
A Case Study in Distributed Deployment of
Embedded Software for Camera Networks
Francesco Leonardi

Dept. of Computer Science
Columbia University, New York, NY
francesco.leonardi@ieee.org

Alessandro Pinto
United Technologies Research Center

United Technologies, Hartford, CT
PintoA@utrc.utc.com

Luca P. Carloni
Dept. of Computer Science

Columbia University, New York, NY
luca@cs.columbia.edu

Abstract—We present an embedded software application for
the real-time estimation of building occupancy using a network
of video cameras. We analyze a series of alternative decom-
positions of the main application tasks and profile each of
them by running the corresponding embedded software on three
different processors. Based on the profiling measures, we build
various alternative embedded platforms by combining different
embedded processors, memory modules and network interfaces.
In particular, we consider the choice of two possible network
technologies: ARCnet and Ethernet. After deriving an analytical
model of the network costs, we use it to complete an exploration
of the design space as we scale the number of video cameras
in an hypothetical building. We compare our results with those
obtained for two real buildings of different characteristics. We
conclude discussing the results of our case study in the broader
context of other camera-network applications.

I. INTRODUCTION

Video surveillance systems are a fast-growing class of
networked embedded systems [1], [2], [3]. The miniaturization
of image sensors (cameras) combined with powerful embedded
processors allows engineers to build smart video-nodes that
can process a video stream and transmit it to a central gateway
through an interconnection network. We study video-based
real-time estimation of building occupancy as the representa-
tive of a large class of camera network applications. This appli-
cation holds the promise of dramatically improving the quality
of emergency-evacuation procedures in large buildings [4].
Also, to collect real-time information on the people occupancy
in a building may enable major improvements in the operations
of HVAC (“heating, ventilating, and air conditioning”) systems
that translates into a reduction of building energy costs and
higher comfort levels for its occupants.

Building occupancy estimation requires the deployment of
a set of cameras around the building to detect and count
people as well as a mechanism to collect and process the
information from each camera. This high-level specification
can lead to many different actual implementations thanks to
the large variety of technology solutions that are available
both in terms of embedded computing and networking. In fact,
there are companies offering systems that rely on centralized
computation [5], [6], [7] while others leverage the trends in
embedded computing to propose the cost-effective realization
of smart video-nodes and, consequently, the distribution of part
(or all) of the processing tasks [8], [9].

We developed the embedded software for our target appli-
cation and profiled several alternative compositions of its main
tasks by collecting measures on three processor architectures:
ARM 9, POWERPC, and CORE 2 DUO. Based on this analysis
we derived five candidate video-node platforms that have
different computation/cost characteristics. We then considered
various alternative mappings of the application tasks on these
platforms together with the communication requirements that
they impose on the interconnection network design. To analyze
the communication/computation design trade-offs we built an
analytical model that allows us to estimate the implementation
costs across various combinations of the five computation plat-
forms with two network technologies (ARCnet and Ethernet)
as we scale up the number of cameras in the network. These
estimates are compared with results obtained for two real
buildings before presenting some concluding remarks based
on our case study.

II. THE APPLICATION

We developed the embedded software for real-time building-
occupancy estimation by leveraging several results published
in recent years. In particular, while some researchers report
good results with the use of low-resolution gray-scale or 3D
images [10], [11] 3D video sensors generally provide better
performance [10], [11], [12]. We chose a 3D sensor that pro-
duces a stream of images of 160x120 4-bit pixels at 25 frames
per second [11]. As in [10], [11], [13] we developed our appli-
cation in a modular fashion based on a static dataflow model of
computation: each video stream is processed by a sequence of
tasks AS = {AV S , AMD, A1, A2, A3, A4, A5, AOC}, which
perform the following computations (Fig. 1):
• Video Sensing (AV S). This task controls the video sensor
and loads the frames into a memory buffer.
• Motion Detection (AMD). Since processing/transmitting
a video stream requires a fair amount of computa-
tions/bandwidth, it is often convenient to equip each camera
with a low-cost Pyroelectric Infrared Sensor (PIR) device that
performs presence/motion detection and triggers the execution
of the subsequent tasks by forwarding only those frames that
have possible people presence/motion.
• Preprocessing (A1). This task subtracts a reference back-
ground frame from each raw frame and then applies basic
morphological filters (erosion and dilation) to improve the

