
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt
oR

eu
se
* *

Evaluated

*
C
G
O
*

Ar
t ifact *

A
E
C

Cross-ISA Machine Emulation for Multicores

Emilio G. Cota
Columbia University, USA
cota@cs.columbia.edu

Paolo Bonzini
Red Hat, Italy

pbonzini@redhat.com

Alex Bennée
Linaro, UK

alex.bennee@linaro.org

Luca P. Carloni
Columbia University, USA
luca@cs.columbia.edu

Abstract
Speed, portability and correctness have traditionally been
the main requirements for dynamic binary translation (DBT)
systems. Given the increasing availability of multi-core ma-
chines as both emulation guests and hosts, scalability has
emerged as an additional design objective. It has however
been an elusive goal for two reasons: contention on com-
mon data structures such as the translation cache is difficult
to avoid without hurting performance, and instruction set ar-
chitecture (ISA) disparities between guest and host (such as
mismatches in the memory consistency model and the se-
mantics of atomic operations) can compromise correctness.

In this paper we address these challenges in a simple
and memory-efficient way, demonstrating a multi-threaded
DBT-based emulator that scales in an architecture-independ-
ent manner. Furthermore, we explore the trade-offs that
exist when emulating atomic operations across ISAs, and
present a novel approach for correct and scalable emulation
of load-locked/store-conditional instructions based on hard-
ware transactional memory (HTM). By adding around 1000
lines of code to QEMU, we demonstrate the scalability of
both user-mode and full-system emulation on a 64-core x86
64 host running x86 64 guest code, and a 12-core, 96-thread
POWER8 host running x86 64 and Aarch64 guest code.

Categories and Subject Descriptors D.3.4 [Processors]:
Code Generation; D.1.3 [Programming Techniques]: Con-
current Programming

Keywords Dynamic Binary Translation, Scalability

1. Introduction
Dynamic binary translation (DBT) is a technique extensively
used in virtualization, cross-ISA system emulation, legacy
code migration, code instrumentation/replay, and as a front-
end for computer architecture simulators. The increasing
availability of multi-core machines as both emulation guests
and hosts adds scalability to the traditional requirements
for DBT engines, namely speed, portability and correctness.
Salient examples of this requirement are the emulation of
multi-core SoCs, which are integrating increasing numbers
of cores [3] and even include chips with different ISAs [30],
and computer architecture simulators that fail to scale [6]
due to the lack of a portable, robust and scalable front-end.

Our goal is thus to enable efficient emulation of multi-core
guests on multi-core hosts while maintaining speed, porta-
bility and correctness.

Efficient, highly-parallel dynamic binary translation poses
two challenges. First, concurrent access to key data struc-
tures should avoid contention on the memory hierarchy.
Second, guest and host ISAs may differ in the implemen-
tation of atomic operations, as well as in the memory con-
sistency model; such mismatches impose additional work on
the DBT engine, beyond simply performing instruction-by-
instruction translation. This paper proposes a design for a
scalable dynamic binary translator that is simple, memory-
efficient and correct. Our design, which we call Pico, is im-
plemented on QEMU [7] due to its wide use and support of
many different guest and host ISA combinations.

The two main contributions of this paper are:

• A memory-efficient design of a shared code cache for
DBT engines. Based on the observation that code transla-
tion is rare, and that runtime is mostly spent on code exe-
cution, we keep the core logic of Pico simple, and achieve
scalability through careful tuning of the emulator’s data
structures. In particular, the code cache is backed by a
novel, highly concurrent hash table design that enables
fast and scalable lookups (Section 3).

• A scalable, fully correct cross-ISA approach to emulat-
ing atomic instructions and reconciling guest-host dif-
ferences in memory consistency models. We emulate
strongly-ordered architectures on top of weaker ones by
leveraging the work of Lustig et al. [24]. When possible,
atomics are translated to the equivalent operation on the
host. Otherwise, they are emulated faithfully either by in-
strumenting stores or, as a high-performance alternative,
by leveraging hardware transactional memory (HTM) on
hosts that support it (Section 4).

Pico’s design was well received by the QEMU developer
community, and we believe that the same ideas are applica-
ble to other emulators as well, for example Valgrind. Fur-
thermore, the implementation only requires modest modifi-
cations to QEMU, most of them generic; target- and host-
specific changes are on the order of 200–300 lines for each
target or host.

978-1-5090-4931-8/17 c© 2017 IEEE CGO 2017, Austin, USA

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

210



0x

5x

10x

15x

20x

25x

30x

35x

astar
bzip2

gcc gobmk
h264ref

hmmer
libquantum

mcf
omnetpp

perlbench

sjeng
xalancbmk

hmean

S
lo
w
do
w
n

SPEC CINT2006

DynamoRIO 6.2+ (577ee86b)
Pin 3.0-76991
QEMU-user v2.4.0-rc3

0x

10x

20x

30x

40x

50x

60x

70x

GemsFDTD

bwaves
cactusADM

calculix
dealII

gamess
gromacs

lbm leslie3d
milc

namd
povray

soplex
sphinx3

tonto
wrf zeusmp

hmean

S
lo
w
do
w
n

SPEC CFP2006

Figure 1: Slowdown for SPEC06 of DynamoRIO, Pin and
QEMU-user vs. native execution on an Intel i7-6700 host.

We have already contributed bug fixes and scalability
improvements to QEMU’s support for multi-threaded user-
mode emulation, and are working to include scalable system
emulation in QEMU’s future releases. This will enable other
researchers and practitioners to easily benefit from our work.

We evaluate Pico on a 64-core x86 64 machine running
x86 64 code, and on a 12-core, 96-thread POWER8 machine
running x86 64 and Aarch64 code. Our results show that
scalability of DBT with a shared code cache is comparable
with native execution and hardware-assisted virtualization.
Further, we quantify the implementation overhead of the
different options to handle architectural mismatches between
guest and host, exploring correctness vs. performance trade-
offs for atomic instruction emulation.

2. Background and Related Work
2.1 Dynamic Binary Translation
Dynamic binary translation (DBT) is the basis for dy-
namic binary instrumentation (DBI) tools, such as Dy-
namoRIO [11], Pin [23] and Valgrind [29]. DBT is well-
suited for code instrumentation: it enables the handling of
unmodified binaries (thus removing the need for recompila-
tion/relinking) while covering all executed user-space code
without requiring access to the original sources. The over-
head of DBI tools is usually low, most of it coming from
the analysis performed and not the instrumentation. For
instance, Valgrind is significantly slower than Pin or Dy-
namoRIO, in part due to the maintenance of a heavyweight
shadow memory.

