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Abstract Synchronous specifications are appealing in the design of large scale hardware

and software systems because of their properties that facilitate verification and synthesis.

When the target architecture is a distributed system, implementing a synchronous specifica-

tion as a synchronous design may be inefficient in terms of both size (memory for software

implementations or area for hardware implementations) and performance. A more elaborate

implementation style where the basic synchronous paradigm is adapted to distributed archi-

tectures by introducing elements of asynchrony is, hence, highly desirable. Building on the

tagged-signal model, we present a modeling for the distributed deployment of synchronous

design. We offer a comparative exposition of various design approaches (synchronous, asyn-

chronous, GALS, latency-insensitive, and synchronous programming) and we provide some

insight on the role of signal absence in modeling synchronization in distributed concurrent

systems. Finally, we compare two distinct methodologies, desynchronization and latency-

insensitive design, and we elaborate on possible options to combine their results.

Keywords Desynchronization . GALS . Distributed systems . Latency-insensitive design

1. Introduction

The synchronous design paradigm is pervasive in electronic system engineering. It is used

in discrete-time dynamical control systems, it is the basis of digital integrated circuit de-

sign, and it is the foundation of programming languages and design environments used for
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software development for real-time embedded systems. In this paradigm, a complex system is

represented as a collection of interacting modules whose state is updated collectively in one

zero-time step. A synchronous specification is naturally simpler than specifying the same

system as the interaction of components whose state is updated following an intricate set

of time-based interdependency relations. However, for an increasing number of important

applications, e.g., transportation systems, sensor networks, and industrial control, the im-

plementation architecture is distributed. In addition, the advent of deep-submicron (DSM)

technologies for IC design, where hundreds of millions of transistors can be integrated on a

single die, is making the synchronous paradigm very expensive to implement since the chip

becomes a distributed system with interconnect delays that are up to an order of magnitude

larger than the switching delays of the gates and that are very difficult to estimate [13]. In

this scenario, we believe that new methodologies that combine specification simplicity with

implementation constraints will take center place in the design stage.

The desynchronization problem can be informally described as the task of deploying a

synchronous design on a distributed architecture in a correct-by-construction (and mostly

automatic) fashion. The relevance of this problem follows naturally from the desire of lever-

aging the well-known tools and practices of synchronous design for the specification and

optimization of a system [5], while targeting efficient final implementations that are dis-

tributed in nature.

We present a modeling framework for distributed deployment that focuses on the syn-

chronization aspects of system design. Our framework encompasses different design styles

from the “strong assumptions” of synchronous design and asynchronous design, to more

“relaxed and realistic” models for distributed design, like globally asynchronous locally

synchronous (GALS) systems [15]. We argue for the importance of the notions of absence

to distinguish (and relate) these systems, and we illustrate their interplay in modeling the

desynchronization problem. Finally, we revisit previous work on distributed embedded code

generation (desynchronization) and latency-insensitive design. These are two distinct ap-

proaches that share the goal of conjugating the theoretical properties of synchronous designs

with the efficiency of implementations where the constraints imposed by synchrony are

relaxed:

� Desynchronization was motivated by the problem of reaching a correct-by-construction

modular deployment of embedded software on distributed architectures [3, 4, 24]. In a

desynchronized implementation processes that compose the large scale system are im-

plemented synchronously while their communication is implemented in an asynchronous

style. This approach allows also running each process at its own “speed”.� Latency-insensitive design was motivated by the problem of deriving hardware implemen-

tations in the presence of long interconnect delays [11, 12]. In fact, with DSM technologies,

the long paths between the design components may introduce delays that force the overall

clock of the system to run too slow in order to maintain synchronous behavior. By enabling

automatic pipelining of long interconnect, latency-insensitive design allows the implemen-

tation to avoid slowing down the clock and to “recover” at least part of the throughput that

could have been achieved with communication delays of the same order of the clock of the

components.

Besides comparing the two approaches, we show how the causality analysis of the desyn-

chronization approach can be applied to deriving more efficient implementations of latency-

insensitive protocols.
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2. Related work

Benveniste et al. formally define the desynchronization problem in the context of embedded

system applications [2, 3]. Their main motivation is to address the issue of compositionality

of synchronous languages and enable modular code generation for distributed architectures.

In particular, they advocate a methodology centered on the use of the synchronous paradigm

for system specification and validation followed by a provably correct desynchronization step

to derive a distributed implementation (e.g. on GALS architectures). Building on the first

works, in [24] they study the relationship between synchrony and asynchrony and identify the

key property that must be satisfied by the communication architecture in a desynchronized

implementation: each of its channels must act as a lossless queue or, in other words, “messages

shall not be lost and shall be delivered in order”. Interestingly enough, this property is also

at the core of the theory of latency-insensitive protocols.

Recently, desynchronization has been the object of investigation of several projects in the

areas of embedded systems design and integrated circuit design. A mathematical framework

to support the composition of heterogeneous reactive systems is presented in [4] together with

a set of theorems supporting the automatic generation of correct-by-construction adapters

between heterogeneous designs. The idea is applied to the deployment of synchronous design

on GALS architectures and LTTA architectures [6]. Desynchronization approaches targeting

hardware design have been presented both by Jacobson et al. [20] and Cortadella et al. [16]: the

basic idea is to start from a fully synchronous synthesized (or manually designed) integrated

circuit, and then replace the global clock network with a set of local handshaking circuits.