978-3-9810801-5-5/DATE09 © 2009 EDAA

Fig. 1. Inter-task bandwidth requirements for the case study application.

image quality for the subsequent tasks. This module produces
the same amount of data than it receives as input.
• Blob Extraction (A2). This task identifies contiguous pixel
regions (blobs) of a frame that are brighter than the back-
ground by performing three sub-tasks: a) scan the image and
label non-background pixels; b) cluster contiguous labelled
pixels; c) produce the data representation for each blob that
holds its pixels and the coordinates of its bounding box.
• People Detection (A3). This task processes the blobs of a
frame to establish if it represents a person. It performs three
sub-tasks: a) discard those blobs that are too small to represent
a person; b) merge “close” blobs as they likely refer to the
same object; c) repeat a “local” blob extraction to detected
brighter regions for those blobs that are too large for a person
image. The output is the set of blobs recognized as persons.
• People Tracking (A4). This task tracks the detected people
across frames by maintaining a list of their centers of mass. For
each frame, it forms a set of tracked people, each represented
with two variables: the current position of the center of mass
and the location where the person was first detected.
• People Counting (A5). This task determines when a tracked
person crosses an hypothetical threshold between two building
areas and updates one of two counters depending on the person
direction (in or out).
• Occupancy Estimation (AOC). This task collects the pro-
cessed information for each video-stream in the network and
estimates the occupancy for each building area. It is typically
executed on a dedicated processor that acts as a gateway for
the network of cameras.

III. EMBEDDED SOFTWARE PROFILING

To have a better understanding of the design space for the
target application we profiled our software implementation on
two widely-adopted embedded processors (Table III): ARM 9,
which represents a class of many low-cost micro-controllers
used in smart video-nodes, and POWERPC, which represents
the set of mid-range CPUs suitable to process multiple video
streams. As a reference point, we also profiled our software
with a CORE 2 DUO.

In general, there are many possible mappings of the ap-
plication tasks on a target distributed embedded system. Our
application has some radial symmetry properties. The same
sequence of tasks, described in Section II, must be executed
for the video-stream produced by each camera in the network
and the people counting data must be collected and processed
by a gateway processor (Fig. 1-top). Tasks AV S and AMD

Actor Person per frame
Average case 0 1 2

B(AV S) 1920000 1920000 1920000 1920000
B(AMD) 1920000 1920000 1920000 1920000
B(A1) 1920000 1920000 1920000 1920000
B(A2) 171940 1229 256409 364656
B(A3) 95964 168 143498 209794
B(A4) 1482 0 1625 2386
B(A5) 200 0 400 400

B(AOC) 0 0 0 0

Table I: Average bit-rate on 1000 frames for four different scenarios.

Processor Speed L1 cache L2 cache System GCC
(MHz) (KB) (MB) version

CORE 2 DUO 2000 32 + 32 4 HP DV2000 4.2.3
POWERPC750 350 32 + 32 1 Macintosh G3 4.1.0
ARM 926EJ 200 32 + 32 none WD MyBook 3.4.2

Table II: Embedded software profiling set-up.

must be implemented in each video sensor node, while a
single task AOC must run on a gateway processor. Hence,
it is natural to limit our analysis to all possible task partitions
Pij that represent ordered sequences of data-dependent tasks
Ai, Ai+1, . . . , Aj−1, Aj where i, j ∈ [1, 5] and i ≤ j.

For each partition Pij we measured: the execution time,
i.e the time each task partition needs to process a frame, the
instruction-memory size (i.e the footprint of the program),
the peak data-memory size (heap + stack) and the average
output payload per frame (the number of bits that must be
transferred to the next task in the sequence without considering
any communication protocol overhead). Since the behavior of
the application is highly data dependent, we measured the
performance of each Pij using input streams composed of
1000 frames for four different input scenarios, each causing
a different workload: 1) a stream capturing a scene without
any person; 2) a stream where a subset of the frames contains
people; 3) a stream where a person appears in each frame; and
4) a stream where two people appear in each frame.

