing a redundant
mapping LFT, we consider an auxiliary mapping problem.
Problem 1: Given G, PG, and a set of constraints µ′, find an

edge-consistent mapping L′ = (L′
V , L′

E), such that the follow-
ing conditions are satisfied.

1) ∀v ∈ A, (�(v) = {p}) ∧ p ∈ µ′(v).
2) ∀v ∈ M, �(v) ⊂ µ′(v).

A solution to Problem 1 is a nonfault-tolerant mapping. In
fact, having �(v) = {p} means that actor v is mapped to only
one processor. We may map communication media to multiple
channels to reach all destination actors, but Problem 1 does
not require redundancy to tolerate channel faults. We integrated
SynDex [41] into SCRAPE, and we use it to solve an instance of
Problem 1 making sure that we do not map critical actors and
communication on faulty components. This strategy effectively

maps a same actor on multiple ECUs and hence achieves redun-
dancy. Algorithm 1 uses the solutions of a number of instances
of Problem 1 to synthesize a fault-tolerant mapping LFT.

We start with the empty failure pattern ∅ and map the
entire FTDF graph G on the whole architecture. Then, we
consider each failure pattern f ∈ F and solve a new instance of
Problem 1. In Step 2a), we “mark” the faulty components to
prevent mapping critical actors or communication on them.
Because the execution of actors v with criticality χ(v) < ψ(f)
does not need to be guaranteed, we constrain them on the
same resources where they were mapped in Step 1). For critical
actors/communication, we consider the mapping constraints
µ(v) from the specification and remove the faulty components
in f . After solving all nonfault-tolerant mappings, we build
a redundant mapping. In Step 3), we obtain the redundant
mapping as follows:

L′
VFT

=
⋃
f∈F

LVf
L′

EFT
=

⋃
f∈F

LEf

where the union runs on all failure patterns in F , including the
empty failure pattern ∅. At the end, for each failure pattern, we
have at least one copy of every critical actor on some nonfaulty
resource. Due to the greedy nature of the algorithm, the amount
of replication depends on the order used to examine the failure
patterns in F and is not guaranteed to be minimum.

Algorithm 1: Consider tuple (G, Tmax,PG, F, χ, ψ, µ, τ)
1) let L∅ be the solution to Problem 1 using µ′ ≡ µ
2) for each f ∈ F \ {∅} do
a) build a set of constraints µf such that

µf (v) =
{

�∅(v), if (v ∈ A) ∧ χ(v) < ψ(f)
µ(v) \ f, otherwise

b) let Lf be the solution to Problem 1 using µ′ ≡ µf

3) merge the resulting mappings into a redundant mapping
L′

FT =
⋃

f∈F Lf = (LVFT , LEFT)

D. Redundant Mapping Transformation

Simply merging all the mappings relative to the failure
patterns gives a raw redundant mapping graph. This graph
can be transformed with some basic heuristics such as:
1) adding/pruning dependency edges in LE or 2) adding/
pruning entire redundant communication paths, including ver-
tices in LV . For instance, assume that actor v is mapped on
ECU r (therefore, there is a vertex (r, v) ∈ LV) and that the
same input data are available both from memory (data sent
by some other actor v′ on the same ECU r) and from some
dependency node (data sent by actor v′ running on other ECUs).
We could directly get data from memory instead of from
the dependency node. Pruning the edge from the dependency
node could potentially save data transmission time on the bus.
Furthermore, if the dependency node only had one destination
ECU and we removed this edge, then we can remove the
dependency node too. While this choice may produce lower
bus bandwidth, pruning may, in general, reduce redundancy
below the minimum required to meet the fault behavior. The
example of previous pruning may seem safe because if ECU r is

914 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

available to fire v, it was also available to fire v′; hence, its result
will be in memory. This assumption is often true, but actor v′

may not be able to fire on ECU r because it could be waiting for
some inputs from other actors scheduled on some faulty ECU.
In this case, having the result of v′ available also from the bus
may provide better fault tolerance. Moreover, depending on the
execution model, the designer might want to preserve both data
paths. For example, if we allow a dynamic run-time execution
model, we can abort execution of actor v′ on r when we receive
the same result from the bus. Then, it might be advantageous to
have both paths because we could start the execution of v on r
as soon as the result of v′ is known, either from the bus or from
completing execution of v′ on r.

By adding new communication paths for the data depen-
dences, we can provide reliable data delivery in spite of faults.
We use this mechanism to tackle replica determinism (see
Section V-A). By adding edges between nodes on a same re-
source, we can introduce precedence constraints, thus limiting
the number of possible total orders and guiding the selection of
a schedule SFT. In general, adding edges and communication
paths does not compromise fault tolerance because it means
additional redundancy. If, instead, we choose to prune some
edges and nodes, we must run a verification tool to check
whether the solution still meets the fault behavior.