A major limitation of the above tools is the lack of support
for cross-ISA analysis, therefore requiring the instrumented
binary’s ISA to match that of the host machine. Arguably the
most widely used cross-ISA DBT tool is QEMU [7], which
currently supports about two dozen different guest and eight
host ISAs.

Cross-ISA portability comes at a price, however. As
shown in Figure 1, execution of the SPEC06 benchmark
suite is significantly slower in QEMU than in DynamoRIO
or Pin. Most of the slowdown comes from the lower quality

Alpha
frontend

aarch64
frontend

MIPS
frontend

PowerPC
backend

SPARC
backend

x86
backend

Alpha
guest code

aarch64
guest code

MIPS
guest code

PowerPC
host code

SPARC
host code

x86
host code

TCG
Ops

TCG
Optimizer

.

.

.

.

.

.

Figure 2: Cross-ISA portability is achieved in QEMU by
leveraging TCG, its own intermediate representation.

of the output code, as shown by Zhang et al. [35]. Floating
point workloads (CFP2006) under QEMU incur an addi-
tional order of magnitude slowdown, because QEMU em-
ulates the guest floating point instructions using integer in-
structions. This is done for portability and correctness: by
not relying on any particular FPU, a single code base can
support all possible guest-host combinations.

QEMU leverages TCG, an intermediate representation
(IR) into which guest ISA instructions are broken down.
After a simple local optimization pass, these are translated
into the host’s ISA (Figure 2). Translation is more expensive
in QEMU than in DynamoRIO and Pin (which do not need
the intermediate step of an IR); nevertheless it does not
constitute a large part of the run time. The intermediate
representation also has a performance cost; this cost is also
present in other retargetable DBT systems, such as Valgrind.

Another major difference between QEMU and other DBT
tools is that QEMU supports both user-mode and full-system
machine emulation. QEMU user-mode (QEMU-user) oper-
ates only on userspace code, issuing system calls natively on
the host by appropriately translating guest system call num-
bers. Full-system emulation (QEMU-system) virtualizes en-
tire machines (e.g. a PC or System-on-Chip), which include
one or several processors and various peripherals.

Pico is able to work and scale across ISAs to 64 cores in
both emulation modes. The techniques that Pico introduces
to achieve this apply regardless of the translation overhead
or quality of output code. Thus, we believe that the chal-
lenges and solutions proposed in this paper are applicable to
dynamic binary translators at large.

2.2 Parallel Cross-ISA Machine Emulation
The increasing core counts in machines with diverse ISAs—
from embedded systems to servers—calls for efficient, paral-
lel cross-ISA emulators. Unfortunately, QEMU is not well-
equipped for the task: QEMU-user spends large amounts of
time sleeping on locks and stops all CPUs every time an
atomic operation executes; QEMU-system is only parallel
when used in conjunction with KVM1 [20] otherwise it ex-
ecutes the emulated processors in a round-robin fashion in a
single host thread.

1 Optionally, instead of performing DBT, QEMU can run unmodified guest
code directly on the host through the host processor’s virtualization exten-
sions. This is a high-performance option to consider when cross-ISA porta-
bility is not required.

211



CPU0 CPU1 CPUn...

vCPU0
thread

vCPU1
thread

vCPUn
thread...

I/O
thread

Translation
Block Buffer

Shared data

Memory Map RAM Buffer

Guest
Host

Timer Disk ... Serial

Devices

Figure 3: Pico’s full-system architecture. Each guest CPU
is emulated by a corresponding host “vCPU” thread. Guest
devices are emulated by a single “I/O” thread.

The main design choice when developing a scalable em-
ulator is whether to equip each guest CPU with a private
translation code buffer, or to share cached translated code
among all executing CPUs.

A comparison of shared vs. private code caches was con-
ducted by Bruening et al. [12] using DynamoRIO as the un-
derlying translation system. According to the authors, a pri-
vate code cache is simpler to manage due to the absence of
synchronization for most common operations. However, pri-
vate code caches have a major downside in their potentially
egregious memory consumption: while desktop workloads
typically share very little code among threads, typical server
workloads (e.g. web servers, databases) spawn hundreds of
threads/processes that execute large amounts of shared code,
either due to heavy interactions with the kernel (e.g. process-
ing of heavy I/O or network traffic) or due to the high-level
languages these workloads are written in (e.g., Java) [16].
Pico’s simple shared code cache design is made possible by
read-copy-update (RCU), a pattern for efficiently accessing
data structures while concurrently updating them [26].

Two works in the literature address the problem of
adding multicore support to QEMU: COREMU [33] and
PQEMU [14]. COREMU uses private code caches, whereas
PQEMU’s authors experimented with both private and shared
code caches. As an optimization, PQEMU supports a com-
plex state machine to manage the shared code cache.

Neither PQEMU nor COREMU (including a later port
for MIPS hosts [19]) address correctness issues specific to
cross-ISA emulation. These issues arise due to differences
between guest and host in their (1) memory consistency
models and (2) atomic operation semantics. The first issue
was recently addressed by Lustig et al. [24]. The authors
model the insertion of memory barriers between memory ac-
cesses as a state machine; their ArMOR framework accepts
a description of memory consistency models for the guest
and the host, and produces such a state machine for use in an
interpreter or dynamic binary translator. The second chal-
lenge, which to our knowledge has no prior work in the lit-
erature, has to do with the correct and scalable emulation

of load-locked/store-conditional pairs (LL/SC) on hosts that
only provide a compare-and-swap (CAS) instruction which,
unlike LL/SC, is subject to the ABA problem [27]. Section 4
describes Pico’s solution to these issues.

In addition, both COREMU and PQEMU require invasive
changes to QEMU; they are based on ancient QEMU ver-
sions and seem to have aged badly. In COREMU we were
only able to boot the Debian image that was released with it,
while PQEMU 2 fails to compile on recent compilers.

3. Emulator Design
Pico’s architecture, shown in Figure 3, has four main com-
ponents: the state of CPUs, the memory map, the translation
block cache and the guest RAM. In this section we cover the
first three components, deferring the discussion of cross-ISA
memory access emulation to Section 4.

We do not describe in detail the host “I/O” thread for
device emulation, since it has been present in QEMU for
several years, supporting concurrent emulation of devices
and guest code execution with adequate performance.

