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Abstract

We propose Connection then Credits (CTC) as a
new end-to-end flow control protocol to handle message-
dependent deadlocks in networks-on-chip (NoC) for multi-
core systems-on-chip. CTC is based on the classic end-to-
end credit-based flow control protocol but differs from it be-
cause it uses a network interface micro-architecture where
a single credit counter and a single input data queue are
shared among all possible communications. This architec-
tural simplification reduces the area occupation of the net-
work interfaces and increases their design reuse: for in-
stance, the same network interface can be used to connect
a core independently of the number of incoming and outgo-
ing communications. CTC, however, requires a handshake
preamble to initialize the credit counter in the sender net-
work interface based on the buffering capacity of the re-
ceiver network interface. While this necessarily introduces
a latency overhead in the transfer of a message, simulation-
based experimental results show that the penalty in perfor-
mance is limited when large messages need to be trans-
ferred, thus making CTC a valid solution for particular
classes of applications such as video stream processing.

1 Introduction

Future generations of systems-on-chip (SoCs) will con-
sist of heterogeneous multi-core architectures with a main
general-purpose processor, possibly itself consisting of
multiple processing cores, and many task-specific subsys-
tems that are programmable and/or configurable. These
sub-systems, which are also composed of several cores, will
provide higher efficiency in supporting important classes
of applications across multiple use-case scenarios [14, 19].

Network On Chip 

Media Accelerators 

Embedded 
Memory 

Peripherals 
External Memory 

Control 

Video  Video 

Audio  Imaging 

Graphics 

Graphics 

CPUs 
& 

DMAs 

Figure 1. NoC-based System on Chip and the
media-accelerator sub-system [6].

Heterogeneity is the combined result of hardware special-
ization, reuse of Intellectual Property (IP) modules, and the
application of derivative design methodologies [7]. Pro-
grammability makes it possible to upgrade dedicated soft-
ware and add the support of new applications and features
that were not included at the chip design time.

Some current SoCs already offer task-specific subsys-
tems such as media accelerator subsystems including het-
erogeneous and specialized cores (e.g. video and audio de-
coders) that are connected to a shared bus and communi-
cate through the global memory [7]. This approach, how-
ever, offers limited programmability and reuse and does not
optimize the utilization of the resources (e.g., the buffer-
ing queues in the core interfaces are typically sized for the
worst-case scenario). Instead, communication among these
cores in future SoCs will likely be based on the network-
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Figure 2. NIs connecting cores to the NoC
and the possible message dependencies in
the (a) shared memory and (b) message
passing communication paradigms.

on-chip (NoC) paradigm [2,8,16]. These NoCs will be also
heterogeneous as illustrated in Fig. 1, where a top-level net-
work connects the main components of the chip, while other
sub-networks support auxiliary subsystems such as the me-
dia accelerator. In some of these task-specific subsystems
the communication will be based on the Message Passing
paradigm, which improves the performance of many impor-
tant applications such as video stream processing and other
multimedia applications [15].

In this paper we focus on the design of the sub-network
interconnecting the cores of a message-passing sub-system
and we propose an end-to-end flow control that optimizes
the flexibility and reusability of the cores through the defi-
nition of a unified network interface (NI) design.

Network interfaces are a crucial component for design
and reusability in the NoC domain because they decouple
the design of the cores from the design of the network.
NIs implement the NoC communication protocols and im-
prove performance by providing elasticity between inter-
core communication tasks and intra-core computation tasks
thanks to their storage capabilities. As shown in Fig. 2 in-
put and output queues are used to temporarily store the in-
coming and outgoing messages. While messages are the
units of transfer between the network clients (processors
and memories), in the network interface a single message
is typically broken down into a sequence of smaller pack-
ets for routing purposes; packets may be further segmented
in flow control digits (flit) for more efficient allocation of

network resources such as link bandwidths and queue ca-
pacities [9, 11].