The advantage of the desynchronized circuit with respect to the corresponding synchronous

circuit is the removal of the clock tree. This gives important benefits in terms of power

dissipation, electro-magnetic interference control, and robustness to temperature-related and

manufacturing-related variations.

The Polychrony project aims to support design refinement from the early stages of require-

ment specification to the later stages of synthesis and deployment [18]. The term polychrony
denotes the capability of describing circuits and systems using the synchronous assumption

together with multiple clocks. This can be applied to abstracting the key properties of a system

(while completing a high-level specification) as well as to describing the characteristics of the

components that can be used to implement it. The concept of polychrony is used in [22, 25]

to address the formal validation of the refinement of synchronous multi-clocked designs into

GALS architectures.

Latency-insensitive protocols were proposed in [11] and, then, applied to synchronous

hardware design in [10, 12]. A complete presentation of latency-insensitive design is given

in [9], which includes a detailed discussion of the analysis and optimization of latency-

insensitive systems.

3. The tagged-signal model

We summarize here the main concepts of Lee and Sangiovanni-Vincentelli’s (LSV) tagged-

signal model [21], the basis of our formal framework.

Given a set of values D and a set of tags T , an event is a member of D × T . A signal
s is a set of events. The set of all M-tuples of signals is denoted SM and a process P is a

subset of SM . An M-tuple b = (s1, . . . , sM ) ∈ SM is called a behavior of process P when it

satisfies the process, i.e. when b ∈ P . Thus, a process is a set of possible behaviors. A tagged
system is a composition of processes {P1, . . . , PI }, i.e. a new process P that is defined as the
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Fig. 1 Presence and absence of events in two signals

intersection of their behaviors P = ⋂I
i=1 Pi . To distinguish signals, we assume an underlying

set V of variables with domain D. We denote a tagged system as a triple P = (V, T ,B),

where V ⊂ V is a finite set of variables, T is a tag set, and B a set of behaviors with domain

V . The composition of two systems P1 and P2 is given by the intersection of their behaviors:

P1 ∩ P2 =def (V1 ∪ V2, T1 ∪ T2,B1 ∩ B2), where

B1 ∩ B2 =def {b| b|Vi ∈ Bi , i = 1, 2},

and b|W denotes the restriction of b to a subset W of variables. We denote with T (s) the tag

set of signal s (and, similarly, for a behavior and a process).

In some models of computation the set D includes a special value ⊥, which indicates

the absence of a value. For any tag t ∈ T , we call (t, ⊥) the absent-value event, or simply,

⊥ event. We say that a signal s is present at a given tag t when (∃e = (t, d) ∈ s, (d 
=⊥));

otherwise, we say that s is absent at t (we further elaborate on this point in the sequel).

Example 1. The diagram of Fig. 1 represents the unique1 behavior of a system that has two

signals with names u, v. At any given tag, signal u is present with unit value if and only if

signal v is present and carries a positive integer value.

Ordering among signal tags. We assume that for any tag t ∈ T , each signal s in the system

has at most one event, i.e.:

∀b ∈ B, ∀s ∈ b, ¬[∃e1 ∈ s, ∃e2 ∈ s, (tag(e1) = tag(e2))]

This assumption naturally leads to the definition of a total order < among the tags of a signal.
Then, the total order over the tag set T (s) of signal s induces a total order among its events.

Therefore, a signal can be seen as a sequence of events. We use ti to denote the i-th tag of

a signal and, naturally, we rely on the fact that ti < t j ⇔ i < j . Further, we can use tags to

identify an event of a signal (somewhat like the indexes of an array) as well as its values.

Given a signal s and a tag t , we write e = eve(s, t) to denote the event of s whose tag is t
and we write d = val(s, t) to denote the value of eve(s, t).

� denotes the set of all sequences of elements in D ∪ {⊥}. Function σ : S1 × T 2 → �

takes a signal s = {(d0, t0), (d1, t1), ..} and an ordered tag pair (ti , t j ), i ≤ j , and returns a

sequence σ[ti ,t j ] ∈ � s.t. σ[ti ,t j ](s) = di , di+1, . . . , d j . The sequence of values of a signal is

denoted σ (s). The empty sequence is denoted as ε. To manipulate sequences of values we

1 We used the unique attribute to express the fact that this system has exactly one behavior, i.e. the one
illustrated in the figure.
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define the filtering operator F⊥ : � → D that returns a sequence σ ′ = F⊥[σ ] s.t.

σ ′
i =

{
σ[ti ,ti ](s) if σ[ti ,ti ](s) ∈ D
ε if σ[ti ,ti ](s) = ⊥

Ordering among process tags. In general, the tag set T of a process is not totally ordered,

but only partially ordered. When the partial order is the identity relation, the tag set is an

unordered set. When tags are used to express causality relations among signals, it is common

to assume that T is partially ordered. In this case, ≤ is used to denote the partial order on

T by writing t < t ′ when t ≤ t ′ and t 
= t ′. Finally, a tag system is timed if T is a totally

ordered set, i.e. for each pair of distinct tags t, t ′ either t < t ′ or t ′ < t .
Often tags are used as a mechanism to express time (as in this in paper). This may be

useful, for instance, to move across the various representations of a design at different levels

of abstraction from initial specification, where logical time is central, to final implemen-

tation, where each event occurs at a given instant of the physical, or real, time. However,

the reader should notice that tags are essentially a tool to express constraints, like coordi-

nation constraints, among events of different signals (and, transitively, among signals and

among processes). In [4], morphisms among tag sets are used to handle semantic-preserving

transformations of synchronous designs.