E. Scheduling the Redundant Mapping

Using the mapping graph and the set of firing rules, we find
all predecessor firings required for the firing of each pair of
actor/ECU or data dependency/channel. However, the mapping
graph itself is not the final schedule yet because it only gives a
partial order. To obtain a fault-tolerant deployment (LFT,SFT),
we derive a schedule SFT for the execution of LFT. More
formally, for each ECU p ∈ P and for each channel c ∈ C, we
derive a total order that is compatible with LFT for the execu-
tion of actors mapped on p, i.e., of actors in {v ∈ V, s.t. p ∈
L(v)} and for the transmission of data mapped on c ∈ L(m).

If we did not prune the redundant mapping and if there is
sufficient redundancy in the execution platform, the resulting
fault-tolerant deployment (LFT,SFT) is guaranteed by con-
struction to meet the fault behavior (χ(·), ψ(·)). We can derive
the schedule SFT using a list-scheduling algorithm driven by
any heuristic cost function [38]. Heuristics minimizing the
worst-case reaction time are excellent candidates.

Running Example. For brevity, we do not describe the
resulting fault-tolerant deployment in terms of the graph LFT

and its associated schedule SFT. Rather, we refer to Fig. 3(a)
and its description in Section II-E. Notice that the arbiter
process (“C0AR1b”) running on ECU2 waits for the result of
the bang-bang controller (“C0FUNc”) on channel1. To improve
the schedule, we can force the scheduler to prioritize data
communication using additional precedence constraints

Bus channel1 : C0FUNc!o0 C1FUNf!o0.

This specifies that data communication “C0FUNc!o0,”
i.e., the output “o0” of actor “C0FUNc,” must precede
“C1FUNf!o0” on channel1. Since this precedence constraint
does not create a cycle in the redundant mapping, it can be
safely used in the topological sort algorithm. Fig. 3(b) shows

Fig. 8. Failure of channel CH0 causes the two replicas of the Arbiter actor to
receive different subsets of the inputs.

the corresponding synthesized solution with a reaction time
reduction from 355 to 260 time units.

V. VERIFICATION

We develop a tool to validate the functionality of the control
application by simulating the unmapped FTDF graph G. The
simulation supports replicated actors and the injection of omis-
sion errors. Furthermore, for each deployment, we can statically
check two important properties related to both functionality
and timing: replica determinism and worst-case reaction time.
Because these checks are done for each failure pattern, we
incidentally also verify adherence to the fault behavior.

A. Replica Determinism

Given a mapping L, we must preserve replica determinism:
If two actors in R(v) (i.e., replicas of a same actor v) fire, they
produce identical results. For general MoCs, the order of arrival
of results must also be the same for all replicas. Synchrony of
FTDF makes this check unnecessary. Replica determinism in
FTDF can be achieved with the enforcement of the following
two conditions.

1) All actors in R(v) compute the same function.
2) For any failure pattern, if two replicas get a firing subset

of inputs, they get the same subset of inputs.
Condition 1) is enforced by construction as only identical repli-
cas are allowed. Condition 2) amounts to a consensus problem,
and it can be either checked at run time (like for Byzantine
agreement rounds of voting) or analyzed statically at compile
time (if the fault model is milder). Our interest in detectably
faulty execution platforms makes the latter approach appear
more promising and economical. Condition 2) is trivially true
for all actors with the “AND firing rule.” For input and arbiter
actors, the condition must be checked and enforced.

Running Example. In Fig. 8, both replicas of the Input actor
receive the same subset of data from the two sensors Sens
on ECU1 and ECU2. Normally, they fire, producing the same
results from the same data. However, if channel CH0 fails,
the two replicas of the Arbiter actor get different subsets of
the inputs: The replica on ECU1 only gets the result from the
Coarse CTRL (controller) actor, and the replica on ECU2 only
gets the result from the Fine CTRL actor. Hence, if they fire,
they will produce different results.

We derive procedure extend(L) that transforms a mapping L
to enforce Condition 2). Its basic step is the following.

• If Condition 2 fails, some data are produced but delivered
only to some replicas. Then, extend the mapping with
routings of the results to the replica that lacks them.

If there is enough connectivity in PG, repeating this step will
stabilize the mapping and achieve replica determinism.

PINELLO et al.: FAULT-TOLERANT DISTRIBUTED DEPLOYMENT OF EMBEDDED CONTROL SOFTWARE 915

B. Timing Analysis

In the following, a “task” indicates a vertex of the redundant
mapping graph LFT. Given a deployment (LFT,SFT), we
compute the time-out for each task, and the worst-case reaction
time from sensors to actuators, for all failure patterns. We
illustrate the algorithm assuming fail silence, but it can be
extended for the case of majority voting or rounds of voting.
While we illustrate the case of a flexible static execution model
(see Section IV-B), the time-triggered version is simply derived
taking maxima across failure patterns. Before a task can fire, it
needs to wait for the outputs generated by its predecessor tasks
and for the resource to be ready.