3.1 CPU Execution
Pico allocates one host thread per emulated CPU; threads
can then access the CPU registers without need for synchro-
nization. However, CPUs do communicate with each other,
even if sparingly; for example, the ARM architecture has
instructions to flush the TLB on all cores in a shareability
domain.

For this purpose Pico uses a two-pronged approach that
scales for the common case, in which no communication is
ongoing. First, every CPU loop is wrapped in an RCU read-
critical section. Second, messages are delivered by setting a
“flag” on the consumer CPU’s state. The use of RCU allows
producer CPUs to establish when messages have been con-
sumed by waiting for a grace period to elapse. To ensure that
the receipt of messages is bounded in time, CPUs check the
request flag at the beginning of every translated basic block.
Despite the simplicity, the cost of the checks is low: each ba-
sic block only needs two or three more instructions, depend-
ing on the host architecture—e.g., a load, a compare and a
well-predicted branch. Note that QEMU does not attempt to
compile multiple basic blocks into a single compiled trace,
otherwise the cost could be easily amortized and further low-
ered by combining it with trace compilation.

3.2 Memory Map
QEMU-system organizes the guest’s memory map as a tree
of RAM, I/O and “container” memory regions, from which a
radix tree is built for efficient lookups. Changes in the mem-
ory map are rare once the kernel has booted, and typically
happen only in response to device hot-plug and hot-unplug.
Given how infrequent these changes are, the radix tree is
simply rebuilt from scratch whenever a change occurs.

2 Available at https://github.com/podinx/PQEMU

212



hit

yes

no

PC, phys-PC, flagsP next
translated block

translated block

vCPU

PC TB jmp cache

Translation Block Cache

TB Hash Table

(a)

hit

yes

no

PC, phys-PC, flagsP
translated block

translated block

vCPU

PC TB jmp cache

Translation Block Cache

QHT

lock seq DDDD #### next

(b)

Figure 4: Translation Block lookup mechanisms in (a) QEMU and (b) Pico. Pico’s improved hashing results in a more uniform
bucket distribution. Further, QHT has higher performance due to its dynamic resizing and concurrent lookup support.

The memory map radix tree is read on every TLB miss3

and on every interaction with an emulated memory-mapped
device; it is therefore crucial for Pico to provide cheap ac-
cess to it. The low update frequency and the “rebuild from
scratch” approach make the memory map data structure an
excellent candidate for RCU. Thus, once the tree is rebuilt,
all CPUs are “kicked” out of their execution loop, thereby
concluding their RCU read-side critical sections. This guar-
antees that they will all read the updated state upon resuming
execution.

3.3 Translation Block Cache
The translation block cache minimizes code retranslation by
buffering already translated code. It consists of translation
blocks (TBs), i.e., guest basic blocks translated to the host
architecture, that are indexed by an associated hash table.

Even though TBs can be invalidated, memory in the block
cache is never reused. When the block cache is full, the em-
ulator stops all CPUs and starts over with an empty buffer.
Such flushing of the block cache is done for simplicity and
performance. For most workloads and with an appropriately
sized code buffer, the hit rate is very high and the buffer is
flushed rarely—on the order of 2-3 flushes/minute in system
emulation and practically never for user mode. Thus, main-
taining an eviction policy (such as “least recently used”)
would likely result in a net loss of performance: the associ-
ated bookkeeping would negate the gains of avoiding already
rare flushes.

The translation block cache and associated lookup mech-
anism in the original QEMU is shown in Figure 4a. The
hash table points to TB descriptors, and is indexed by guest
physical address. The hash table uses separate chaining with
a fixed number of buckets. From the CPU execution loop,
TB lookups are performed in two steps. First, threads ac-
cess a direct-mapped, CPU-private cache. On a hit, a pointer
to the corresponding TB is returned. On a miss, the shared
hash table is accessed after acquiring a global lock. The
CPU-private caches are tuned for latency; they are small and

3 The memory map is not used in QEMU-user, since guest addresses are
trivially translated to host addresses by adding a constant value.

are invalidated relatively often (e.g., after every TLB flush).
Thus, contention on this lock can be high.

Hash table design. Pico increases performance and scala-
bility of the shared hash table in two ways. First, we improve
the hashing function used to place TB descriptors in the hash
table buckets. Second, we adopt a new hash table design that
enables correct, concurrent lookups.

Pico uses xxhash [4], a high-performance non-cryptogra-
phic hash algorithm, to mix all three parts of the key: the
virtual program counter (PC), the physical program counter
(phys-PC) and a set of flags representing the active CPU
mode (flags). Using all this information leads to a signifi-
cantly more uniform distribution of TBs into buckets: for in-
stance, the longest observed chain after fully booting Debian
“jessie” on ARM is brought down from 550 to 40 TBs.

Our hash table design, called QHT, is highlighted in Fig-
ure 4b. Its main feature is support for concurrent reads with
optimal scalability. In addition, even though Pico does not
need it for the translation block cache, QHT also allows con-
current writes to separate buckets. In QHT, bucket chains are
composed of cache line–sized nodes. Each node has a head
spinlock for serializing writers, and stores multiple pointer-
sized objects (“D” in the figure) along with their precom-
puted hashes (shown as “#”).

QHT is similar to CLHT-LB [13]; however, CLHT im-
poses a restriction on the memory allocator that can be used
with the hash table: the same address cannot be returned
twice by the allocator while reads are occurring. To re-
move this restriction, QHT uses a per-bucket sequence num-
ber and the seqlock algorithm [21] to synchronize readers
against writers. Readers of a seqlock need not perform any
write, avoiding cache line bouncing and preserving scalabil-
ity; they only need to retrieve the sequence number with a
regular load (plus, on non-TSO hosts, a read fence) before
and after traversing each bucket.

Writers update the sequence number before and after a
concurrent write; therefore, if the low bit is set, readers
know a writer is currently active. Readers wait until the
low bit is clear, then access the bucket. If the sequence
number changes during the access, the reader might have

213



9

10

11

12

13

14

15

14 15 16 17 18 19 20 21

B
o

ot
u

p
+

sh
u

td
ow

n
(s

)

Initial log2 number of buckets

QEMU (ineffective hashing+MRU)
xxhash+MRU

xxhash (no MRU)
xxhash+ck hs (resizable)
xxhash+QHT (resizable)

9

10

11

12

13

14

15

14 15 16 17 18 19 20 21

Figure 5: Bootup+shutdown time of Debian “jessie” in an
ARM guest running on an Intel Haswell i7-4790K host.

seen an inconsistent state and retries the access. Retries are
highly unlikely due to (1) the size of the hash table (it is
not uncommon to have several hundred thousand elements),
and (2) its low update rate—about 6% when booting Debian
“jessie” on ARM, arguably a worst-case workload since
most translated code is executed only once.