The correct operations of a network requires to effi-
ciently handle deadlock situations which may arise due to
the circular dependencies on the network resources that are
generated by in-flight messages. A variety of methods has
been proposed in the literature to either avoid or recover
from deadlock [1, 9]. Most of these protocols assume the
consumption assumption where the packets of a message
traversing the network are always consumed by the desti-
nation core once they reach its corresponding network in-
terface [22]. However, as depicted in Fig. 2 and discussed
in detail in Section 2, deadlock may be caused also by de-
pendencies that are external to the network, i.e. dependen-
cies that are internal to a core. In fact, in real SoC systems
and multiprocessor systems a core typically generates new
messages in response to the reception of a previous mes-
sage. These dependencies between messages can gener-
ate a different type of deadlock that is commonly referred
as message-dependent (or protocol) deadlock [15, 18, 22].
Message-dependent deadlock occurs at a level of abstrac-
tion that is higher than the routing-level deadlock, which
can be addressed by deadlock-free routing algorithms such
as dimension-order routing [9, 11]. 1

Related Work. Various solutions for message-
dependent deadlock have been proposed in the literature.
Dielissen et al. solve this problem by guaranteeing suffi-
cient storage space for each possible pair of communicat-
ing elements [10]. Anjan et al., instead, add timers into
the router’s output ports to detect deadlock occurrences
and move the blocked packets into specialized queues to
guarantee progress [1]. Song et al. propose a deadlock-
recovery protocol motivated by the observation that in prac-
tice message-dependent deadlocks occur very infrequently
even when network resources are scarce [22]. These three
approaches, however, are meant for parallel computing sys-
tems and are not expected to scale well to SoC design.

The message-dependent deadlock problem in NoC for
shared-memory architectures has been addressed by intro-
ducing two physically-separated networks for the two mes-
sage types (load and store requests) [20] or two logically-
separated network (virtual networks) [7]. These solutions
may be difficult to scale to future multicore SoCs where
the increasing number of heterogeneous cores and message
types is likely to grow, thus leading to more complex de-
pendencies among packets.

The ÆTHEREAL [13] and FAUST [12] NoCs use credit-
based (CB) end-to-end flow control protocols. Similar to
the credit-based flow control mechanisms that operate at the

1We focus on addressing message-dependent deadlock while assum-
ing the use of a deadlock-free routing algorithm. Notice that message-
dependent deadlock is different from application-level deadlock which is
out of the scope of this paper.
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link level between a pair of interconnected routers [9, 11],
a CB end-to-end flow control protocol uses credits to in-
form a sender NI about the current storage capacity of the
queue in the receiving NI. As discussed in more detail in
Section 3, the sender NI keeps track of this capacity with
a credit counter that is initialized with a value equal to the
size of the corresponding queue and is dynamically updated
to track the number of available packet slots in the queue.
Hence, the sender continuously transmits only a subset of
the message packets that is guaranteed to eventually arrive
inside the NI, thus avoiding a message-dependent deadlock.
Notice that for a given SoC a core that may send messages
to N different cores needs N credit counters while if it can
receive messages from M different cores it needs M differ-
ent queues.

Contributions. We build on the CB approach to develop
Connection then Credits (CTC), an end-to-end flow con-
trol protocol that allow us to handle the message-dependent
deadlock while simplifying the design of the network in-
terface, which is based on the same micro-architecture re-
gardless of the number of communications that its core may
require. This micro-architecture uses a single credit counter
together with an output queue for sending all the possible
outgoing messages and a single pair of data-request queues
that is shared across all possible incoming messages. On
the other hand, as explained in Section 4, CTC requires the
completion of a handshake procedure between any pair of
cores that want to communicate before the actual message
transfer starts. This procedure is used to initialize the credit
counter in the sender NI based on the current available space
in the data queue of the receiver NI. While this necessarily
adds a latency overhead to the transfer of the message, the
penalty in performance is limited when large messages need
to be transferred as it is shown by the simulation results that
we report in Section 5.

2 Message-Dependent Deadlock

There are two main communication paradigms for ex-
changing data among the processing cores of a system-on-
chip and they are associated to two corresponding program-
ming models: shared memory and message passing.