Consider a vertex l = (r, v) in LFT. Assume that v has N
input ports (N = 1 if v ∈ M). We compute, for each failure
pattern f ∈ F , the following values for task l:

1) the availability time of each input tIj
(l, f);

2) the time at which it is enabled tn(l, f);
3) the time to fire (start) ts(l, f);
4) time-out to(l);
5) the time to results (completion) tc(l, f);
6) the time to end te(l, f).
For the jth input port, task l can receive replicated data from

Mj tasks. Let lz , with z = 1, . . . , Mj , denote these source tasks
in LFT. Let tc(lz, f) be the time that the lz task produces data
in failure pattern f . For some f , tc(lz, f) can be ∞.

Given fail silence, we define input tIj
(l, f) to be the (earliest)

time the jth input port receives data in failure pattern f

tIj
(l, f) =

Mj

min
z=1

tc(lz, f). (1)

If no result is available for some f , then tIj
(l, f) = ∞.

Let tn(l, f) be the time when the task is enabled. Tasks with
the “AND” firing rule need all inputs

tn(l, f) =
N

max
j=1

tIj
(l, f). (2)

For “partial” firing rules, we define the enabling function en()

en(l, tI1, . . . , tIN)
{

maxN
j=1 tIj

, if firing subset
∞, otherwise

where tIj
is the arrival time of input Ij , and max takes the finite

maximum in a finite set E ⊂ (R+
0 ∪ {∞}). If all values are ∞,

then max returns zero by default, i.e.,

max E = max {{0} ∪ {e ∈ E such that e �= ∞}} . (3)

For example, for the “n-out-of-N” firing rule, we have

en(l, tI1, . . . , tIN)

=
{

maxN
j=1 tIj

, if |{tIj
�= ∞, j = 1, . . . , N}| ≥ n

∞, otherwise.

By looking at en(·), we know if a task could fire in a given
failure pattern. However, at run time, we do not know f , and
before firing with missing inputs, we must wait for a time-out

tw(l) = maxf∈F en (l, tI1(l, f), . . . , tIN (l, f)) .

Then, for failure pattern f , the time when l is ready to run,
and when no more inputs are going to arrive, is denoted by

tn(l, f) = max (en (l, tI1(l, f), . . . , tIN (l, f)) , tw(l)) . (4)

If, for some f , we have tn(l, f) = ∞, not enough input ports
receive data, and the task is not enabled to fire.

We define the time-out to be “the latest time when the task
can be ready to fire under any failure pattern”

to(l) = maxf∈F tn(l, f). (5)

If time exceeds to(l), no future input will enable the task. In
order to fire v, resource r should be available. Let l′ = (r, v′) ∈
LFT such that v′ immediately precedes v on resource r in the
schedule SFT. Let te(l′, f) be the time when task l′ releases
resource r. Then, task l starts execution at time

ts(l, f) = max (tn(l, f), te(l′, f)) . (6)

Task l will not fire under failure pattern f if ts(l, f) = ∞. The
results from this task are available in failure pattern f at time
tc(l, f) = ts(l, f) + τ ∗(l, f), where τ ∗(l, f) is the execution
time of v on resource r in failure pattern f . Notice that τ ∗(l, f)
can take one of two possible values. If the resource is not faulty,
i.e., r �∈ f , then τ ∗(l, f) = τ(v, r); otherwise, τ ∗(l, f) = ∞.
Finally, the resource release time te(l, f) is

te(l, f) =




∞, if r ∈ f
tc(l, f), if tc(l, f) �= ∞
max (to(l), te(l′, f)) , otherwise.

(7)

If the resource is faulty, it is never available. If the task gener-
ates results (hence r �∈ f), the resource is released at tc(l, f).
Otherwise, r does not fail, and l does not fire (due to lack of
inputs). Hence, r can be released after the time-out to(l) and
after the release time te(l′, f) of the previous task.

We perform this analysis, proceeding from sensors to actua-
tors. For each task, we analyze all failure patterns before going
to the next task. The complexity is clearly linear in the number
of nodes in LFT and in the number of failure patterns.

The latest time to generate outputs for all final actuation
tasks, under all failure patterns, is the worst-case reaction time

Te(LFT,SFT) = maxf∈F, l∈LFTtc(l, f)

i.e., the worst-case execution time of the whole deployment.