Figure 5 presents, for several hash table configurations,
the time it takes to fully boot Debian “jessie” on ARM and
immediately shut down. The original QEMU uses a fixed
size hash table together with a most-recently-used (MRU)
promotion policy, which moves items to the front of the
bucket after every successful lookup. The plot shows that us-
ing MRU along with effective hashing (xxhash) and appro-
priate sizing gives optimal performance. On the other hand,
MRU writes to memory on every lookup, which hurts scala-
bility due to excessive cache line bouncing.

Furthermore, a fixed size hash without MRU has inferior
performance due to excessive bucket chain lengths and in-
creased number of cache misses. QHT virtually matches the
performance of an ideally-sized hash table with MRU pro-
motion by supporting resizes concurrent with lookups. Since
resizes are rare, concurrent writes spin on bucket locks while
a resize takes place. The freeing of pre-resize bucket chains
is deferred by using RCU.

We benchmarked QHT against other hash table designs
featuring resizing and concurrent lookup. While we did not
apply CLHT in QEMU due to the aforementioned memory
allocation requirements, Figure 5 shows that when booting
a full system QHT has performance on a par with that of
ck hs, the hash set implementation from concurrencykit [1].

However, QHT and ck hs show great performance differ-
ences in write-heavy scenarios. Figure 6 plots the scalability
to 64 cores of QHT, CLHT and ck hs, driven from a hash ta-
ble microbenchmark operating on 200K elements at differ-
ent update rates. Due to its use of seqlocks, QHT achieves
performance comparable to CLHT’s while not imposing re-
strictions on the memory allocator. On the other hand, ck hs
is an open-addressed hash set and therefore takes the same
lock around every insert; as a result, it scales poorly even for
modest update rates, which limits its general applicability.
This limitation is shared with similar hash table implemen-
tations, such as the one proposed by Bruening et al. in [12].

0
50
100
150
200
250
300
350
400
450

1 8 16 24 32 40 48 56 64

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

200K keys, 0 % updates

QHT
CLHT
ck hs

0
50
100
150
200
250
300
350
400
450

1 8 16 24 32 40 48 56 64

7

8

9

1
7

8

9

1

0

50

100

150

200

250

300

350

1 8 16 24 32 40 48 56 64

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

200K keys, 1 % updates

0

50

100

150

200

250

300

350

1 8 16 24 32 40 48 56 64

7

8

9

1
7

8

9

1

0

50

100

150

200

250

300

1 8 16 24 32 40 48 56 64

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

200K keys, 20 % updates

0

50

100

150

200

250

300

1 8 16 24 32 40 48 56 64

6
7
8
9

1
6
7
8
9

1

0

20

40

60

80

100

120

140

160

1 8 16 24 32 40 48 56 64

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

200K keys, 100 % updates

0

20

40

60

80

100

120

140

160

1 8 16 24 32 40 48 56 64

5
6
7
8

1
5
6
7
8

1

Figure 6: QHT, CLHT and ck hs performance.

4. Correct, Cross-ISA Memory Accesses
Two cross-ISA issues are specific to multi-threaded emu-
lators. First, the emulator has to handle mismatches in the
memory consistency models of the source and target ISAs.
Second, it has to correctly emulate the semantics of atomic
operations. The latter problem, in turn, has to be attacked dif-
ferently for the two families of atomic operations: compare-
and-swap and other read-modify-write operations on one
hand, and load-locked/store-conditional on the other.

4.1 Mismatches in the Memory Consistency Model
The memory consistency model of an ISA is made of a set
of implicit ordering guarantees that the ISA promises to re-
spect. These could be, for example, which memory accesses
(loads, stores, atomic read-modify-write sequences) can be
reordered in front of older accesses, or whether memory or-
dering obeys causality (also known as transitive visibility).

Performing DBT on a host that only allows reordering
loads before older stores (such as x86 64) is trivial, because
the emulated code cannot have an implicit ordering guaran-
tee that the host does not respect. Unfortunately, the opposite
case is problematic: performing DBT of guest code on a host
whose ISA is weaker than that of the guest means that certain
reorderings need to be explicitly forbidden by the translator.

Recent work by Lustig et al. [24] deals with exactly
this problem: given two memory consistency models, they
provide a framework, called ArMOR, that generates a state
machine for the translator that guarantees correct execution
of code from stronger ISAs on weaker ones.

We evaluate the impact of ArMOR’s state machines in
Pico’s performance in Section 5.5.

4.2 Compare-and-Swap (CAS)
Compare-and-swap in the guest can be easily mapped to
compare-and-swap in the host. Pico implements this simi-
larly to how it appears in COREMU’s downloadable code4.

4 Available at http://coremu.sf.net/

214



Multi-word CAS is required to emulate processors with
64-bit words on top of 32-bit ones. Fortunately, most 32-bit
processors do provide 64-bit CAS or load-locked/store-con-
ditional operations; the only exception is PowerPC proces-
sors (until POWER8, which can implement it using hard-
ware transactional memory).

This approach cannot portably implement the x86 cmp-

xchg16b instruction, which performs a CAS operation on a
128-bit quantity. This operation is not available natively on
32-bit hosts, as well as on 64-bit PowerPC processors until
POWER8. Fortunately, this instruction is rarely used by op-
erating systems (e.g., Linux), and the x86 cpuid instruction
marks its presence with a separate feature bit. We therefore
either hide this feature bit from the guest, or fall back to the
strategies used for emulating load-locked/store-conditional
instructions, which are described below.

Bus-locked atomics. Architectures such as x86 support the
atomic execution of certain instructions via a prefix (e.g.,
LOCK xadd). The same infrastructure used for CAS can also
be used to implement other instructions such as atomic fetch-
and-add or test-and-set; they can be trivially reduced to a
CAS loop, as done in COREMU. However, for increased ef-
ficiency, Pico leverages the equivalent bus-locked instruction
on the host whenever possible.