In a shared-memory paradigm the processing cores com-
municate via data variables that are defined in the same log-
ical memory space and are physically stored in one or more
memory cores. As shown in Fig. 2(a), a processor accesses
a memory through either a load or a store request by speci-
fying the memory address and the size of the data block to
be transferred. In the case of a load request the addressed
memory replies by sending the values of the requested block
of data (typically a cache line) to the processor, which saves
them in its local cache memory. In the case of a store re-
quest the memory receives new values for a block of ad-

dresses, which typically correspond to a line in the proces-
sor’s local cache, and it replies by generating a short ACK
message to confirm their correct delivery. Shared memory
is the most used paradigm in current multi-core SoCs.

In the message passing paradigm, which is illustrated
in Fig. 2(b), the processing cores communicate by send-
ing/receiving data that are pushed directly from a core to
another (peer-to-peer communication): the sending and re-
ceiving cores are commonly referred as the producer and
consumer, respectively. By having dedicated logical ad-
dressing space for each processing core and providing direct
communication among their physical local memories, mes-
sage passing avoids the issues of shared-memory coherency
and consistency [17], thus potentially reducing the commu-
nication latency of each data transfer. This paradigm is par-
ticularly suited for data-flow and stream processing applica-
tions that consist of chains of processing cores such as the
video processing pipeline [15].

The correct implementation of shared memory and mes-
sage passing paradigms in a system-on-chip requires an un-
derlying NoC with communication protocols that guaran-
tee the correct transfer of each message and, particularly,
the absence of deadlocks. As discussed in the Introduc-
tion, even if the NoC relies on deadlock-free routing al-
gorithms, message-dependent deadlock may arise due the
dependencies among the messages “inside a core”, which
are shown in Fig. 2: e.g. the dependence between a load
request and response in a memory for the shared memory
paradigm and the causality dependency between the con-
sumption and production of data in a core for the message
passing paradigm. For both paradigms, the dependencies
between pairs of messages may get combined, thus leading
to message dependency chains [21]. Indeed, the causality
relations among pairs of messages can be modeled as a par-
tial order relation ≺ over the set of all possible messages
that are transferred in the network. Message dependency
chains depend on the chosen communication paradigm and
the characteristic of the given application [15].

Example. Fig. 3 shows a simple example of a message-
dependent deadlock that may occur due to the dependence
between the messages that are received by (sent from) a
memory core in a shared memory environment. The net-
work interface NI0 receives packets for a memory load (or
store) request message addressed to MemoryA and in re-
ply sends packets with a response message that includes
the requested data (or the acknowledgment of a store op-
eration). Since the input and output queues of NI0 have
necessarily limited storage capacity, a long sequence of re-
quests may cause a back-pressure effect into the NoC. For
instance, the packets of a series of load request messages
Loadi from ProcessorA may not be fully stored within
NI0 and, instead, may have to wait for several clock cy-
cles in the East queue of Router0. Then, let’s assume
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Figure 3. Message-dependent deadlock in a
shared-memory request-response paradigm.

that ProcessorB sends a series of load request messages
Loadj to MemoryB . Even if MemoryB can immedi-
ately serve a first subset of these requests, the packets of
the corresponding response messages will not be able to
reach ProcessorB because they will be blocked as they at-
tempt to access the East Queue of Router0. On the other
hand, when MemoryA will be finally able to serve the re-
quest messages Loadi, the packets of its response messages
will not be able to reach ProcessorA because they will
be blocked as they attempt to access the West Queue of
Router1, which are occupied by some of the packets of the
load request messages Loadj . In summary, even if the NoC
uses a deadlock-free routing algorithm, the dependencies
across the messages inside the memory cores cause a cir-
cular dependency involving NI0, Router0, Router1, and
NI1 which leads to a deadlock. �

Similarly to routing-dependent deadlock, the message-
dependent deadlock problem can be addressed with either
avoidance or recovery strategies. The relative advantages
of the various techniques based on these two approaches
depend on how frequently deadlocks occur and how effi-
ciently (in terms of resource cost and utilization) messages
can be routed while guarding against deadlocks [22].