The bar diagrams of Fig. 2 report the average values of
the execution times of the alternative partitions Pij obtained
by running the embedded software on the three processors of
Table III. Specifically, the four parts of each bar corresponds
to the average time across 1000 experimental runs that is
necessary to complete the execution of the tasks belonging
to Pij on one video frame for one of the four possible input
scenarios. Notice that the software implementation and the
choice of the compiler were not optimized for any processor.
This explains the similar ratios between two Pij across the
various processors. Clearly, most of the time is spent executing
A1, A2 and A3. Fig. 2(d) summarizes the memory taken by
each Pij when running on the ARM 9 processor. The results
for the other processors are similar because the code footprint
has small variations among architectures. The peak usage of
the data memory strongly depends on the given scenario.

In this application, the payload at the output of a sequence
of tasks decreases when we move down in the chain (i.e.
for larger i). For the same i, the payload increases with the
complexity of the scene (e.g. for large E).

P
15

P
14

P
13

P
12

P
11

P
25

P
24

P
23

P
22

P
35

P
34

P
33

P
45

P
44

P
55

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im

e
 (

m
s)

Two persons per frame
One person per frame
"average" case
0 person per frame

(a) CORE 2 DUO2

P
15

P
14

P
13

P
12

P
11

P
25

P
24

P
23

P
22

P
35

P
34

P
33

P
45

P
44

P
55

0

2

4

6

8

10

T
im

e
 (

m
s)

Two persons per frame
One person per frame
"average" case
0 person per frame

(b) POWERPC

P
15

P
14

P
13

P
12

P
11

P
25

P
24

P
23

P
22

P
35

P
34

P
33

P
45

P
44

P
55

0

10

20

30

40

50

60

70

80

T
im

e
 (

m
s)

Two persons per frame
One person per frame
"average" case
0 person per frame

(c) ARM 9

P
1
5

P
1
4

P
1
3

P
1
2

P
1
1

P
2
5

P
2
4

P
2
3

P
2
2

P
3
5

P
3
4

P
3
3

P
4
5

P
4
4

P
5
50

100

200

300

400

500

600

K
B

Two persons per frame
One person per frame
"average" case
0 person per frame
Code Footprint

(d) Memory Usage

Fig. 2. Embedded software profiling results: average values of frame execution time (a,b,c) and peak memory usage (d).

IV. MAPPING ON EMBEDDED PLATFORMS

Based on the embedded software profiling, we derived a set
of alternative embedded platforms by combining off-the-shelf
components [14], [15], [16] and standard network technolo-
gies. Each platform can support the mapping of some subset
of the task partitions Pij . We chose the cheapest architecture
that can execute the longest sequence of tasks within the
frame period F . We assumed that each video-node is equipped
with a simple PIR sensor that allows to dynamically save
computational effort whenever it does not detect any person
presence/movement. In general, the deployment of a camera-
network application can be dimensioned based on a worst-
case design (more common in security or control applications)
or an average-case design. We capture this difference by
introducing a parameter E that denotes the probability of
detecting a presence/movement. We set E = 1 for a system
that must process/transmit each frame of the video stream
(worst case). A smaller E indicates that only a fraction of the
frames are analyzed/transmitted. Each mapping gives specific
communication requirements that the network connecting the
video-nodes must satisfy. For the network implementation we
considered two field buses that are widely used in building
automation and well suited for this application class [17]:
ARCnet (with EIA-485 as physical layer) [18] and Ether-
net [19]. ARCnet is widely adopted in building automation
systems as it offers low installation costs and high flexibility
and predictability. Ethernet is a more expensive technology
that offers a larger communication bandwidth, which makes it
more attractive for video streaming applications.

Raw Transmission Central Computation (RTCC). This
platform combines a video sensor and a low-cost micro-
controller. Each pixel of each frame is forwarded directly from
the sensor to the communication channel. Only tasks AV S and
AMD are mapped on this platform while the other tasks are
executed by an intermediate processor (e.g. CH).

Embedded Computation. The micro-controller implements
the communication stack and oversees the PIR and the camera.
The choice of the specific device is driven by the choice of the
network technology because the micro-controller must sustain
the necessary communication bandwidth.

Communication. The transmission rate depends on the
occurrence of a movement event. The average payload is
B(AMD) ' 2 · E Mbps. ARCnet can be used only for small
values of E.

Memory. A small frame buffer is required to provide flexi-
bility in implementing the communication. Its size is larger in

the case of ARCnet and for high values of E.
Partially Distributed Computation 1 (PDC1). Tasks AV S ,

AMD and A1 can be mapped onto this platform. The gateway
processor executes the remaining tasks.