4.3 Load-Locked/Store-Conditional (LL/SC)
Rather than providing CAS, most RISC processors imple-
ment atomic read-modify-write operations through two in-
structions, load-locked (also known as load-link) and store-
conditional. The first returns the current value of a memory
location; the second stores a new value only if no updates
have occurred to the location since the load. Unlike CAS,
these instructions detect the case where a location has been
changed to a different value and then back to the original.

Implementing LL/SC primitives is trivial in a sequential
emulator. Whenever a store-conditional instruction is con-
current with one or more regular stores, however, a parallel
emulator has to order the conditional store against each reg-
ular store. This is a consensus problem of order two, whose
solution requires an atomic instruction (such as a test-and-
set instruction) in both regular and conditional stores [17].
A trivial, non-scalable solution is to stop all other CPUs
while executing store-conditional instructions. This is ex-
actly what QEMU does; performance however drops very
quickly even with very few concurrent threads. A solution, in
order to scale, should thus avoid atomic instructions when-
ever the store does not conflict with LL/SC operations. We
now present three different solutions, exploring the trade-
offs between correctness, scalability and portability.

Pico-CAS: a (slightly) incorrect and scalable solution.
The simplest, but nonetheless practical solution is to not
implement exact LL/SC semantics; instead, a store-condi-
tional operation can simply perform a CAS from the value
fetched by load-locked to the argument of store-conditional.

1 2 QHT

spinlock t lock

set t cpu set

3 if entry exists, acquire
lock + clear all ongoing
LL/SC pairs registered
in the entry’s CPU set

bitmap

hit hit

Figure 7: Instrumentation of stores in Pico-ST. Stores exe-
cute while holding the appropriate lock iff an atomic instruc-
tion has previously been performed on their target cache line.

Of course, this suffers from the ABA problem [27]: if
the location were modified twice between load-locked and
store-conditional, and the second write restored the original
value, then the store-conditional would incorrectly succeed.

At the same time, in practice this is rarely problematic.
Portable code using C/C++11 atomics only has access to
CAS, and the entire Linux kernel does not employ LL/SC
in ways that would break when emulated with CAS. There-
fore, synchronization algorithms and lock-free data struc-
tures avoid the ABA problem using techniques such as ref-
erence counting, RCU or hazard pointers [28]. Nevertheless,
it is worth looking further for fully correct solutions.

Pico-ST: a correct, scalable and portable solution. It is
possible to avoid the ABA problem if one accepts a slow-
down in single-threaded performance. This requires instru-
menting stores to check whether the physical address to store
to has ever been accessed atomically. If so, ongoing LL/SC
pairs to the same cache line are canceled.

For each cache line that an LL/SC operates on, a corre-
sponding entry is kept. An entry has two fields: a lock and
a set of CPUs to track ongoing LL/SC operations. Entries
are looked up by coupling a scalable hash table (we use
QHT, see Section 3.3) and a bitmap. While each entry in
the hash table represents a single cache line, each bit in the
bitmap can represent a configurable number of cache lines,
thus keeping its storage overhead practical. A bit set in the
bitmap means that it is possible but not guaranteed that a
lock might have to be taken for a given address; to dispel the
uncertainty, the hash table is checked with the full address
of the cache line. The instrumentation preceding emulated
stores is depicted in Figure 7.

An additional measure is necessary to avoid races be-
tween the first load-locked operation on a cache line and a
concurrent store to it by another CPU. This has to be done
in three steps: (1) insert the appropriate entry in the hash ta-
ble and bitmap, (2) kick all other CPUs out of the execution
loop, and wait for them to actually exit; and (3) proceed with
the load-locked emulation. Step 2 can be implemented easily
by waiting for an RCU grace period (see Section 3.1). After
Step 2, all regular stores to the newly-added cache line will
be protected by the spinlock; this makes Step 3 safe.

Finally, we relax the requirement of keeping an entry for
each cache line that an LL/SC ever operated on, which in the
worst-case would degenerate into acquiring a lock on every

215



x86 64 Translation Blocks

...

...

movq %rbp,(%rax)
xend

...

...

...

xbeginq 0x40062b

movq (%eax),%rbp

str x3, [x19, #16]
str x3, [x29, #152]
mov x1, x3

cmp x2, x1
b.ne #+0xc

ldxr x2, [x4]

Guest aarch64 code

cbnz w0, #-0x10
stlxr w0, x19, [x4]

Figure 8: Example LL/SC pair translated with Pico-HTM.

emulated store. Thus, we periodically reset both bitmap and
hash table, thereby guaranteeing at negligible cost that the
bitmap will remain sparsely populated.

Pico-HTM: leveraging hardware transactional memory.
If the host also supports LL/SC, one may think of using
them for emulating the target’s LL/SC. This is dangerous,
however, because most processors constrain the instructions
that can appear between an LL/SC pair. If these restrictions
are not respected, the store might fail spuriously. The extra
overhead of dynamic translation, such as TLB lookups and
register spills, may thus cause the store to fail forever.

Fortunately, some of the newest members of the POWER,
s390 and x86 64 families feature hardware transactional
memory (HTM), which does superficially resemble LL/SC.
HTM is however more flexible than LL/SC and places fewer
constraints on the instructions that can appear between the
LL/SC pair. POWER processors, for example, can write to
several hundred cache lines in a single transaction [22].

As depicted in Figure 8, Pico compiles load-locked to a
“begin transaction” instruction followed by a regular load,
and a store-conditional to a regular store followed by a
“commit transaction” instruction. This works because all
commercial HTM implementations provide strong atomic-
ity [9]. Under strong atomicity, a store conflicting with a
transaction will force the transaction to abort; the emulator
can then check for conflicting regular stores just by testing
whether the transaction completed successfully.

There is one important difference between HTM and
LL/SC. Regular stores between the load-locked and store-
conditional instructions persist after a failed conditional
store; with HTM, instead, an abort rolls back all stores in
the transaction. We cannot therefore map a transaction abort
directly to a store-conditional failure. Instead, we retry the
transaction until it succeeds, so that the conditional store
actually never reports a failure. Because the semantics of
store-conditional is respected, the difference is not visible to
the emulated program.

HTM also requires a fallback for repeated aborts. After
a few failed attempts, or if one of the blocks between load-
locked and store-conditional is not translated, Pico executes
the LL/SC sequence with all other CPUs stopped.