The introduction of a Virtual Network (VN) for each type
of message transfer guarantees the solution of the message-
dependent deadlock by satisfying the consumption assump-
tion [7, 22]: the input and output queue of each router and
each NI in the network is replicated and assigned to a single
specific message class (e.g. two classes in case of memory
request and response messages). This solution “cuts” the
causality dependency between messages in the network at
the cost of a higher buffer requirement and more complex
router and NI design.

Stream processing applications implemented with a
pipeline of processing cores, where each core produces data
for the next consumer core, lead to a dependency chain of

message requests request1 ≺ · · · ≺ requestn where n
is the number of cores in the pipeline. For example, Fig. 4
shows the task graphs of the Video Object Plane Decoder
(VOPD) and Multi-Window Display (MWD) applications
where the nodes represent the tasks while the arcs repre-
sent the communications between the tasks and the rela-
tive bandwidth requirements [3]. The task graphs of these
applications, which are examples of stream processing ap-
plications, are similar and present a fairly-linear pipeline
structure with a sequence of twelve stages, each stage cor-
responding to a task. Hence, an optimally-concurrent SoC
implementation where each task is mapped to a distinct pro-
cessing core and where each inter-task communication is
implemented by end-to-end message passing would lead to
as many message types as the number of arcs. Multi-core
SoCs for embedded products simultaneously support an in-
creasing number of such streaming applications. This trans-
lates into the presence of complex communication patterns
among the cores, which simultaneously run multiple threads
of computation to implement the multiple tasks of the var-
ious applications. The implementation of the communica-
tion requirements among these cores with a NoC requires
new solutions for the message-dependent protocol. In fact,
a solution based on virtual networks does not scale as the
number of distinct message types that travel on the network
continues to grow. Furthermore, the length of the depen-
dency chains is difficult to predict because it depends on the
given application.

3 Credit Based (CB) Protocol

A different approach to the solution of the message-
dependent deadlock is based on the use of an end-to-end
flow control protocol that guarantees that a sender NI does
not ever inject more flits in the network than the correspond-
ing receiver NI can eject. The Credit Based (CB) end-to-end
flow control protocol is a simple implementation of this idea
that has been used in previous works [12, 13].

With a CB protocol, the sender NI maintains a detailed
knowledge of the number of queue slots that the receiver NI
has still available through the exchange of end-to-end trans-
mission credits. A credit can be associated to either a packet
or to a packet flit depending on the desired level of granu-
larity 2. What is important is the guarantee that no frag-
ment of a message can remain blocked in the network due
to the lack of space in the NI input queue, with the potential
risk of causing a deadlock situation. Hence, the sender NI
can continue to inject flits in the network only if it has still
enough credits as proofs that the receiver NI will eject these
flits. Dually, the receiver NI must send a credit back to the

2In this paper we use the granularity of the flit and we refer to them as
flit-credits.

4



stripe 
mem 

vld 
run le 
dec 

inv 
scan 

acdc  
pred 

iquan
t 

idct 

ups 
amp 

arm 

vop 
rec 

pad 
vop 
mem 

70 362 362 

362 49 

16 357 

27 

353 

300 

500 313 

313 
94 

16 

(a)

jug2 

in  nr 
mem
1 

mem
2 

hvs 

se 

mem
3 

blend 

hs 

jug1 vs 

64 64 

96 

64 

96 

128 

96 96 64 
64 

96 

96 96 

(b)

Figure 4. The MP (a) Video Object Plane Decoder (VOPD) and (b) Multi-Window Display (MWD) task
graphs.

sender NI for each flit that its core has consumed, thereby
generating an empty slot in its input queue.