Embedded Computation. According to the software profil-
ing, an ARM 9 at 150 MHz executes A1 in less than a frame
period of 40 ms. Hence, the NXP LPC3180 with a 208 MHz
ARM 9 core is sufficient for the three mapped tasks.

Communication. The considerations made for RTCC hold
for PDC1 because they produce the same payload.

Memory. One MB is needed to execute A1 and a second MB
to execute the other two tasks and support the frame buffer
and a small footprint embedded operating system.

Partially Distributed Computation 2 (PDC2). Tasks AV S ,
AMD, A1 and A2 can be mapped on PDC2.

Embedded Computation. To execute A1 and A2 in a frame
period requires an ARM 9 at 250MHz. The Atmel AT91SAM
combines the ARM 9 core with an useful camera interface.

Communication. The average payload produced by A2

depends on the scene and is B(A2) ' 365 · E Kbps.
Memory. Tasks A2 consumes a relatively large amount

(∼500 KB) of memory, thus requiring a 64 Mb SDRAM.
Completely Distributed Computation (CDC). The com-

putational tasks are all mapped on the video-node that must
be capable of processing the scene and counting people. Only
the last task AOC runs on the central gateway processor that
receives just a few bytes per second from each video-node.

Embedded Computation. To execute the whole video pro-
cessing in real-time we need a ARM 9 clocked at least at
370 MHz. The Freescale iMX27 is the candidate architecture
running at 400 MHz and featuring also an integrated camera
interface and a hardware H.264 engine.

Communication. Since only few bytes per second are sent
to the gateway, either Ethernet or ARCnet can be used.

Memory. To support the execution of all tasks we need a
faster memory, i.e. a 200 MHz SDRAM.

Cluster Head (CH). This node has the capability to process
the images captured by its video-sensor plus some streams
coming from other cameras. The higher processing require-
ments are addressed by a 600 MHz PowerPC750.

Embedded Computation. The number of streams that can be
processed depends on the number of tasks that are executed
on the other nodes.

Communication. There are two (possibly distinct) interfaces:
one to gather streams from the video-nodes and one to
communicate with the central gateway/front panel.

Memory. This node uses a 400 MHz DDR memory.

Embedded Mapped Micro-controller Memory PHY PHY Chip PIR ($) Total ($)Platform Actors NOR FLASH (Mb) RAM (Mb)

ARCnet enabled
RTCC AV S ,AMD LPC2131 @ 4 $ integrated SRAM 2 Mb @ 2 $

EIA-485 ADM1485 @ 2$ 2$

10
PDC1 AV S ,AMD , A1 LPC3180 @ 8.5 $ 16 @ 1.5 $ SDRAM 64Mb @ 2.5 $ 16.5
PDC2 AV S ,AMD , A1, A2 AT91SAM @ 10 $ 32 @ 2 $ SDRAM 64 Mb (@150 MHz) @ 2.5 $ 18.5
CDC AV S ,AMD , A1, A2, A3, A4, A5 i.MX27 @ 15 $ 32 @ 2 $ SDRAM 64 Mb (@200 MHz) @ 3 $ 24

Ethernet enabled
RTCC AV S ,AMD LPC2364 @ 5 $ integrated SRAM 2 Mb @ 2 $

Eth 10/100 PC82562EP @ 3$ 2$

12
PDC1 AV S ,AMD , A1 LPC3180 @ 8.5 $ 16 @ 1.5 $ SDRAM 64Mb @ 2.5 $ 17.5
PDC2 AV S ,AMD , A1, A2 AT91SAM @ 10 $ 32 @ 2 $ SDRAM 64 Mb (@150 MHz) @ 2.5 $ 19.5
CDC AV S ,AMD , A1, A2, A3, A4, A5 i.MX27 @ 15 $ 32 @ 2$ SDRAM 64 Mb (@200 MHz) @ 3 $ 25

CH see Sec. V PowerPC750 @ 31 $ 32 @ 2 $ DDR 256 Mb (@400 MHz) @ 6 $ NIC 10 $ 2 $ 51

Table III: Summary of the embedded platforms components with the associated bill-of-material cost.