0x

0.5x

1x

1.5x

2x

astar
bzip2

gcc gobmk
h264ref

hmmer
libquantum

mcf
omnetpp

perlbench

sjeng
xalancbmk

hmean

S
p
ee
du

p
ov
er

Q
E
M
U SPEC CINT2006

Pico-user
Pico-system

0x
0.2x
0.4x
0.6x
0.8x
1x

1.2x
1.4x
1.6x

GemsFDTD

bwaves
cactusADM

calculix

dealII
gamess

gromacs

lbm leslie3d
milc

namd
povray

soplex
sphinx3

tonto
wrf zeusmp

hmean

S
p
ee
du

p
ov
er

Q
E
M
U SPEC CFP2006

Figure 9: Speedup on SKL of Pico over QEMU for single-
threaded x86 64 SPEC06 workloads.

5. Evaluation
5.1 Setup
Machines. We perform measurements on the following
machines, which all have 64G of RAM and run Linux v4.4:

SKL has a 3.4GHz 4-core Intel Skylake i7-6700 processor
with 2-way simultaneous multithreading (SMT), for a
total of 8 hardware threads.

P8 has two 3.3 GHz 6-core IBM POWER8 processors with
8-way SMT, for a total of 96 hardware threads.

AMD has four 2.3GHz, 16-core AMD Opteron 6376 pro-
cessors, for a total of 64 cores.

The guest kernel is always Linux v4.4. We use QEMU
v2.4.0-rc3 as the baseline emulator, since newer versions
already include some of the improvements in Pico.

Workloads. We use SPEC CPU2006 benchmarks for single-
threaded performance measurements. For measuring scal-
ability we use the PARSEC suite [8], as well two server
workloads: the pgbench tool in PostgreSQL v9.5 [2] and
the Masstree in-memory key-value store [25]. We compare
Pico-user to native execution, and Pico-system to KVM.

For evaluating the overhead of atomic instruction emula-
tion we wrote a simple microbenchmark called atomic add.
Each thread in atomic add executes a loop that atomically
increments a random element of an array of integers, which
is appropriately padded to avoid false cache line sharing. By
varying the size of the array, we can observe different levels
of contention in the memory hierarchy.

All experiments are run 5 times; we show the resulting
mean and corrected sample standard deviation. For each
experiment we choose the thread pinning policy that exhibits
higher performance from either scattering threads evenly
across NUMA nodes, or favoring same-node pinnings.

5.2 Single-Threaded Performance
This experiment (Figure 9) compares the performance of
Pico for single-threaded execution over the baseline QEMU
implementation on SKL. QEMU-user already supports mul-

216



0.01

0.1

1

10

100

S
p

ee
d

u
p

blackscholes
0.01

0.1

1

10

100

bodytrack
0.1

1

10

100

canneal

0.1

1

10

100

S
p

ee
d

u
p

dedup
0.01

0.1

1

10

100

facesim
0.01

0.1

1

10

100

ferret

0.01

0.1

1

10

100

S
p

ee
d

u
p

fluidanimate
0.01

0.1

1

10

100

raytrace
0.01

0.1

1

10

100

streamcluster

0.01

0.1

1

10

100

1 16 32 48 64

S
p

ee
d

u
p

Threads

swaptions
0.01

0.1

1

10

100

1 16 32 48 64
Threads

vips
0.01

0.1

1

10

100

1 16 32 48 64
Threads

x264

Pico-user Native

Figure 10: Speedup over Native on AMD for PARSEC.

tiple threads of execution, but this introduces overhead even
for single-threaded programs; for example, translation block
lookups (Section 3.3) are serialized with a lock. Pico-user is
thus 20–90% faster than QEMU-user, mostly due to its bet-
ter translation block hashing and to QHT’s cache efficiency.

Pico-system introduces locks and fences to cover previ-
ously unprotected data structures, and converts some mem-
ory accesses to atomic operations. This balances the advan-
tages of improved hashing, making performance virtually
identical to QEMU-system—on average slightly worse for
integer benchmarks, and slightly better for floating-point.

5.3 Parallel Workloads
In this experiment we evaluate the scalability of Pico-user
when running parallel code from PARSEC with the native
input set5. Figure 10 compares the scalability of Pico against
that of a native run on AMD. Speedups are shown normal-
ized over the native’s single-threaded execution times; ideal,
linear scaling is shown with a dashed line for comparison.

Most PARSEC benchmarks do not scale well to dozens
of cores [31], showing a performance cliff that is indicative
of excessive cache line contention. Nevertheless, on average,
the scalability of Pico is better than that of native execution.
This is because the slowdown caused by DBT reduces the
rate of accesses to shared memory in the workload, thereby
delaying the onset of the contention-related performance
cliff (e.g., streamcluster) and even avoiding it altogether
(e.g., facesim, fluidanimate). This effect is present for most

5 We had issues running two PARSEC benchmarks on AMD: freqmine
crashed frequently, and so did raytrace beyond 16 threads. The crashes
happened for both native execution and Pico.

0.001

0.01

0.1

1

10

100

1 16 32 48 64

S
p
ee
d
u
p
ov
er

K
V
M

Threads

PostgreSQL

0.01

0.1

1

10

100

1 16 32 48 64
Threads

Masstree

Pico-system KVM

Figure 11: Speedup vs. KVM on AMD for server workloads.

workloads we tested, but it is particularly visible here due to
the slow floating point emulation in the DBT engine.

Benchmarks that do not have particular contention show
similar scalability under both Native and Pico, as can for
instance be seen in swaptions, blackscholes or canneal.

5.4 Server Workloads
We now show the results for full-system emulation of a
guest with 32G of RAM running multi-threaded (Masstree)
and multi-process (PostgreSQL) server workloads on AMD.
These workloads are representative of large virtual machines
and stress two potential sources of performance degradation:
code translation and device emulation.

Code translation is stressed by multi-process server work-
loads due to their code size [12], and because the virtual ad-
dress of the program counter is part of the translation block
hash key; even if the text of the program is loaded only
once in memory by the operating system, techniques such as
address space layout randomization (ASLR) can cause the
emulator to translate it multiple times. Device emulation is
stressed simply because QEMU runs all emulation under a
single global mutex, and we did not change this in Pico.

For PostgreSQL, we use pgbench to create and populate
a database of scale factor 150, running each test for 120s
and spawning two connections per thread. Both PostgreSQL
server and pgbench run in the same guest, with the server
configured with a buffer of 8GB. For Masstree, we run 10s
get/put tests on a database initialized with 140M “1-to-10-
byte decimal” [25] keys.