4. Models of computation

We use models of computation to specify the mathematical behavior of the systems under

design [17]. The models of computation addressed in this paper fall under the category of

synchronous, asynchronous, and in between to indicate models that are neither.

Synchronous systems. Two events e1, e2 are synchronous (e1≈e2) when they have the same

tag, i.e. e1≈e2 ⇔ tag(e1) = tag(e2). Two signals s1, s2 are synchronous (s1≈s2) when they

share the same tag set, i.e.:

s1≈s2 ⇔ T (s1) = T (s2)

The definitions of two synchronous behaviors b1, b2 and two synchronous processes P1 =
(V1, T1,B1), P2 = (V2, T2,B2) naturally follow:

b1≈b2 ⇔ ∀si ∈ b1, ∀s j ∈ b2 (si≈s j )

P1≈P2 ⇔ ∀bi ∈ B1, ∀b j ∈ B2, (bi≈b j )

A stand-alone behavior b is synchronous when b≈b. A stand-alone process P is synchronous

when P≈P . In a behavior of a synchronous system, every signal is synchronous with every

other signal and, equivalently, for each tag a signal has exactly one corresponding event:

∀b ∈ B, ∀s ∈ b, ∀t ∈ T (∃!e ∈ s (tag(e) = t)).
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Fig. 2 The synchronous system of Example 2 and its behavior

Example 2. The diagram of Fig. 2 represents the unique behavior of a synchronous system

that is the result of the composition of three processes P, Q, and R. Signal w, a binary,

is shared by all processes, while the remaining signals, integers x, y, and z, are shared in

pairwise manner. In Fig. 2, the signals are purposely represented by simple lines and not

arrows. In fact, by observing only the event sequences we can not say which input/output

relations exist among the system processes. However, in the sequel, we focus our attention

on functional systems [21] and we use this example assuming that signal w is produced by

process P , signals x, y by process Q, and signal z by process R.

4.1. Synchronous languages

Synchronous programming languages like ESTEREL, LUSTRE, and SIGNAL represent powerful

tools for the specification of complex real-time embedded systems because they allow to

combine the simplicity of the synchronous assumption with the power of concurrency in

functional specification [7, 8, 19]. They are synchronous systems with particular properties

and for this reason, they are often considered a model of computation in addition to the

generic synchronous model. The synchronous programming model can be expressed by the

following “pseudo-mathematical” statements [3, 5]:

P ≡ Rω

P1 || P2 ≡ (R1 ∧ R2)ω

where P, P1, P2 denote synchronous programs, R, R1, R2 denote the sets of all the possible

reactions of the corresponding programs, and the superscript ω indicates non-terminating

iterations. The first expression interprets the essence of the synchronous assumption: a syn-

chronous program P evolves according to an infinite sequence of successive atomic reactions.

At each reaction, the program variables may or may not present a value. The second expres-

sion defines the parallel composition of two components as the conjunction of the reactions

for each component. This implies that communication among components is performed via

instantaneous broadcast. To cast the synchronous programming model into the LSV formal-

ism, we naturally associate signals to variables and use tags to index the program reactions.

An important feature offered by the synchronous programming model is the ability of taking

decisions based on the absence of a value for a variable at a given reaction, i.e., in syn-
chronous systems absence can be sensed. This is perfectly in line with the definition of the
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absent-value event since processes react to events and hence can also react to the particular

absent-value event. The absent-value event plays an important role in synchronous models

of computation. In fact, the essence of the model is that all computation processes awake

simultaneously when any of them posts an event for communication. Some of the signals that

connect the processes may be not present. The synchronous model requires that these signals

be read with the absent-value event posted. If indeed the information on the presence of an

absent-value event does not cause a process to react to it, then reading this event is an un-

necessary complication. We shall see later that recognizing this situation and eliminating the

associated steps are key in deriving a more effective deployment that, while formally giving

up the synchronous model, maintains behavior equivalence with the original synchronous

specifications.

The notion of clock of a variable is introduced as a Boolean meta-variable that it is

implicitly defined in order to track the absence/presence of a value for each corresponding

variable.2 Variables that are always present simultaneously are said to have the same clock,

so that clocks can be seen as equivalence classes of simultaneously-present variables. In

the sequel, we focus our attention on SIGNAL, which is a declarative language [7]. Besides

parallel composition, SIGNAL’s main operators are the followings:� statement “c := a op b”, where op denotes a generic logic or arithmetic operator,

defines not only that the values of c are function of those of a and b, but also that the three

variables have the same clock;� statement “c := a$k”, where k is a positive integer constant, specifies both that c and

a have the same clock and that at the n-th reaction when the two signals are present, the

value of c is equal to the value held by a at the (n − k)-th reaction;� statement “c := a default b” specifies that variable c is present at every reaction

where either a or b is present while taking the value of b only if a is not present (over-
sampling);� statement “c := a when b” specifies that variable c is present (taking the value of a)

only when both a is present and the Boolean condition expressed by variable b is true

(undersampling).