VI. TWO CASE STUDIES FROM AUTOMOTIVE INDUSTRY

We completed the following two industrial case studies
with SCRAPE.

1) A simplified drive-by-wire system that is developed in
collaboration with BMW. It consists of braking, steering,
force feedback on the steering wheel, and a supervisory
controller to enhance vehicle stability.

2) A steer-by-wire system that is developed in collabora-
tion with General Motors. It consists of steering, force
feedback on the steering wheel, and a supervisory con-
troller for vehicle stability.

Both systems are not actual products but model key features in
principle, they involve different design aspects: In the BMW

916 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

Fig. 9. Drive-by-wire system: Simplified functional diagram and platforms.

Fig. 10. Synthesized redundant mapping for the drive-by-wire example. To
reduce clutter, the task names and data dependencies are removed.

case, we addressed a mix of critical requirements (e.g., the su-
pervisor is less critical than other tasks), whereas in the General
Motors case, we experimented a solution with a combination of
fail silence and triple-modular redundancy (TMR).

A. Drive-by-Wire Control System

Fig. 9 (top) captures the basic functionality of the system.
The following are the four main processes (tasks) involved.

1) Braking computes the four braking forces based on the
brake pedal position and implements ABS control based
on wheel speed.

Fig. 11. Steer-by-wire system: Simplified functional diagram and platforms.

Fig. 12. Alternative execution platforms for steer-by-wire system.

Fig. 13. Worst-case reaction time (normalized for IP protection).

2) Steering computes what force to apply to the front steer-
ing rack based on the steering wheel position.

3) Steering feedback computes the feedback torque to be
applied to the steering wheel, based on the vehicle dy-
namics, later on acceleration, and on road conditions.

4) Supervisory control coordinates the other three processes
in order to achieve and enhance vehicle stability based on
data coming from accelerometers.

The first three processes are highly safety critical, i.e., their loss
would lead to unacceptable consequences. Supervisory control
adds value to the vehicle, but its loss is not safety critical
because the driver may still act on the braking, steering, and
throttle to stabilize the vehicle in case of a sudden change in the
terrain conditions: The vehicle would still behave as a standard
vehicle with ABS brakes. Hence, during the specification of the
fault behavior (see Section II-D), the supervisor is marked as
less critical, whereas integrity is required for the three critical
processes. Fig. 9 shows the candidate execution platform. It

PINELLO et al.: FAULT-TOLERANT DISTRIBUTED DEPLOYMENT OF EMBEDDED CONTROL SOFTWARE 917

consists of six identical ECUs connected by three buses. Four
ECUs are located next to the wheels, and two ECUs are
found next to the driver commands. Together, they access many
sensors/actuators while exploiting physical proximity to avoid
a single failure point: This avoids the case where the loss of one
ECU causes the loss of controllability of the system.
1) Synthesized Solution: The diagrams of Fig. 10 show the

synthesis result.9 They highlight a strong imbalance in the
ECU workload, with ECU1 being the bottleneck: It is the most
utilized among ECUs because it runs the supervisor actor. The
worst-case reaction time is 1.7 ms, which is well within the
desired control period of 5 ms. This is an acceptable result if
the designers are satisfied with the implementation cost (and,
e.g., with having spare room on the ECUs for future releases
of the product or for reusing it across different vehicle models).
In fact, because other ECUs are lightly loaded, designers may
require the same level of integrity also for the supervisor (i.e.,
label the supervisor with the same criticality as the other three
processes). This additional requirement should have a small
impact on timing and virtually no impact on cost. Instead, if
the production volume of this specific vehicle model is large
enough to justify differentiating its execution platform from
that of other vehicles, designers may seek a cheaper solution.
Fig. 10 shows that reducing the performance of all ECUs but
ECU1 would slightly increase the worst-case timing and could
reduce costs. Similarly, if the solution had not met the timing
constraints, then it would be useless to speed up the other ECUs
without making ECU1 faster. Another option is breaking up
the supervisor into smaller actors and trying to extract more
parallelism. A finer granularity FTDF would, in general, yield
a more balanced solution.

B. Steer-by-Wire Control System

Fig. 11 shows the simplified functional diagram of the steer-
by-wire system. An interesting characteristic of this design is
its interaction with the power unit coordinator. Because the
electricity generated by the fuel cell powers both propulsion
and the by-wire actuators, it is critical to coordinate its use in
order to avoid dangerous fluctuations in the power grid. In our
case, the power unit coordinator is assumed to be a predesigned
module on a dedicated ECU.

We had a detailed FTDF graph specification for the steer-
by-wire too: Aside from the interaction with the power unit
coordinator, it models the steering and supervisor functional-
ities. The latter is specified in TMR by the designer, i.e., there
are three explicit replicas of the supervisor, which will not be
replicated further. A majority voter actor collects their results
and elects a majority response. The voter actor, which appears
in single copy in the specification, is automatically replicated
during synthesis.