Figure 11 shows the results of the experiment. Both of
the benchmarks scale up to 64 threads. In the case of Post-
greSQL, which performs disk and socket I/O as well, device
emulation is a bottleneck at 16 to 40 threads. In this range,
KVM can take advantage of optimizations to device emu-
lation, such as moving the CPU’s interrupt controller (local
APIC) inside the hypervisor and triggering the QEMU I/O
thread directly from the hypervisor. Pico on the other hand
cannot keep all cores pegged at 100% CPU utilization. Nev-
ertheless, the scalability of Pico is in line with KVM’s.

Masstree, which is a memory-only workload, scales un-
der Pico up to at least 64 threads. As in the PARSEC bench-
marks, emulation scales better than KVM because of the re-
duced rate of shared memory accesses. In neither case code
translation turns out to be a bottleneck.

217



0x
1x
2x
3x
4x
5x
6x

as
ta
r

bz
ip
2

gc
c

go
bm

k

h2
64
re
f

hm
m
er

lib
qu

an
tu
m

m
cf

om
ne
tp
p

p
er
lb
en
ch

sj
en
g

xa
la
nc
bm

k

hm
ea
n

S
lo
w
do
w
n

SPEC CINT2006
SYNC
PowerA
SAO

0x

0.5x

1x

1.5x

2x

G
em

sF
D
T
D

bw
av
es

ca
ct
us
A
D
M

ca
lc
ul
ix

de
al
II

ga
m
es
s

gr
om

ac
s

lb
m

le
sl
ie
3d

m
ilc

na
m
d

p
ov
ra
y

so
pl
ex

sp
hi
nx
3

to
nt
o

w
rf

ze
us
m
p

hm
ea
n

S
lo
w
do
w
n

SPEC CFP2006

Figure 12: Slowdown on P8 for Pico-user running x86
64 SPEC06 benchmarks, with two ArMOR state machines
and hardware strong-access ordering, relative to omitting all
barriers in the translated code.

5.5 Mismatches in the Memory Consistency Model
In order to quantify the cost of emulating parallel code from
strongly-ordered ISAs on weakly-ordered hosts, we imple-
mented the two state machines provided by ArMOR for ex-
ecuting x86 64 guest code on a PowerPC host. We then ran
x86 64 SPEC06 code on P8. The two state machines, which
we call SYNC and PowerA, are summarized as follows.

• SYNC: Insert a full memory barrier (sync in PowerPC
assembly language) before every load or store. This is
always correct for all possible legal code.

• PowerA: Separate loads with lwsync barriers, pretending
that PowerPC is multi-copy atomic even though it is not6.
While this does allow illegal behavior for the iriw litmus
test [10], it allows for greater performance if the user
is sure that the system does not include code similar to
iriw—which indeed is practically never seen.

The results are shown in Figure 12. SYNC provides
full correctness but incurs significant slowdown, on aver-
age surpassing 3X for integer workloads. PowerA has a
more adequate average slowdown of approximately 2X for
CINT2006, at the expense of not handling correctly the iriw
pattern. The slowdown of both approaches is significantly
lower for CFP2006, since floating point emulation domi-
nates execution time.

P8 has hardware support for strong-access ordering
(SAO) [5], which in our tests shows negligible overhead. Un-
fortunately, SAO is only available on recent IBM hardware,
which makes its use highly non-portable. Nevertheless, Ar-
MOR is a viable strategy to correctly emulate parallel code
from strongly-ordered ISAs on weakly-ordered hosts.

6 See the ArMOR paper for details on this state machine.

0

5

10

15

20

25

30

1 8 16 24 32 40 48 56 64

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

1 element

Pico-user
Pico-user + CAS

QEMU-user

0

5

10

15

20

25

30

1 8 16 24 32 40 48 56 64
0

10
20
30
40
50
60
70
80
90
100

1 8 16 24 32 40 48 56 64

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

64 elements

0
10
20
30
40
50
60
70
80
90
100

1 8 16 24 32 40 48 56 64

Figure 13: Performance on AMD for x86 64 atomic add.

−20
0

20

40

60

80

100

120

1 962 4 8 16 32 64

⇒ 8 ways/core

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

1 element

Pico-CAS
Pico-HTM

Pico-ST
QEMU

−20
0

20

40

60

80

100

120

1 962 4 8 16 32 64
0
5

10
15
20
25
30
35
40

1 962 4 8 16 32 64

⇒ 8 ways/core

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

8 elements

0
5

10
15
20
25
30
35
40

1 962 4 8 16 32 64

0

10

20

30

40

50

60

70

1 962 4 8 16 32 64

⇒ 8 ways/core

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

32 elements

0

10

20

30

40

50

60

70

1 962 4 8 16 32 64
0
20
40
60
80

100
120
140
160
180
200

1 962 4 8 16 32 64

⇒ 8 ways/core

T
h
ro
u
gh

p
u
t
(M

op
s/
s)

Threads

1024 elements

0
20
40
60
80

100
120
140
160
180
200

1 962 4 8 16 32 64

Figure 14: Performance on P8 for Aarch64 atomic add.

5.6 Bus-Locked Atomics
Figure 13 compares the performance of emulating bus-
locked atomics with the equivalent bus-locked atomics on
the host (Pico) and emulating them with a CAS loop (Pico +
CAS). In hardware, bus-locked atomics can be implemented
more efficiently than CAS. This explains why Pico’s per-
formance is superior with just 1 array element, which is a
worst-case scenario from a scalability viewpoint. Further-
more, when contention is slightly lower (64 elements), Pico
shows greater scalability, scaling to 64 cores whereas the
CAS loop’s performance collapses around 40 cores.

QEMU shows no scalability in either scenario, due to its
serial emulation of guest atomics.

5.7 Load-Locked/Store-Conditional (LL/SC)
Figure 14 compares atomic add performance on P8 for
QEMU-user and the three Pico approaches presented in Sec-
tion 4.3. We ran these experiments on P8 because of its HTM
support and large number of hardware threads.

The overall performance of the Pico approaches depends
on the overhead of the emulation mechanism. Thus, Pico-
CAS is the fastest, followed by Pico-HTM and Pico-ST. All
three approaches show scalability that grows as contention
(i.e., number of array elements) is reduced.