While the first two statements are single-clock, the last two are multi-clock. Additional

operators are available to directly relate the variable clocks: for instance, statement c ∧= a
constraints variables c and a to have the same clock, without relating the values that they as-

sume. The SIGNAL compiler uses clock calculus to statically analyze every program statement,

identify the structure of the clock of each variable, and schedule the overall computation.

The compiler rejects the program when it detects that the collection of its statements as a

whole contains clock constraint violations.

Example 3. Figure 3 reports the code of a SIGNAL program that is structured as a main process

with three sub-processes P, Q, and R. These processes communicate via signals w, x, y, z
that are constrained to be synchronized (first statement of the main process). Hence, using

SIGNAL jargon, these signals belong to the same clock equivalence class [7], which is also

the class of signal tag. Signal tag is an external input whose values evolve as an infinite

alternating sequence of 0s and 1s. Under this assumption, a run of program MAIN returns

deterministically a tuple of sequences of values for variables w, x, y, z that coincide with

2 Notice that despite its name the clock of a variable is not necessarily a periodic signal in hardware terms.
Rather, it is more like an enable signal that gates a single global clock.
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Fig. 3 SIGNAL program with a deterministic behavior as in Example 2

the behavior of the synchronous system of Example 2. By analyzing the program we derive

the functional relationships between its signals: e.g., we see that y and z are input signals for

process P , which produces output signal w. Also, we learn causality dependencies among

signals like, for instance, that every event of signal w, besides the first, depends on the events

of y and z occurred at the previous reaction. Similarly, while the first two events of z carry

values equal to 0, each subsequent event depends on the event occurred on w at the previous

reaction as well as on the event occurred on x two reactions earlier. Hence, events of w

depend on events of z and vice versa. In fact, cyclic causality dependencies across signals

of a synchronous program are quite common and may be problematic only in the presence

of a combinational cycle, i.e. when two events with the same tag depend on each other. The

discussion of methods to handle this issue goes beyond the scope of this paper (see [5]).

Asynchronous systems. The definition of asynchrony as used in the literature is vague: some

use the term to indicate any systems that is not synchronous, others are more restrictive.

According to [21], two events e1, e2 are asynchronous (e1 � e2) if they have different tags,

i.e. e1 � e2 ⇔ tag(e1) 
= tag(e2). Two signals s1, s2 are asynchronous (s1 � s2) when they

have disjoint tag sets, i.e.:

s1 � s2 ⇔ (T (s1) ∩ T (s2) = ∅)

The definitions of asynchronous behaviors b1, b2 and asynchronous processes P1 =
(V1, T1,B1), P2 = (V2, T2,B2) follow:

b1 � b2 ⇔ ∀si ∈ b1, ∀s j ∈ b2, si 
= s j , (si � s j )

P1 � P2 ⇔ ∀bi ∈ B1, ∀b j ∈ B2, bi 
= b j , (bi � b j )
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Fig. 4 The behavior of an asynchronous system

A stand-alone behavior b is asynchronous when b�b. A stand-alone process P is asyn-

chronous when P�P . In a behavior of an asynchronous system, every signal is asynchronous

with every other signal and, equivalently, for each tag there is one and only one event across

all signals:

∀b = (s1, . . . , sM ) ∈ B, ∀t ∈ T ,

(
∃!e ∈

⋃
i

si , (tag(e) = t)

)

Example 4. Figure 4 illustrates the unique behavior of the asynchronous system Sa = Pa ∩
Qa ∩ Ra . Processes Pa, Qa, and Ra communicate by sharing signals (as in the case for

synchronous systems), but signals do not share tags.

Between synchronous and asynchronous: Globally-asynchronous locally-synchronous
(GALS) systems. Formally, the set of asynchronous systems is not the complement of the

set of synchronous systems. In fact, there is a set of systems that sits in between these two

sets and whose elements are useful to model heterogeneous systems and distributed architec-

tures. An element of this in-between set is a process with a behavior that has both at least a

pair of synchronous events (hence, it is not asynchronous) and at least a tag for which a signal

does not present a corresponding event while another does (hence, it is not synchronous).

A relevant subset of this set is the class of GALS systems. GALS systems are of particular

interest because they represent a compromise that allows designers to leverage the traditional

practices and tools of synchronous design for implementations of synchronous processes on

distributed architectures. In a GALS system, computation occurs in synchronous clusters

exchanging data asynchronously via a set of communication media. Each cluster runs with

its own clock that controls also the sampling of new values for its input signals. At each

sampling period, some of these new values may or may not be present, depending on the

transferring latencies in the asynchronous communication media. Since we want to focus on

the communication mechanisms at the interface between synchronous and asynchronous, our

LSV definition for GALS systems assumes, without loss of generality, that all asynchronous

communications can be modeled as occurring within a single media process. A GALS system

Sg = ⋂
Pi ∈P Pi ∩ E is the composition of a collection P of computation processes and one

communication, or media, process E = (Ve, Te,Be) s.t.:

∀Pi , Pj ∈ P, ((i = j ⇒ Pi≈Pj ) ∧ (i 
= j ⇒ Pi�Pj )), and

∀Pi = (Vi , Ti ,Bi ), ∀b ∈ Be,
(
b|Vi ∈ Bi

)
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Fig. 5 GALS system for
Example 5

Each computation process is a stand-alone synchronous process because it runs with its

own logical clock whose occurrences are represented by tags. In the general case, we as-

sume that no relation exists between the clocks of distinct computation processes leaving

total freedom in the implementation process. This is captured by saying that the intersection

of their tag sets is empty (i.e., they are pairwise asynchronous processes). Instead, a media

process is not synchronous (because it models the communication latency and the sharing

of communication resources among processes that are pairwise asynchronous) nor asyn-

chronous (because each subset of its signals that interfaces a specific computation process is

a synchronous sub-process). Hence, from a LSV perspective, the name “GALS” is justified

when considering the system from the viewpoint of any of its computation processes.

Example 5. The diagram of Fig. 6 reports the unique behavior of the GALS system Sg of

Fig. 5, which is the result of the composition of processes Pg, Qg, Rg, and Eg . Process Pg is

synchronous because all its signals are synchronous. The same is true for processes Qg and

Rg separately. However, the composition of processes Pg, Qg, and Rg is not a synchronous

process (no tag is shared across signals of different processes). Observe that Pg has a period

twice as fast as those of Qg and Rg . Processes Pg, Qg, and Rg communicate only via the

media process Eg . Process Eg , acting as the communication environment, has subsets of

its signals synchronized with signals of the other processes, but, as a stand-alone process,

Fig. 6 The behavior of a GALS system
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it is not synchronous. The signals of Eg can be partitioned in equivalence classes, whose

members carry the same sequence of values at different tags (e.g., signal x2 is a “delayed”

version of signal x1). We call this relation semantic equivalence.

Our proposal for modeling a distributed system with the LSV model is to use more than one

signal to capture each communication thread between two processes. For instance, if process

Pg sends data to process Qg , we must be able to distinguish between the sending event and

the receiving event. To do so, we need at least two signals, e.g. w1 and w2. Each new event

of w1 is created by Pg , whose overall activity of reading input events and computing output

events proceeds according to its tag set T (Pg). Then, a new event of w1 causes at least a cor-

responding event of w2 within the media process (more events could be necessary to model

arbitrary latencies or the sharing of communication resources). Finally, event w2 is consumed

by Qg , whose activity is controlled by tag set T (Qg) that has empty intersection with the tag

set of every other synchronous processes, including T (Pg). In synchronous systems, signal

decoupling is not necessary thanks to the power of the synchronous abstraction: all processes

create and sample events at the same tags and a unique signal w is sufficient to express the

instantaneous communication,3 between process P and process Q (see Example 2). Strictly

asynchronous systems rely on an abstraction that is equally powerful: there is no notion of

global (i.e., system) or local (i.e., process) tag set and two processes communicate by sharing

signals that are produced and sampled independently from the rest of the communication and

computation activities in the system. The sharing of a signal in asynchronous systems rep-

resents the presence of an ad-hoc handshaking communication protocol, which is dedicated

to the particular communication of, say, wa from Pa to Qa : a new event for wa is created by

Pa only when Qa is ready to sample it (see Example 4).

The role of event absence. In the GALS system Sg = (Vg, Tg,Bg) of Example 5, for any

t ∈ Tg and s ∈ Vg , one of three things can happen:

1. t 
∈ T (s) (event absence)

2. t ∈ T (s) ∧ ∃e = (t, d) ∈ s (d = ⊥) (value absence)

3. t ∈ T (s) ∧ ∃e = (t, d) ∈ s (d 
= ⊥) (presence)

From a global viewpoint, a GALS system is a system with multiple tag sets (a multi-clock

system), each representing a dimension that is familiar to a synchronous process and extra-

neous to all the remaining synchronous processes. For instance, the signals of process Pg do

not have events at tag t1 and the signals of processes Qg and Rg do not have events at tag t0.

However, process Pg does not “expect” an event at tag t1 nor at tags t3, t5, . . . because these

are tags that do not belong to the tag set of Pg: they represent instants of a time dimension

that is completely extraneous to Pg . The meaning of the absence that Pg detects on signal

y2 at t4, which is a tag belonging to T (Pg), is different. In fact, at tag t4, Pg is looking for

a significant event, but it ends up sampling the absent-value event (the awaited event will

arrive only at tag t6, after being created by process Qg) because of the latency introduced

by the communication medium. This case is typical of a GALS system, because, in a purely

synchronous model, the absent value event is always an “expected” event. In this case, the

computation can be affected in a substantial way since Pg can compute on the absence value

event and produce an output that is different from the one originally expected.

3 Instantaneous has to be interpreted in the sense of a process that is not “seen” by the computation part of the
system. Communication and computation in synchronous systems never overlap.
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Deploying automatically a synchronous design on a distributed architecture entails the

development of techniques for making each process robust with respect to absence. In other

words, we ask under which conditions we can guarantee that sensing the absent value event

when a different value was expected does not produce incorrect behavior or that not sensing

an absent value event when one is expected, does not change the behavior of the system.