Generally a single consumer core can be addressed by
multiple producers. Also a producer can address multiple
consumers and for each of these the producer needs a sep-
arated credit counter. Differently from credit-based flow
control mechanisms that operate at the link level between
a pair of interconnected routers [9, 11], here a pair of com-
municating cores may be separated by multiple hops in the
network. Also all packets generated by the peer cores arrive
at the same NI’s input port. Fig. 5(a) shows the simplest
way to address this issue. Each NI is provided with mul-
tiple and independent input and output queues and credit
counters: one input queue for each possible sender NI and
one output queue and credit counter for each addressed NI.

A generic NId, upon the reception of a flit from NIs,
saves the incoming data into Qs, the input queue associated
to the source NIs. When NId reads a flit from Qs, it gen-
erates an end-to-end flit-credit to send back to NIs. In turn,
NIs updates the credit counter Cd associated to the destina-
tion NId. Multiple credits can be combined into one single
end-to-end credit message for better efficiency. The amount
of flit-credits K associated to a single credit-message is a
fixed parameter of the system. The size Q of each input
queue depends on the value of K because the NI must be
capable of storing K incoming flits for each flit-credit that
it has generated. In particular considering the set of peers
Pc = {ni . . . nj} that can possibly communicate with the
consumer nc, nc’s input queues should be sized as:

Qnc
= K + Max

{
RTT (ni, nc) | ni ∈ Pc

}
(1)

where RTT is the zero-load round-trip time function that
depends on the given NoC implementation: specifically it
depends on the distance in hops between the NIs, the latency

of the routers, and, in case of channel pipelining [5], on the
number of stages of each pipelined channel.

On the input side, the Input Arbiter selects the incoming
data to process while on the output side, the Output Arbiter
selects the queue that is used to forward the flit or to send a
credit. The selection of the input and output queues is made
on a packet basis to avoid the delivering/reception of flits of
different packets, e.g. according to a round-robin policy.

The CB end-to-end flow control protocol differs from the
virtual network approach for two main of reasons. First,
in VN all the queues, including those in the routers, must
be replicated while in the CB protocol only the queues of
the NI must be replicated. Second, in VN the number of
queues per channel depends on the length of the application
message-dependency chain while in the CB protocol this
number varies for each given consumer core depending on
the number of producer cores that may address it.

4 Connection Then Credits (CTC) Protocol

Adding a dedicated input and output queue for each pos-
sible source/destination of messages, as required by the CB
flow control protocol, forces engineers to design a specific
network interface for each node of the network. This is the
case particularly for multi-use-case SoCs where the inter-
action between cores is driven by the application run by the
user [14,19]. As an alternative to CB, we present the “Con-
nection Then Credits” (CTC) flow control protocol. CTC
rationalizes and simplifies the design of NIs while guaran-
teeing the absence of message-dependent deadlock.

CTC regulates the exchange of messages between two
peer NIs by introducing a handshake procedure called Con-
nection. A CTC-message is a fixed amount of data to be
exchanged between the two NIs. As shown in Fig. 5(b) a
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Figure 5. Network Interface implementations: (a) credit based and (b) CTC.

CTC NI is composed of only two input queues and one sin-
gle output queue independently from the number cores that
can require a connection with this NI. The data-queue is
used for storing incoming data flits while the request-queue
instead is used for the incoming transactions requests.

When a producer NIs needs to initiate a connection to-
wards a consumer peer NId, it first sends a request packet3

called P REQ (packet-request) to NId to signal its request
to communicate. The P REQ packet also indicates the to-
tal size of the message to be delivered and some additional
information that can be used by the NI (i.e. for priority
decisions). Upon the reception of a P REQ, NId stores the
request in the request-queue together with the other requests
previously received and not yet processed. When the core
associated to NId is available for processing a new request
(i.e., the data queue has enough free space to accept a new
message) it generates an acknowledge packet called P ACK
that is forwarded to the source of the given request. The
P ACK packet is similar to the end-to-end credit packet in
the CB flow control. The difference is that the first P ACK
sent by NId actually initializes the output credit counter of
NIs so that it can generate and send a specific amount of
data. Upon the reception of credits the producer first gener-
ates a header flit used to open a path along the routers of the
NoC, then it forwards the data flits and decreases the CTC-
counter by one unit for each data-flit that has been sent.