The main goal of this paper is to complete an exploration
of the architectural space, i.e., the set of possible execution
platforms that could support the application. We looked at a
few basic alternatives including those shown in Fig. 11. In
particular, the clustered architecture “a)” is made of a number
of high-end ECUs connected to a high-speed and very reliable

9Because the diagram is good for assessing the overall quality of the solution,
but it is far less practical to read out detailed information, the tool outputs the
latter also in textual form.

(low failure rate) bus. Some high-end ECUs also communicate
to low-end ECUs using a slower and less reliable bus (with
a failure rate that is of concern). The low-end ECUs process
prevalently the system I/O (reading sensors and writing to actu-
ators). In the distributed architectures [b), c), and d)], all ECUs
communicate through a system of global buses. Architectures
c) and d) have three parallel busses that are slower and less
reliable than the one in b). For these architectures, we tried
various configurations, including the following:

1) changing the number of high-speed ECUs;
2) preventing mapping of non-I/O tasks on low-end ECUs;
3) assuming very reliable components (i.e., only the empty

failure pattern is specified in the fault behavior) versus
considering single faults or even dual bus faults;

4) assuming dynamic versus static execution model.

For each configuration in Fig. 12, we run four syntheses
(with/without redundancy and static/dynamic schedule). Given
the large design space, we fully relied on automatic solution
without providing any hints to our tool. The total run time for
the 46 syntheses was less than 2 min on a Pentium mobile
laptop running at 1.6 GHz. Figs. 13 and 14(a) and (b) show
the following results, respectively:

1) safe period, i.e., worst-case duration of a reaction (from
sensors to actuators) under all failure patterns;

2) average, minimum, and maximum CPU utilizations;
3) average, minimum, and maximum bus utilizations.

Note that the syntheses with no redundancy (denoted by
“_nr” in the pictures) are there as a baseline comparison. The
safe period does not increase dramatically when we introduce
redundancy (denoted by “_r”), except for the distributed archi-
tectures with a slow bus system (from a7 to a12). Remarkably,
the use of static (time-triggered) instead of dynamic execution
models (static is denoted by “_t” and dynamic by “_d”) does
not affect the safe period, except when the system is heavily
loaded. However, even for highly utilized systems, dynamic
execution is not much faster than static. One characteristic that
may help explain this limited advantage is that, in the steer-by-
wire case, we did not mark any process as less critical, thereby
executing all processes in the various failure patterns.

The results show that execution platforms with a slower
bus system (starting with a7) have higher bus utilization. For
solutions between a3 and a6, there is only a single fast bus,
so the average, minimum, and maximum utilizations obviously
coincide. Finally, the results corresponding to alternative a10
produce a remarkably well balanced (minimum close to maxi-
mum) utilization for both CPUs and buses.

C. Discussion

These experiments show how SCRAPE can explore quickly
many alternative execution platforms along the following axes:

1) architecture: topology and number of components;
2) performance of the various components;
3) reliability of the various components (as reflected in the

set of failure patterns to be considered);
4) mapping constraints, which may reflect the unavailability

of binaries of some actors for some ECUs.

In these experiments, we did not explore the functionality
space, e.g., introduction of pipelining and/or changes of the

918 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 27, NO. 5, MAY 2008

Fig. 14. Results for steer-by-wire control systems: CPU utilization and Bus utilization.

granularity of the FTDF graph to expose more parallelism.
Besides comparing execution platforms based on the timing in-
formation, General Motors was interested in other metrics that
are more specific to the automotive industry such as component
reusability for larger economies of scale. Clearly, SCRAPE can
be extended to support this kind of design exploration.

VII. CONCLUDING REMARKS

Designing cost-sensitive real-time control systems for
safety-critical applications requires a careful analysis of the
cost/coverage tradeoffs of fault-tolerant solutions. This further
complicates the difficult task of deploying the embedded soft-
ware that implements the control algorithms on the execution
platform, which is often distributed around the plant (as it is
typical, for instance, in automotive applications). Control theo-
rists design the periodic control laws that run on the execution
platform (composed of the distributed hardware and operating
system, middleware, and drivers). These control laws address
faults in the controlled plant (e.g., a flat tire or a stuck brake).
However, in order to guarantee the end user safety, designers
must deal also with faults in the execution platform.

We defined a new design methodology for safety-critical
applications that advocates separation of concerns, and we
use it to develop SCRAPE an interactive software environment
where designers specify the functionality separately and inde-
pendently from the execution platform and the faults that it
may exhibit. The different parts of the specification, i.e., func-
tionality, execution platform, and fault model, are processed
together to automatically derive the fault-tolerant deployment
of the embedded control software. This approach relieves
designers from the burden of specifying and implementing
detailed fault-tolerant mechanisms. Furthermore, it allows them
to explore rapidly the design space, so that they can make
informed decisions about changing the control algorithms,
restructuring the execution platform, and refining its fault
model.