Section 5 discusses methods to achieve this result.

Remark . Consider again the case of asynchronous design (see Example 4). By definition,

the tag sets of any two asynchronous signals xa, ya are disjoint. Thus, for each tag in T (xa)

there is no corresponding event in signal ya and vice versa. If we consider an asynchronous

system with several signals, we have that for each event that is present in one of its signal,

there are absences in all the remaining signals. This phenomenon is so inherent to the notion

of asynchronous system that here the notion of event absence looses its meaning: when events

are always systematically absent, there is no point in looking for their presence! In fact, in

asynchronous systems no common references exist across processes and processes cannot

(and do not attempt) to detect event absence: inter-process communication occurs according

to handshake protocols that don’t leave space for this kind of uncertainty.

5. Deploying synchronous design on distributed architectures

In this section, we revisit previous research that targets the implementation of a synchronous

design on a distributed architecture both in software and in hardware. We introduce the defini-

tion of semantic equivalence, which provides a formal ground to establish when the behavior

of a distributed implementation conforms to the one of the synchronous specification. Then,

we summarize the theory of latency-insensitive design and we present the main results on

the desynchronization of synchronous programs for distributed embedded code generation.

Finally, we compare these two approaches and we sketch a possible research avenues to

combine them.

Semantic equivalence. With the notion of semantic equivalence between processes we capture

the fact that their operations produce exactly the same result from the viewpoint of an observer

watching the sequences of values of their signals.

Two signals are semantic equivalent if they have the same sequence of values after dis-

carding the ⊥ events. This is written: s ≡ s ′ ⇔ F⊥[σ (s)] = F⊥[σ (s ′)]. Two behaviors

b = (s1, . . . , sM ), b′ = (s ′
1, . . . , s ′

M ) are semantic equivalent b ≡ b′ when there exists a bi-

jective map ψ : b �→ b′ s.t. ∀i, (si ≡ ψ(s ′
i )). Finally, for two processes P = (V, T ,B), P ′ =

(V, T ′,B′) we have: P ≡ P ′ ⇔ [(∀b ∈ B, ∃b′ ∈ B′, (b ≡ b′)) ∧ (∀b′ ∈ B′, ∃b ∈ B, (b′ ≡
b))].

Similarly to flow equivalence [18], semantic equivalence indicates that two behaviors have

exactly the same sequence of present events, which, however, may be interleaved by a different

number of ⊥ events. Hence, we can use it to model implicitly the communication latency

between processes: e.g., the communication of events from P to Q occurs via media process E
and involves several signals u p, ue1

, ue2
, . . . , uq that belong all to the same class of semantic

equivalence. Observe that semantic equivalence doesn’t say anything about tags: processes

P, P ′ can be semantic equivalent even if T (P) ∩ T (P ′) = ∅. Finally, it is a compositional

property: if two pairs of processes are semantic equivalent, their pairwise intersections give

semantic equivalence processes, i.e. (P ≡ P ′ ∧ Q ≡ Q′) ⇒ (P ∩ Q ≡ P ′ ∩ Q′).
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Example 6. Reconsidering the systems of Examples 2 and 4, we have that ψ(w) =
wa, ψ(x) = xa, ψ(y) = ya, ψ(z) = za . and, consequently: P ≡ Pa, Q ≡ Qa, R ≡ Ra and,

finally, P ∩ Q ∩ R ≡ Pa ∩ Qa ∩ Ra . Now, consider the GALS system of Example 5.

Semantic equivalence models the communication among computation processes Pg, Qg

and Rg via media process Eg: e.g., {w1, w2, w3} is a semantic equivalence class repre-

senting the communication from Pg to both Qg and Rg . The other equivalence classes are

{x1, x2}, {y1, y2}, and {z1, z2}. Let V � = {w1, x1, y1, z1} be the set of representative vari-

ables for each equivalence class and for all behaviors b ∈ Pg ∩ Qg ∩ Rg let b� = b|V � . Then,

ψ ′(w1) = w, ψ ′(x1) = x, ψ ′(y1) = y, ψ ′(z1) = z, and: (Pg ∩ Qg ∩ Rg)|V � ≡ P ∩ Q ∩ R.

Latency-insensitive systems. Latency-insensitive protocols [11, 12] were originally pro-

posed to address the interconnect delay problem in synchronous hardware design. The

latency-insensitive design methodology takes a strict synchronous system specification and

automatically derives a latency-equivalent synchronous implementation. This implementa-

tion formally operates as a synchronous system, but, practically, does it in a looser fashion

that makes it robust with respect to arbitrary, but discrete, latency variations between its

processes.