Fig. 6 shows an example of the CTC protocol operations:
at first NI0 and NI2, address NI1 with two P REQ mes-
sages indicating the size of the transaction they want to ini-
tiate (respectively 100 and 80 flits). In Fig. 6(b) NI1 selects
NI0 to initiate the connections while it stores the other re-
quest in the request-queue. Then NI1 generates a chain
of consecutive P ACK packets so that NI0’s credit counter

3Note that P REQ and P ACK are actually messages composed by one
single packet. When referring to these two messages we use the two words
without distinction.

is initialized with the maximum amount of flit-credits that
NI1 can offer.

As for the CB case, a single P ACK conveys K flit-credits
per single message but in the former counters are initialized
at start up time whereas in CTC the consumer NI initial-
izes the counter of the selected producer peer. Consider-
ing the example in Fig.6 if the size of the data input queue
were Q=10 and K=3, NI1 would generate 3 consecutive
P ACK messages to initialize NI0’s credit counter to the
maximum storage it can offer. As Q is not a multiple of K
one slot is not assigned at the connection start-up time but
it will be assigned as soon as NI1 starts receiving flits and
forwarding them to the connected core. Finally, Fig. 6 (c)
shows the data-packet generated by NI0 reaching the data-
queue of NI1.

Independently from the consumption rate of the core, in
both considered end-to-end flow controls each time a con-
sumer frees K slots in the data input-queue, it generates a
new P ACK message until the sent credits are sufficient to
transfer all the flits of the requested transition (whose size
was specified in the P REQ message). Considering the ex-
ample in Fig. 6 with K = 3, NI1 generates a new P ACK
for each K flits that are consumed. Hence the 100 flits of
message M require a total of dM/Ke = 34 P ACK mes-
sages. As the message’s length M is not a multiple of K,
the consumer NI assigns to the connection a bigger amount
of memory slots than M. Nevertheless at most K-1 slots of
Q can be reserved but not actually used. These additional
slots are marked as dirty and freed when the connection is
terminated.

Finally upon the sending/reception of the last flit of M,
the producer and the consumer terminate the connection.
Note that there is no need of specific flags or instructions as
both producer and consumer nodes know the exact size of
the transfer to process.

6



R 

D
at

a 
Q

. 
Req. Arbiter 

N 1 

R
eq

 Q
. 

P_REQ 

01 | 100 

P_REQ 

21 | 80 

(a)
D

at
a 

Q
. 

Req. Arbiter 

<2|80> 

N 1 

R
eq

 Q
. 

R 

P_ACK 

10 | K 

<0|100> 

(b)

R 

D
at

a 
Q

. 

Req. Arbiter 

<2|80> 

N 1 

R
eq

 Q
. 

Data 
01|1/100  

<0|100> 

(c)

Figure 6. The CTC transaction-definition procedure: (a) the core interface NI1 receives two P REQ
requests from NI0 and NI2; (b) NI1 selects the request from NI0 generating the relative P ACK and
stores the one from NI2 in the request-queue; (c) NI1 receives the data-packets from NI0.

To avoid throughput degradation, the data-input queue
should be sized accordingly to Equation 1 as function of the
number of credits per P ACK and the maximum round trip
time between the consumer NI and the producer address-
ing it. Using a fixed value of K rather than a dynamic one,
reduces the number of control packets traveling on the net-
work. Moreover the parameter K influences both the num-
ber of CTC-control messages traveling along the network
and the size of the data input queue on the NIs. Hence it
has a clear impact on the design and performance of the
network. According to Equation 1 a small values of K al-
lows to reduce the size of the input queue saving area and
power consumption. On the other hand, it implies a higher
number of P ACK packets flowing through the network to
update the credits on the producer side. To avoid loss of per-
formance and reduce contentions, a producer node that runs
out of credits terminates the injection of the packet by tag-
ging the flit using the last credit as packet tail. In this way
the path along the network is made available to other pos-
sibly blocked packets. Note that the CTC connection is not
terminated until the delivery of all the flits of the message is
completed.