SCRAPE has its foundation on FTDF and was realized assem-
bling a new set of tools for fault-tolerant deployment. FTDF is
a novel MoC that we propose for programming safety-critical
control applications. FTDF deals with redundancy explicitly
and is fault-model independent, i.e., it can be retargeted to
execution platforms exhibiting fail silence, random errors, or
more general error behavior. The fault-tolerant deployment
tools, which include tools for redundant mapping and execution
scheduling, currently support fail-silent execution platforms

and platforms that produce detectably faulty results. We tar-
geted real-time feedback-control applications, with no dynamic
creation and dispatching of new tasks (i.e., the task workload is
known statically at design time), and we support both perma-
nent and transient platform faults. We used SCRAPE to explore
the design space for two modern automotive applications. In
particular, for a simplified steer-by-wire system under develop-
ment at General Motors, we were able to compare 46 design
alternatives in less than 2 minutes.

ACKNOWLEDGMENT

The authors would like to thank T. Demmeler of BMW
Technology Office and S. Kanajan of General Motors for their
collaboration in developing the drive-by-wire and the steer-by-
wire systems, respectively, and C. Dima and A. Girault for
inspiration and support.

REFERENCES

[1] E. A. Lee, “What’s ahead for embedded software?” Computer, vol. 33,
no. 9, pp. 18–26, Sep. 2000.

[2] D. Tennenhouse, “Proactive computing,” Commun. ACM, vol. 43, no. 5,
pp. 43–50, May 2000.

[3] H. Gill, “Challenges for critical embedded systems,” in Proc. 10th IEEE
Int. Work. Object-Oriented Real-Time Dependable Syst., Sedona, AZ,
Feb. 2005, pp. 7–9.

[4] A. Sangiovanni-Vincentelli, “Electronic-system design in the automobile
industry,” IEEE Micro, vol. 23, no. 3, pp. 8–18, May/Jun. 2003.

[5] E. A. Lee, “Absolutely positively on time: What would it take?”Computer,
vol. 38, no. 7, pp. 85–87, Jul. 2005.

[6] R. Isermann, R. Schwarz, and S. Stolzl, “Fault-tolerant drive-by-wire
systems,” IEEE Control Syst. Mag., vol. 22, no. 5, pp. 64–81, Oct. 2002.

[7] J. Laprie, Ed., Depend Ability: Basic Concepts and Terminology in Eng-
lish, French, German, Italian and Japanese, ser. Dependable Comput-
ing and Fault-Tolerant Systems, vol. 5. New York: Springer-Verlag,
1992.

[8] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. L. Guernic, and
R. de Simone, “The synchronous language twelve years later,” Proc.
IEEE, vol. 91, no. 1, pp. 64–83, Jan. 2003.

[9] R. Alur et al., “Hierarchical modeling and analysis of embedded systems,”
Proc. IEEE, vol. 91, no. 1, pp. 11–28, Jan. 2003.

[10] S. Edwards, L. Lavagno, E. Lee, and A. Sangiovanni-Vincentelli, “Design
of embedded systems: Formal methods, validation and synthesis,” Proc.
IEEE, vol. 85, no. 3, pp. 266–290, Mar. 1997.

[11] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-integrated
development of embedded software,” Proc. IEEE, vol. 91, no. 1, pp. 145–
164, Jan. 2003.

[12] H. Kopetz and D. Millinger, “The transparent implementation of fault tol-
erance in the time-triggered architecture,” in Proc. Dependable Comput.
Critical Appl., San Jose, CA, 1999, p. 191.

[13] C. Pinello, L. P. Carloni, and A. L. Sangiovanni-Vincentelli, “Fault-
tolerant deployment of embedded software for cost-sensitive real-time
feedback-control applications,” in Proc. Conf. Des., Autom. Test Eur.,
Feb. 2004, pp. 1164–1169.

PINELLO et al.: FAULT-TOLERANT DISTRIBUTED DEPLOYMENT OF EMBEDDED CONTROL SOFTWARE 919

[14] C. Pinello, “Design of safety-critical applications, a synthesis approach,”
Ph.D. dissertation, Univ. California, Berkeley, Aug. 2004.

[15] F. Cristian, “Understanding fault-tolerant distributed systems,” Commun.
ACM, vol. 34, no. 2, pp. 56–78, Feb. 1991.

[16] P. Jalote, Fault Tolerance in Distributed Systems. Englewood Cliffs, NJ:
Prentice-Hall, 1994.