A key element of a latency-insensitive protocols is the concept of stalling event (or, τ

event), i.e. an event carrying as value the special symbol τ , as opposed to an informative event,
i.e. an event carrying a value d in accordance with the original specification. A stalling events

is the modeling unit to represent explicitly latency variations in inter-process communication,

while remaining within the boundaries of the synchronous model. Hence, we augment domain

D with τ , while �lat denotes the set of all sequences of elements in D ∪ {τ }. A strict signal

s is always present and contains only informative events: ∀t ∈ T (s), (val(s, t) 
∈ {⊥, τ }).
A stalled signal s contains at least one τ event: ∃t ∈ T (s) (val(s, t) = τ ). Similarly to the

definition of operator F⊥, we define operator Fτ : �lat → � as follows:

σ ′
i =

{
σ[ti ,ti ](s) if σ[ti ,ti ](s) 
= τ

ε otherwise

Two signals s, s ′ are latency-equivalent if they have the same sequence of values after dis-

carding the τ events, i.e. s ≡τ s ′ ⇔ Fτ [σ (s)] = Fτ [σ (s ′)]. As for semantic-equivalence,

the definition extends to behaviors and processes. The main result of latency-insensitive

design follows:

Theorem 1 ([12]). If S = ⋂
i Pi is a strict synchronous system and S′ = ⋂

i P ′
i is a system

of patient processes s.t. ∀i (P ′
i ≡τ Pi ) then S′ ≡τ S.

Informally, a patient process is able to wait an arbitrary amount of reactions for an informa-

tive event to occur at any of its inputs and, when this occurs, it reacts as if no wait happened.

Hence, patience, which is compositional, enables the compensation of any arbitrary latency

in inter-process communication. While patience is generally a strong requirement to demand,

each stallable component (core process) can be made patient by generating proper interface

logic (shell process) implementing the latency-insensitive protocol [12]. A component is stal-

lable if it can freeze its internal state for an arbitrary amount of time. In hardware systems, this

property can be obtained through a gated-clock mechanism. At each reaction, the presence of
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a τ event at one of the input ports of a shell/core pair means that the expected informative event

is not ready yet and will be delayed for at least another reaction. Hence, the shell logic reacts by

stalling the internal core, while emitting new stalling events on the outputs and saving the in-

formative events of its other input signals on internal buffers.4 Once all the informative events

for that reaction finally arrive, the interface reactivates the internal core, which produces new

informative events. It is important to notice that until all informative events for a given reaction

arrive, the shell logic does not reactivate the core process, regardless of its internal computa-

tional structure. In fact, the shell logic ignores this structure and sees the core simply as a black
box component. This conservative approach is a consequence of the assumption, influenced

by single-clock hardware design, that the original system specification is strictly synchronous

(a signal never presents a ⊥ event at any reaction). In the sequel, we discuss how to lift this as-

sumption to extend the application of latency-insensitive design to multi-clock and software

systems.

Example 7. The application of latency-insensitive design to integrated circuits provides two

main advantages [10]: (a) it enables the a-posteriori automatic pipelining of long wires by

insertion of special patient processes called relay stations; (b) it facilitates the assembly

of pre-designed components, that, as long as they are stallable, can be interfaced to the

communication protocol without changing their internal structure. Assume that each process

of Example 2 is implemented as a distinct finite state machine (FSM) on an integrated circuit

and that the wire carrying signal x from Q to R is the only one that has been pipelined by

introducing one relay station. Figure 7 reports the structure and the behavior of the resulting

latency-insensitive system after each process has been made patient by wrapping it within

a shell. The system is strictly synchronous (no absent-value ⊥ events occur at any tag). At

the system initialization, the only stalling event is the one at the output of the relay station

because a relay station represents a “design correction” that is extraneous to the original

system specification, while each FSM is properly initialized according to it. As the behavior

evolves, new stalling events are generated whenever a process must wait for a new informative

event at its inputs. In fact, since the system is cyclic [9], τ events occur periodically on each

signal at the rate of 1/4.

Fig. 7 The latency-insensitive system of Example 7 and its behavior

4 A discussion on how to detect possible buffer overflow (as well as how to avoid it by introducing back-pressure
in the protocol together with optimum buffer sizing) is given in [9].
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Desynchronization of synchronous programs. The behavior of a synchronous system can

be seen as a sequence of tuples of events with each tuple indexed by a tag. This is not

the case for an asynchronous or a GALS system: the most one can say is that a behavior,

being a tuple of signals, is a tuple of sequences of events. In [2, 3, 24], desynchronization is

defined as the act of discarding the synchronization barriers that delimit successive reactions

in a synchronous program. Since this corresponds to filtering away the absent-value events,

desynchronization amounts to mapping a sequence of tuples of values in domains extended

with the extra value ⊥ into a tuple of sequences of present values, one sequence per each

variable. The desynchronization abstraction is relevant because it provides a formal way to

characterize those synchronous programs that can be deployed on a distributed architecture

without losing their semantics. As proven in [3], the notions of endochrony and isochrony

are sufficient for this characterization.

Let clk(s, t) be a Boolean function denoting whether signal s presents an event at tag t or

no, i.e. (clk(s, t) = 1 ⇔ val(s, t) 
= ⊥). For any process P = (V, T ,B), any tag t ∈ T , and

any pair of subsets W, W ′ s.t. W ⊂ W ′ ⊆ V , we say that W tag-determines W ′ at t , written

W →t W ′, when:

∀b ∈ B, ∀s ∈ b|W ′ ,
(∃φ : Dt

W → {1, 0}, (
clk(s, t) = φ

(
Dt

W

)))
where Dt

W is the set of values val(s, t) for s ∈ b|W . Since relation W →t W ′ is stable by union

over W ′ sets, there is a maximal W ′ that is tag-determined by W at t . Thus, for any tag t ∈ T ,

if V is a finite set then there is a maximal chain ∅ = W0 →t W1 →t W2 →t · · · →t Wmax.