To guarantee the consumption assumption of the P REQ
messages, the request-queue must be sized accordingly to
the maximum number of requests that a NI can receive. By
limiting each CTC producer to have one single outstanding
P REQ at time the request queue can be sized according to
the number of possible sources of data so that all incoming
P REQ can be stored in the NI and removed from the NoC.

CTC defines three message dependencies that are ad-
dressed in the following way:

P REQ→ P ACK: the request-queue is sized accordingly
to the number of possible producer-peers addressing
the given NI. CTC limits each node to have at most one
outstanding P REQ at time. Hence the consumption of
all injected P REQ is guaranteed.

P ACK→data: P ACK packets are always consumed by a
network interface that updates the output credit counter
and then deletes them.

data→ P ACK: the credit mechanism ensures that no
more data-flits than those allowed by the output credit
counter can ever been injected. Hence all data flits in-
jected in the NoC are eventually consumed by their ad-
dressed NI.

Thanks to the CTC protocol design, these three depen-
dencies are independent from the applications that is run by
the cores and hence the system can be considered protocol-
deadlock free.

5 Analysis and Simulation

To analyze the characteristics of the CTC protocol and
compare the performance of a CTC-based NoC versus a
CB-based NoC we developed a C++ system-level simula-
tor that allows us to model various NoC topologies, routing
and flow-control protocols as well as the traffic scenarios
injected by various types of cores. We used the simula-
tor to compare the two end-to-end protocols on the Spi-
dergon NoC [7] for the case of the VOPD and MWD ap-
plications whose task graphs are shown in Fig. 4. We as-

7



 60
 80

 100
 120
 140
 160
 180
 200
 220
 240

 0.1  0.2  0.3  0.4  0.5  0.6

M
es

sa
ge

 L
at

en
cy

 (c
yc

le
s)

Offered Load (flit/cycle)

 CB 
 CTC 

(a)

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

M
es

sa
g

e 
L

at
en

cy
 (

cy
cl

es
)

Offered Load (flit/cycle)

 CB 
 CTC  

(b)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0.1  0.15  0.2  0.25  0.3  0.35  0.4

M
es

sa
g
e 

L
at

en
cy

 (
cy

cl
es

)

Offered Load (flit/cycle)

 CB 
 CTC 

(c)

Figure 7. Message latency as function of the injection rate for (a) VOPD, (b) MWD and (c) Uniform
traffic patters.
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Figure 8. Message latency as function of the
number of credits associated to a P ACK for
the case of the VOPD traffic pattern.

signed each task to a different core following the heuristic
presented in [4]. We also considered the random uniform
traffic pattern where each node may communicate with any
other node in the network [9]

In the CB-based NoC the NI of each core has a number of
input queues equal to the number of incoming streams (see
Fig. 4). For both the CTC-based and the CB-based NoC,
the size of each data input queue is set uniformly based on
Equation 1 and no virtual channels are used.

Fig. 7 shows the average end-to-end message latency as
function of the average offered load when K is fixed to 32
flit-credits (results are similar for the other credits values)
and the messages are 64 flits. As expected, the CTC proto-
col gives a higher latency due to the handshake procedure.
Nevertheless, for the VOPD application the difference be-
tween the two protocols remains under 10% up to the satu-
ration point, which is around 0.4.

Fig. 8 shows the average peer-to-peer latency as function
of the number of credits K per P ACK packet when the of-
fered load is lower than the saturation threshold for the case

of the VOPD application. Clearly, by increasing the value
of K the performance of the system also improves: PEs can
inject more flits per P ACK thus reducing the number of
control packets (credits and headers). Conversely, increas-
ing K also requires bigger input queues that must support
the additional number of flits received per P ACK sent.

Fig. 9 reports the throughput comparison as function
of the message size M. As expected, in all these scenar-
ios, the performance of the CTC-based NoC increases with
the message size for the same offered load because the
rate of connections-per-flits that must be set up is reduced.
Therefore, CTC represents a valid proposition for message-
passing applications such as video stream processing that
present large inter-core message transfers.