[17] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Design optimization of
time- and cost-constrained fault-tolerant distributed embedded systems,”
in Proc. Conf. Des., Autom. Test Eur., 2005, pp. 864–869.

[18] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of fault-
tolerant schedules with transparency/performance trade-offs for distrib-
uted embedded systems,” in Proc. Conf. Des., Autom. Test Eur., 2006,
pp. 706–711.

[19] V. Izosimov, P. Pop, P. Eles, and Z. Peng, “Synthesis of fault-tolerant
embedded systems with checkpointing and replication,” in Proc. 3rd IEEE
Int. Workhop Electron. Des., Test Appl., 2006, pp. 440–447.

[20] H. Kopetz and G. Grunsteidl, “TTP: A protocol for fault-tolerant real-time
systems,” Computer, vol. 27, no. 1, pp. 14–23, Jan. 1994.

[21] B. M. N. Kandasamy and J. P. Hayes, “Transparent recovery from
intermittent faults in time-triggered distributed systems,” IEEE Trans.
Comput., vol. 52, no. 2, pp. 113–125, Feb. 2003.

[22] T. Grandpierre, C. Lavarenne, and Y. Sorel, “Optimized rapid prototyping
for real-time embedded heterogeneous multiprocessors,” in Proc. 7th Int.
Workshop Hardware/Software Co-Des., May 1999, pp. 74–78.

[23] C. Dima, A. Girault, C. Lavarenne, and Y. Sorel, “Off-line real-time
fault-tolerant scheduling,” in Proc. Euromicro, Mantova, Italy, Feb. 2001,
pp. 410–417.

[24] A. J. Wellings, L. Beus-Dukic, and D. Powell, “Real-time scheduling in a
generic fault-tolerant architecture,” in Proc. RTSS, Dec. 1998, p. 390.

[25] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Embedded control sys-
tems development with GIOTTO,” in Proc. Languages, Compilers, Tools
Embedded Syst., 2001, pp. 64–72.

[26] A. Casavola and E. Garone, “Adaptive fault tolerant actuator allocation
for overactuated plants,” in Proc. 26th Am. Control Conf., New York, NY,
Jul. 2007, pp. 3985–3990.

[27] H. Siu, Y. Chin, and W. Yang, “Reaching strong consensus in the pres-
ence of mixed failure types,” Inf. Sci., vol. 108, no. 1, pp. 157–180,
Jul. 1998.

[28] J. Engblom and B. Jonsson, “Processor pipelines and their properties for
static WCET analysis,” in Proc. 2nd. Int. Conf. EMSOFT, 2002, vol. 2491,
pp. 334–348.

[29] C. Ferdinand et al., “Reliable and precise WCET determination for a
real-life processor,” in Proc. 2nd. Int. Conf. EMSOFT, 2001, vol. 2211,
pp. 469–485.

[30] J. Dennis, “Data flow supercomputers,” Computer, vol. 13, no. 11, pp. 48–
56, Nov. 1980.

[31] E. A. Lee and D. G. Messerschmitt, “Synchronous data flow,” Proc. IEEE,
vol. 75, no. 9, pp. 1235–1245, Sep. 1987.

[32] A. Benveniste and G. Berry, “The synchronous approach to reactive and
real-time systems,” Proc. IEEE, vol. 79, no. 9, pp. 1270–1282, Sep. 1991.

[33] M. Barborak, M. Malek, and A. Dahbura, “The consensus problem in
fault-tolerant computing,” ACM Comput. Surv., vol. 25, no. 2, pp. 171–
220, Jun. 1993.

[34] M. L. McKelvin, G. Eirea, C. Pinello, S. Kanajan, and A. L. Sangiovanni-
Vincentelli, “A formal approach to fault tree synthesis for the analysis
of distributed fault tolerant systems,” in Proc. Conf. Embedded Softw.,
Sep. 2005, pp. 237–246.

[35] C. Dima, A. Girault, and Y. Sorel, “Static fault-tolerant real-time schedul-
ing with “pseudo-topological” orders,” in Proc. FORMATS/FTRTFT,
2004, pp. 215–230.

[36] M. Baleani, “Fault-tolerant platforms for automotive safety-critical appli-
cations,” in Proc. Int. Conf. Compilers, Archit. Synthesis Embedded Syst.,
2003, pp. 170–177.

[37] F. Brasileiro, P. Ezhilchelvan, S. Shrivastava, N. Speirs, and S. Tao,
“Implementing fail-silent nodes for distributed systems,” IEEE Trans.
Comput., vol. 45, no. 11, pp. 1226–1238, Nov. 1996.

[38] T. Yang and A. Gerasoulis, “List scheduling with and without com-
munication delays,” Parallel Comput., vol. 19, no. 12, pp. 1321–1344,
Dec. 1993.