(a) 12 RTCC and 3 CH nodes inter-
connected with an Ethernet bus

(b) 13 PDC1 and 2 CH nodes inter-
connected with an Ethernet bus

(c) 14 PDC2 and 1 CH nodes inter-
connected with an Ethernet bus

(d) 15 CDC nodes interconnected
with an ARCnet bus

Fig. 3. Alternative application mappings for the case of 15 video-nodes and one front panel.

V. IMPLEMENTATION COST MODEL

Table III summarizes the costs of the embedded platforms
presented in Section IV. These platforms can be combined
and interconnected in different ways to support the target
application. We considered four modular and scalable com-
binations: CDC, RTCC and CH, PDC1 and CH, PDC2 and
CH. Fig. 3 shows examples of alternative application mappings
for a network of fifteen cameras and one front panel, which
executes the AOC task. The computing power of the video-
node platform grows as we move from Fig. 3(a) to Fig. 3(d).

A CH node can process S additional streams beside its own.
The value of S can be estimated by profiling the execution
time T (Pij) of a task combination Pij on CH as described in
Section III. Specifically, T (P15) ' 5.8 ms, T (P25) ' 4.1 ms
and T (P35) ' 1.8 ms. The overhead due to context-switch,
communication and for AV S and AMD can be conservatively
estimated as H = 10 ms. Hence, S(i, j) is given by:

S(i, j) = min

(⌊
Wc

B(Aj) · E

⌋
,

⌊
F −H − T (P15) · E

T (Pij) · E

⌋)
where F is the frame period, Wc is the bandwidth of the com-

munication technology (slow ARCnet with W0=78.5 Kbps;
fast ARCnet with W1=2.5 Mbps; Ethernet: W2=100 Mbps).
Next, we detail the costs of the four combinations of embedded
platforms and the analytical model for the network costs. To
highlight the differences among the solutions, our implemen-
tation cost model omits the costs of the image sensor and the
installation of the video-nodes.

CDC. This platform supports a fully-distributed computa-
tion. The cost of the hardware is

CCDCcomp = CG +N · CCDCc
(1)

where CG is the cost of the gateway processor, N is the
number of cameras, and CCDCc is the cost of a CDC video-

node. The index c distinguishes a video-node supporting
ARCnet (c = 0, 1) from one supporting Ethernet (c = 2).

RTCC and CH, CDC1 and CH, CDC2 and CH. The
computation costs of these platforms are captured by:

Czcomp = CG +N ·Cz,c + (CCH −Cz,c)
⌈

N

1 + S(z, 5)

⌉
(2)

where z = 1, 2, 3 indicates the RTCC, CDC1 and CDC2
video-node, respectively and Cz,c the associated cost. CCH is
the cost of the CH architecture.

Network Cost Models. Cabling accounts for a significant
fraction of the cost of a wired-networked embedded system.
Many factors influence the cabling cost, including the number
and position of the embedded nodes, the physical dimension
of the system, the environment constraints, and the chosen in-
terconnection technology. We present five high-level analytical
models for the following network technologies: slow ARCnet,
fast ARCnet, Ethernet, and two hierarchical heterogeneous
networks (Ethernet over slow ARCnet and Ethernet over fast
ARCnet).

We assume that N cameras are distributed uniformly in a
region of area A with density ρ = N

A . Then, the distance

between two adjacent sensors is approximately l = 2
√

1
π·ρ .

For simplicity, we place the gateway at the center of the region.
ARCnet. A network based on ARCnet technology connects

all video-nodes with daisy-chain buses. The cabling cost is
proportional to the length of the chain CAcab = (N − 1) · l ·
CARC . Since both slow and fast ARCnet networks use the
same wiring medium and connection topology, they have the
same cabling cost. However, on a slow ARCnet chain there can
be at most 32 stations, whereas on a fast ARCnet chain this
number is reduced to 8. Routers are used to connect multiple
chains. In summary the ARCnet equipment costs are CA78

dev =⌈
N
32

⌉
· CAR and CA25

dev =
⌈
N
8

⌉
· CAR.