Finally, we analyze the amount of storage used by the
two alternative flow control protocols. As discussed in Sec-
tion 3, for both CB-based and CTC-based NoCs the input
queues of the network interfaces must be properly sized to
avoid throughput degradation. For a CB-based NoC each
input queue must be sized accordingly to Equation 1. For
a CTC-based NoC, instead, only the data-queue must have
this size while the request-queue of a given interface must
be as large as the number of distinct producer cores that
can send message to its core. Notice that in order to pro-
vide a single interface design for each possible core, this
number can be over-estimated without a major loss of area
because the request-queue has a negligible size compared to
the data-queue. Fig. 10 shows the breakdown of the aggre-
gate number of data-queues used in the network interfaces
for the two approaches to support the given applications.
In VOPD and MWD only the interfaces associated to nodes
with incident (outgoing) arrows actually require input (out-
put) queues. Considering VOPD the CTC-based NoC uses
a total of 22 data queues, including both input and output,
while the CB-based NoC needs 30 data queues. Assuming
that the length of each data queue is the same in the two
NoCs, CTC allows to save up to 35% of storage space for
this particular case study. In the MWD case, since most of
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Figure 9. NoC Throughput as function of the message size when K = 4 flit-credits.
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Figure 10. Breakdown of the aggregate number of input and output queues in the NoC NIs for the
VOPD application.

the cores communicate only with one other core the two
NoCs have many interface with similar structures. Still,
even in this case CTC allows to save up to 24% of storage
as reported in Fig. 10.

Finally, the Uniform traffic pattern represent the special
case where each node may communicate with any other
node of the NoC. In this case clearly CB is an expensive
solution as it requires N − 1 queues where N is the num-
ber of nodes in the network. In fact, in absence of a nego-
tiation protocol, replicating the queues is the only way to
guarantee that flits of different messages are not mixed in a
single queue and that all injected flits are also ejected from
the NoC. In comparison, the storage reduction achieved by
CTC can be very high because all N − 1 input and output
queues of each node are replaced by the single input data-
queue and the output queue.

In summary, the reduction of the size of the queues that
must be installed in each network interface translates di-
rectly in a reduction in the area occupation and is expected
to lead also to a reduction in overall NoC power dissipation.

6 Conclusions
Message-dependent deadlock is a destructive event that,

even if rare [22], must be properly addressed to guaran-
tee the correct behavior of a network. The credit based
(CB) end-to-end flow control protocol solves this problem
by using multiple dedicated input queues and output reg-

isters in the network interfaces. This increases the com-
plexity of the network interface design. Further, since the
number of these queues depends on the number of distinct
communications that its particular core may have, the same
network may present interfaces that have different micro-
architectural structures.

We proposed the Connection Then Credits (CTC) end-
to-end flow control protocol as an area-efficient solution to
the message-dependent problem that is characterized by a
simpler and more modular network interface architecture.
CTC-supporting network interfaces use one single input
data queue and one output credit counter. Hence, the over-
all number of queues per network interface remains equal
to two, the total amount of storage is reduced and the over-
all network-interface design becomes independent from the
communication requirement of the particular core, thus in-
creasing its reusability. On the other hand, any new commu-
nication between a pair of peer nodes requires the prelimi-
nary completion of a handshake procedure to initialize the
output credit counter on the producer side (after the connec-
tion has been established CTC works in a way similar to the
original Credit Based flow protocol). This procedure neces-
sarily increases the latency of a message transfer and it also
reduces the network throughput for small messages.

In summary, the choice between CB versus CTC may be
seen as a case of typical “performance versus area” tradeoff.
From this perspective, experimental results show that for
a video processing application the latency penalty remains

9



under 10% while the savings in terms of the overall area
occupation of the network interfaces reaches 35%. There-
fore CTC is an effective solution of the message-dependent
deadlock problem for throughput-driven stream processing
applications.
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