[39] K. Ahn, J. Kim, and S. Hong, “Fault-tolerant real-time scheduling using
passive replicas,” in Proc. Pacific Rim Int. Symp. Fault-Tolerant Syst.,
1997, pp. 98–103.

[40] S. Ghosh, R. Melhem, and D. Mosse, “Fault-tolerant scheduling on a
hard real-time multiprocessor system,” in Proc. 8th Int. Parallel Process.
Symp., Los Alamitos, CA, 1994, pp. 775–782.

[41] INRIA, SynDEx Webpage. [Online]. Available: http://www-rocq.inria.fr/
syndex/

Claudio Pinello received the Laurea degree (summa
cum laude) in electrical engineering from the Uni-
versità di Roma, La Sapienza, Italy, in 1997, and
the M.S. and Ph.D. degrees in electrical engi-
neering and computer sciences from the Univer-
sity of California, Berkeley, in 2001 and 2004,
respectively.

He has been with the Cadence Research Laborato-
ries, Berkeley, since 2006, working in the System-
Level Design Group. Previously, he held research
positions at PARADES Research Laboratory, Rome,

Italy; at the BMW Technology Office, Palo Alto, CA; at the INRIA Rhône
Alpes, France; at Cadence Berkeley Laboratories; and at General Motors Re-
search. His interests are in embedded systems design, fault-tolerant distributed
systems, and control theory and applications. He has coauthored over 25 papers.

Dr. Pinello was the corecipient of two best paper awards at Design Au-
tomation Conference 2007 and Real-Time and Embedded Technology and
Applications Symposium 2007.

Luca P. Carloni (S’95–M’04) received the Laurea
degree (summa cum laude) in electrical engineering
from the Università di Bologna, Bologna, Italy, in
1995, and the M.S. and Ph.D. degrees in electrical
engineering and computer sciences from the Uni-
versity of California, Berkeley, in 1997 and 2004,
respectively.

He is currently an Assistant Professor with the
Department of Computer Science, Columbia Uni-
versity, New York, NY. He has authored over
50 publications and is the holder of one patent.

His research interests are in the area of design tools and methodologies for
integrated circuits and systems, distributed embedded systems design, and
design of high-performance computer systems.

Dr. Carloni received the Faculty Early Career Development (CAREER)
Award from the National Science Foundation in 2006 and was selected as
an Alfred P. Sloan Research Fellow in 2008. He is the recipient of the 2002
Demetri Angelakos Memorial Achievement Award “in recognition of altruistic
attitude towards fellow graduate students.” In 2002, one of his papers was
selected for “The Best of ICCAD: A collection of the best IEEE International
Conference on Computer-Aided Design papers of the past 20 years.”

Alberto L. Sangiovanni-Vincentelli (M’74–
SM’81–F’83) received the “Dottore in Ingegneria”
(summa cum laude) from the Politecnico di Milano,
Milano, Italy, in 1971.

He is the Buttner Chair of the Department of
Electrical Engineering and Computer Sciences, Uni-
versity of California, Berkeley. He was a Cofounder
of Cadence and Synopsys, the two leading com-
panies in the area of electronic design automation.
He is the Chief Technology Adviser of Cadence.
He is also a member of the board of directors of

Cadence, UPEK (a company he helped spin off from STMicroelectronics),
Sonics, Gradient, and Accent (an STMicroelectronics–Cadence joint venture
he helped found). He was a member of the HP Strategic Technology Ad-
visory Board and is a member of the Science and Technology Advisory
Board, General Motors. He has consulted for many companies, including
Bell Laboratories, IBM, Intel, United Technology, COMAU, Magneti Marelli,
Pirelli, BMW, Daimler–Chrysler, Fujitsu, Kawasaki Steel, Sony, and Hitachi.
He is the Founder and Scientific Director of PARADES, a European Group
of Economic Interest supported by Cadence and STMicroelectronics. He is
a member of the High-Level Group and of the steering committee of the
EU Artemis Technology Platform. He is the author of more than 800 papers
and 15 books in the area of design tools and methodologies, large-scale systems,
embedded controllers, hybrid systems, and innovation.

Dr. Sangiovanni-Vincentelli has been a member of the National Academy
of Engineering since 1998. In 1981, he received the Distinguished Teaching
Award of the University of California, Berkeley. He received the worldwide
1995 Graduate Teaching Award of the IEEE for “inspirational teaching of
graduate students.” In 2002, he was the recipient of the Aristotle Award of the
Semiconductor Research Corporation. In 2001, he was given the prestigious
Kaufman Award of the Electronic Design Automation Council for his pioneer-
ing contributions to Electronic Design Automation (EDA).