First Tier Network
Second Tier Network slow ARCnet (@78Kbps) fast ARCnet (@2.5Mbps)

fast ARCnet

CAIIcab = (M − 1) ·RL · CARC + CAcab CAIIcab = (M − 1) ·RH · CARC + CAcab

(@2.5Mbps)

CA25II
dev =

⌈
M
8

⌉
· CAR + CA78

dev CA25II
dev =

⌈
M
8

⌉
· CAR + CA25

dev

RL = 2
√

N
Mπρ RH = 2

√
N
Mπρ

M =
⌈
N
32

⌉
M =

⌈
N
8

⌉
Ethernet

CEth arc78
cab = [LEA(J) ·

⌊
M
J

⌋
+ LEA(M mod J) + 1

2 ·
√

N
π·ρ ·

⌈
M
J

⌉
] · CETH + CAcab CEth arc25

cab = [LEA(J) ·
⌊
M
J

⌋
+ LEA(M mod J) + 1

2 ·
√

N
π·ρ ·

⌈
M
J

⌉
] · CETH + CAcab

CETH arc78
dev =

⌈
M
J

⌉
· CES + CA78

dev CEth arc25
dev =

⌈
M
J

⌉
· CES + CA25

dev

LEA(i) = 2 ·RL · di LEA(i) = 2 ·RH · di
M =

⌈
N
32

⌉
M =

⌈
N
8

⌉
Table IV: Hierarchical heterogeneous network model.

parameter definition value
F frame period 40 ms
A area of the building 2100 m2

CARC [$/m] : cost per meter of an ARCnet cable $3
CETH [$/m] : cost per meter of an Ethernet cable $4.5

J number of port in the Ethernet switch 8
CG cost of the gateway/front panel $300
CES Ethernet switch cost $150a

CAR ARCnet router cost $460a

a) plus $ 100 of installation cost
Table V: Cost model parameters.

Two-Tier Switched Ethernet. In the first tier signals from
J sensors are merged together by the switch. The second tier
connects all the switches to the gateway with one additional
switch. Assuming that each switch is installed at the center
of its group of sensors, the Ethernet cable length to connect i
sensors to a switch is approximated by LE(i) = 2 · l ·di where
di is the i-th element of D. In case of an 8-port Ethernet
switch D = (0, 1, 2, 5, 8, 10, 13, 16). The total cable cost is:

C
Eth
cab =

[
LE(J) ·

⌊
N

J

⌋
+ LE(N mod J) +

1

2
·

√
N

πρ
·
⌈
N

J

⌉]
· CET H

The first two terms account for the wiring needed by N
cameras. The third term models the cable connecting switches
and gateway. CETH captures installation and cable cost per
meter. The switches contribute CETHdev =

⌈
N
J

⌉
· CES .

Hierarchical heterogeneous networks. In these networks
the first tier (closer to cameras) and the second tier are
implemented with different technologies. The cabling and
component cost of the first-tier networks are the same as
above. The second-tier network is commonly realized with a
wide bandwidth field bus (e.g. Ethernet or fast ARCnet). We
considered the combinations of Table IV.

VI. EXPERIMENTAL RESULTS

Using the reference values for the cost model reported in
Table III and V we derived model-based estimates of the
implementation costs for the various implementation technolo-
gies described above as function of the number of video-nodes
in the building. The cabling cost is shown in Fig. 4(a). The
Ethernet solution turns out to be the expensive compared to
any other solutions. The reason is twofold: (1) Ethernet uses
a star topology that generally requires more cabling than the
ARCnet daisy chain buses and (2) the installation cost of an
Ethernet cable is higher than the ARCnet counterpart. While a
pure ARCnet network seems to be the most cost effective, the
curves for the hierarchical heterogeneous networks show that
combining the two technologies may offer a good compromise

between bandwidth and price. Fig. 4(b) shows the computation
cost of various platforms based on Eq. 1 and 2 for the case
E = 1, i.e. the worst-case design where each frame of each
stream must be processed. These curves indicate that a solution
based on RTCC and CH nodes is ∼ 20% cheaper than all
the others. Moreover, a smaller value of E increases this cost
saving. Finally, Fig. 4(c) and 4(d) show the total implementa-
tion costs for E = 1 and E = 0.1 respectively, including the
costs of communication infrastructure and computation nodes.
These figures help us to understand the main design trade-
offs: the more computation is performed locally on the video-
node, the smaller bandwidth constraints are imposed on the
network. Hence, more investments in the video-node enable
big savings in the network design. The estimations based on
the analytical model with the parameters of Table V show
that the cabling costs play a critical role to tilt the balance in
favor of a distributed implementation. Specifically, the CDC
platform with the slow ARCnet network is the most convenient
solution regardless of the number of sensors in the system.