A process P = (V, T ,B) is endochronous when ∀t ∈ T , (Wmax = V ). In other words: a

process is endochronous when for each tag of its behaviors the presence/absence of event on

all its signals can be inferred incrementally from the values carried by a subset of them that

are guaranteed to be present at this tag.

Two processes P = (V, T ,B), P ′ = (V ′, T ′,B′) are isochronous when for each behaviors

b ∈ B there is a behavior b′ ∈ B′ (and vice versa) s.t.:

∀t ∈ T , (W �
t 
= ∅ ⇒ W �

t = W )

where W = V ∩ V ′ and W �
t = {s ∈ W | val(b, s, t) = val(b′, s, t) 
= ⊥}. In other words:

two processes are isochronous when, at each tag, if there is a pair of shared signals that are

present and agree on the event value, then for each other pair of shared signals, either they

are present and agree on their value or they are absent.

Endochrony and isochrony allow the derivation of a key result for the automatic generation

of distributed embedded code [3]: if each process of a synchronous program is endochronous
and all processes are pairwise isochronous, then deploying the program on a GALS archi-
tecture gives a semantic-equivalent implementation. For any process P(V, T ,B), let α(P)

denote the semantic equivalent asynchronous process that is constructed from P by: (1) ap-

plying transformation F⊥[σ (s)] to each signal s ∈ b, for all b ∈ B, and (2) properly adding

tags to each event of α(P) s.t. ∀s, s ′ ∈ b, (T (s) ∩ T (s ′) = ∅).

Theorem 2 ([3]). Let
⋂

i Pi be a synchronous system s.t. each Pi is endochronous and each
pair (Pi , Pj ) is isochronous. Then

⋂
i α(Pi ) = α(

⋂
i Pi ).
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Endochrony and isochrony can be expressed in terms of transition relations, are model

checkable and synthesizable.5 The SIGNAL compiler handles the parallelism specified us-

ing synchronous composition by organizing the computation of signals as a collection of

hierarchical trees (the clock hierarchy forest) based on the relations among their clocks.

Hence, in practice, a synchronous program can be made endo-isochronous by adding a set

of “Boolean guard” variables and a master clock to transform this forest into a tree. This

approach is somewhat equivalent to synthesize an inter-process communication protocol and

carries a drawback: there is not unique solution, or, in other words, there are many possible

communication protocols [3].

Latency-insensitive design and endo-isochrony. Several commonalities between the work on

synchronous program desynchronization and latency-insensitive design have been already

pointed out in [1]. Here, we return on the topic to understand how the two approaches could

be combined.

Theorem 3 ([14]). The processes of a latency-insensitive system satisfy the properties of
endochrony and isochrony.

The previous result should not come as a surprise if we reflect on the intrinsic differences

between τ events and ⊥ events: the former is used to maintain the semblance of synchronous

behavior while the latter represents the lack of it. In other words, a τ event tells the process

that “the awaited value is not ready yet,” whereas a ⊥ event says “there is no value to wait

for.” Hence, the τ mechanism accounts for the arbitrary latency of interprocess communica-

tion while enforcing a synchronous behavior for the distributed latency-insensitive system.

Consequently, as illustrated by Example 7, τ events never leave the systems (unless for the

particular case of acyclic systems) and a price in performance may be ultimately paid [9].

Instead, one may wonder whether it is possible to derive an alternative endo-isochronous

implementation that doesn’t rely on latency-insensitive design. In theory, this is certainly

possible but in practice it may be challenging and not necessarily advantageous. This de-

pends on knowing the inner structure of each process in the system. In the case of Example 7

the result would be positive because the analysis of the causality dependencies among the

events shows that the first two events of output signal z do not depend on the first event

of input signal xl2
, the delayed event (see also Example 3). Hence, the endo-isochronous

implementation would be able to absorb the ⊥ event (which it would see instead of the τ

event seen in the corresponding latency-insensitive system) and the behavior would progress

without further event absences.

6. Concluding remarks

We used the tagged-signal model together with a simple “running example” to provide a

comparative view of various design approaches: synchronous, asynchronous, GALS, latency-

insensitive, and synchronous programming. In particular, we gave a new formalization of

GALS systems and we studied the interplay among the concepts of event absence, event sam-

pling, and communication latency in modeling distributed concurrent systems. Finally, we

5 A problem with endochrony and isochrony, i.e. the lack of compositionality, is discussed in [23] where new
“weak” versions of these concepts are proposed in order to address it.
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presented a new comparison of latency-insensitive design and synchronous program desyn-

chronization. The main operational difference between these approaches can be expressed

as follows: the former knows how to handle black box processes but does not know how

to analyze/exploit white box ones (that are treated uniformly as if they were black box pro-

cesses); the latter does not know how to handle black box processes and must analyze the

inner structure of each white box process in the system (as well as the properties of each

communicating pair), but it is clever in exploiting the information resulting from this analysis.

These reflections naturally lead to consider a new research avenue for extending our work

on latency-insensitive design: by analyzing the internal structure of each process that comes

as a white box module, we can learn its input/output causality dependencies and see if they

allow us to absorb some τ events at given states.
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