The analytical model gives a general estimation of the
implementation costs. In practice, these can be affected by
the characteristics of a particular deployment such as building
layout and camera positions. We performed a second experi-
ment by deriving detailed network topology implementations
for two real buildings with very different layouts (Fig. 5(a)
and 5(c)). Fig. 5(b) and 5(d) report the total deployment costs
for the case E = 0.1. Comparing these results with those based
on the analytical model, we notice that the CDC platform
with the slow ARCnet network is still the best solution in
terms of costs regardless of the building. Also, the analytical
model predicts with a good approximation the cost of Building
B, which has a regular structure that better matches the
modeling hypothesis, while it underestimates those of Building
A. Finally, the network cost, which is a significant component
of the total cost, is clearly dependent on the building layout.

VII. CONCLUDING REMARKS

In the building occupancy estimation the information con-
tent produced by each camera can be summarized in a few
bytes per second. Thanks to this huge data reduction and to the
substantial independence of the task computations across the
network, it is convenient to move the bulk of the computation
as close as possible to the cameras. This choice is also
supported by trends in embedded computing that steadily offer
new low-cost, low-power high-performance embedded proces-
sors. However, other camera-network applications may require
that more feature-rich data are transmitted across the network.
For example, our camera network can be easily adapted to

1 10 20 30 40 50

Number of Video-Nodes
0

500

1000

1500

2000

2500

3000

3500

4000
C

o
st

 (
$
)

Ethernet over Ethernet
Ethernet over Arcnet@2.5Mbps
Arcnet@2.5Mbps over Arcnet@2.5Mbps
Ethernet over Arcnet78
Arcnet@2.5Mbps over Arcnet@78Kbps

(a) cabling costs

1 10 20 30 40 50

Number of Video-Nodes
200

400

600

800

1000

1200

1400

1600

C
o
st

 (
$
)

CDC−Arcnet
PDC2−ARCnet
PDC1−Ethernet
RTCC−Ethernet

(b) computation costs with E=1

1 10 20 30 40 50

Number of Video-Nodes
1000

2000

3000

4000

5000

6000

7000

8000

C
o
st

 (
$
)

RTCC−Ethernet
PDC1−Ethernet
CDC−Ethernet
PDC2−Arcnet@2.5Mbps−Arcnet@2.5Mbps

CDC−Arcnet@2.5Mbps−Arcnet@78Kbps

CDC−Arcnet@2.5Mbps−Arcnet@2.5Mbps

(c) total costs with E=1

1 10 20 30 40 50

Number of Video-Nodes
1000

2000

3000

4000

5000

6000

7000

8000

C
o
st

 (
$
)

RTCC−Ethernet
PDC1−Ethernet
CDC−Ethernet
PDC2−Arcnet@2.5Mbps−Arcnet@2.5Mbps

CDC−Arcnet@2.5Mbps−Arcnet@78Kbps

CDC−Arcnet@2.5Mbps−Arcnet@2.5Mbps

(d) total costs with E=0.1

Fig. 4. Implementation cost estimates per number of video-nodes based on the analytical model.

(a) Building A layout

1 10 20 30 40 50

Number of Video-Nodes
0

2000

4000

6000

8000

10000

C
o
st

 (
$
)

RTCC−Ethernet
PDC1−Ethernet
CDC−Ethernet
PDC2−Arcnet@2.5Mbps−Arcnet@2.5Mbps

CDC−Arcnet@2.5Mbps−Arcnet@78Kbps

(b) Building A total cost (c) Building B layout

1 10 20 30 40 50

Number of Video-Nodes
0

1000

2000

3000

4000

5000

6000

7000

8000

C
o
st

 (
$
)

RTCC−Ethernet
PDC1−Ethernet
CDC−Ethernet
PDC2−Arcnet@2.5Mbps−Arcnet@2.5Mbps

CDC−Arcnet@2.5Mbps−Arcnet@78Kbps

(d) Building B total cost

Fig. 5. Layout of two real buildings and corresponding total deployment costs with E = 0.1.

implement an intrusion detection/control system. In this case
it is important not only to have an occupancy estimation, but
also to view/record frames/streams from those cameras that
detect movements. This can be seen as an extension of the
previous application where both occupancy estimation and
video streaming are now simultaneously present. While the
application is essentially made of the same embedded software
tasks, the bandwidth constraints are quite different. This has
major consequences on possible design implementations.

First, transmitting a raw video stream on a low-bandwidth
network is clearly unfeasible. Second, to compress and trans-
mit multiple video streams on a ARCnet network would
require image compression techniques (e.g., H.264). Specif-
ically, the low resolution video produced by our 3D video
sensor can be encoded in a ∼30 Kbps stream. Here we can
distinguish two cases: a) In an average-case design with a
small probability E of movement events, the compressed video
can be transmitted on a slow ARCnet network and the video-
node and communication costs are similar to those relative
to CDC over ARCnet plotted in Fig. 5(b) and 5(d). b) In
a worst-case design scenario (common in security or control
applications) or when E ∼ 1, the bandwidth produced by
the camera network (∼ 30 Kbps per sensor) rules out the
option of using the slow ARCnet network, which supports
only 78 Kbps. Instead, the cameras must be connected with
a fast ARCnet network that can sustain a large number of
compressed streams. However, this choice turns out to be
more expensive than using Ethernet because it would present
a similar cost as the cost of PDC2 shown in Fig. 5(b) and 5(d).
Also, naturally, to compress and decode a stream requires
dedicated hardware and software components, thus increasing
the global implementation cost.

Finally, the wide bandwidth offered by Ethernet can be used
to transmit raw videos. This choice enables the possible cost-
savings related to the aggregation of the computation on CH

nodes. However, beyond a given number of video-nodes the
total bandwidth load on the network becomes too large for a
standard 10/100 Ethernet field-bus.

ACKNOWLEDGMENTS

This research is sponsored in part by the National Science
Foundation (under Award #: 0644202).

REFERENCES

[1] W. Wolf, B. Ozer, and T. Lv, “Smart cameras as embedded systems,”
Computer, vol. 35, no. 9, pp. 48–53, 2002.

[2] M. Bramberger et al., “Distributed embedded smart cameras for surveil-
lance applications,” IEEE Computer, vol. 39, no. 2, pp. 68–75, 2006.

[3] B. Rinner and W. Wolf, “An introduction to distributed smart cameras,”
Proc. of the IEEE, vol. 96, no. 10, pp. 1565–1575, Oct. 2008.

[4] R. Tomastik, Y. Lin, and A. Banaszuk, “Video-Based Estimation of
Building Occupancy During Emergency Egress,” in Proc. of the Amer-
ican Control Conference, 2008, pp. 894–901.

[5] Axis. [Online]. Available: http://www.axis.com
[6] Biodata. [Online]. Available: http://www.videoturnstile.com
[7] Honeywell. [Online]. Available: www.honeywell.com
[8] Eurotech. [Online]. Available: http://www.eurotech.com
[9] Mate Webpage. [Online]. Available: http://www.mate.co.il

[10] A. Bevilacqua, L. Di Stefano, and P. Azzari, “People Tracking Using a
Time-of-Flight Depth Sensor,” in Proc. of the IEEE Intl. Conf. on Video
and Signal Based Surveillance, 2006.

[11] D. Beymer, “Person counting using stereo,” in Proc. of the Workshop
on Human Motion (HUMO’00), 2000, p. 127.

[12] K. Terada et al., “A counting method of the number of passing people
using a stereocamera,” in IEEE Proc. of Industrial Electronics Conf.,
vol. 3, 1999, pp. 1318–1323.

[13] L. Marcenaro et al., “Distributed architectures and logical-task decom-
position in multimedia surveillance systems,” Proc. of the IEEE, vol. 89,
no. 10, pp. 1419–1440, 2001.

[14] Avnet. [Online]. Available: http://www.avnet.com/
[15] Power User Inc. [Online]. Available: http://www.poweruseronline.com
[16] Grid Connect. [Online]. Available: http://www.industrialethernet.com
[17] W. Kastner et al., “Communication Systems for Building Automation

and Control,” Proc. of the IEEE, vol. 93, no. 6, pp. 1178–1203, 2005.
[18] ARCnet Trade Association. [Online]. Available: http://www.arcnet.com
[19] Ethernet Specification. [Online]. Available: http://standards.ieee.org/

getieee802/802.3.html

	Main
	DATE09
	Front Matter
	Table of Contents
	Author Index