Measurements are stable in all benchmarks when SMT is
not used (i.e., less or equal than 12 threads), and progres-
sively become more noisy. For 96 threads, Pico-HTM is oc-
casionally able to beat Pico-CAS and scale almost linearly.

218



0x

0.5x

1x

1.5x

2x

bzip2
gcc gobmk

h264ref
hmmer

mcf omnetpp
perlbench

hmean(12)

S
p
ee
du

p
ov
er

Q
E
M
U SPEC CINT2006

Pico-CAS
Inst. stores
Pico-ST-nobm
Pico-ST
Pico-HTM

0x
0.2x
0.4x
0.6x
0.8x
1x

1.2x
1.4x
1.6x

GemsFDTD

bwaves
calculix

dealII
lbm milc povray

soplex
tonto

zeusmp
hmean(17)

S
p
ee
du

p
ov
er

Q
E
M
U SPEC CFP2006

Figure 15: Speedup over QEMU on SKL of different imple-
mentations of LL/SC in Pico-user runs of Aarch64 SPEC06.
Some benchmark results not shown due to space constraints.

Our hypothesis is that the POWER8 microcode optimizes
the case where all hardware threads in the same core are
contending for the same cache lines, and effectively ensures
that the transactions do not conflict. In fact, by forcing the
benchmark to run on fewer cores we were able to see the
same behavior also for 32, 48 and 64 threads (corresponding
to 4, 6 and 8 fully-utilized cores).

The plots show the trade-off between correctness, scal-
ability and portability. If fully correct LL/SC emulation is
not necessary, Pico-CAS has the highest performance while
maintaining portability. Failing that, Pico-HTM provides
good performance if processor support is available or, for
hosts without HTM extensions, Pico-ST is both fully correct
and portable.

Of the three, Pico-ST is also the only one to have non-
trivial single-threaded overhead. To characterize this, we
emulate SPEC06 benchmarks (compiled for Aarch64) on
SKL in user-mode. Figure 15 shows a subset of the results
(some omitted due to space constraints), although the mean
is computed from the full set of results.

Pico-HTM and Pico-CAS show the highest performance,
which is not surprising given that they only affect the emu-
lation of atomic operations; these are rare in SPEC06. The
speedup is similar to that in Figure 9; as discussed in Sec-
tion 5.2, it is due to improvements in Pico, and not to atomic
instruction emulation.

In order to analyze the performance of Pico-ST, we in-
clude two additional sets of results in Figure 15. The Inst.
stores set is obtained from instrumenting stores in Pico with
empty helper functions, thereby measuring the cost of call-
ing C code around every store; Pico-ST-nobm is Pico-ST
without the bitmap acting as a filter for QHT lookups. Two
observations can be made. First, the limitations in QEMU’s
register allocator introduce a high overhead in Pico’s store
instrumentation; the C helpers slow down emulation on av-
erage by around 20%. Second, the bitmap plays a key role
in filtering accesses to the hash table; QHT, despite its high
performance, requires a non-trivial amount of instructions
that are easily outperformed by a bitmap lookup. Thanks

to the bitmap, Pico-ST only has 4% overhead above that
of store instrumentation. Since the bitmap check is so ef-
fective, a natural improvement to Pico-ST would be for the
backends to inline it in the generated assembly code. This
change would be more invasive than the other changes we
made in Pico, for which portable C code was enough.

6. Additional Related Work
Concurrent hash tables. The idea of using cache-friendly
buckets, as done by QHT and CLHT, was introduced earlier
in MemC3 [15], albeit partial hashes were used to minimize
cache references due to Cuckoo hashing. Leveraging RCU
for concurrency in hash tables was proposed by Triplett et
al. [32]. We use RCU for deferring QHT bucket’s deletion,
and handle dynamic resizes (which in our case are rare) by
acquiring all bucket locks.

Cross-ISA emulation. HQEMU [18] speeds up DBT by
translating frequently-executed guest basic blocks into high-
quality host code. This translation is concurrent with code
execution, which allows multi-core hosts to speed up DBT
for single-threaded code. HERMES [35] shares the same
goal, but instead of exploiting concurrency, it optimizes the
quality of QEMU’s emitted code.

Cross-ISA dynamic binary instrumentation. PEMU [34]
is an instrumentation tool based on QEMU, with an interface
compatible with that of Pin [23] yet supporting both user and
full-system modes. PEMU could be combined with Pico to
build parallel, cross-ISA binary instrumentation tools.

7. Conclusion
We have presented Pico, a novel design for multi-threaded
cross-ISA emulators. Pico leverages multi-core hosts by us-
ing a shared code cache from a highly parallel fast path. Fur-
thermore, Pico adopts recent research for handling memory
consistency model mismatches between guest and host, and
proposes different strategies for emulation of atomic instruc-
tions and strongly-ordered memory accesses.

We have implemented our design in the QEMU open
source emulator, with an explicit focus on contributing our
code to the project. Our experimental evaluation covers both
user-mode and full-system emulation, comparing Pico with
both native execution and the state of the art. Our results
show that Pico’s design scales to 64 cores without forgoing
simplicity or memory efficiency.

Acknowledgments
We thank Richard Henderson, Sergey Fedorov and the rest of
the QEMU developer community for their invaluable help.
We also thank Jason Nieh, David W. King and the anony-
mous reviewers for their feedback. This work is supported
in part by DARPA PERFECT (C#: R0011-13-C-0003) and
C-FAR (C#: 2013-MA-2384), an SRC STARnet center.

219



References
[1] http://concurrencykit.org.

[2] PostgreSQL. https://www.postgresql.org/.

[3] Cavium ThunderX Processors. http://www.cavium.com.

[4] https://github.com/cyan4973/xxhash.

[5] IBM Power ISA, version 2.06 revision b. Book I: Power ISA
User Instruction Set Architecture, 2010.

[6] E. K. Ardestani and J. Renau. ESESC: A fast multicore
simulator using time-based sampling. In Proc. of the Intl.
Symp. on High-Performance Computer Architecture (HPCA),
pages 448–459, 2013.

[7] F. Bellard. QEMU, a fast and portable dynamic translator.
In Proc. of the USENIX Annual Technical Conference (ATC),
pages 41–46, 2005.

[8] C. Bienia et al. The PARSEC benchmark suite: character-
ization and architectural implications. In Proc. of the Intl.
Conf. on Parallel Architectures and Compilation Techniques
(PACT), pages 72–81, 2008.

[9] C. Blundell, E. C. Lewis, and M. M. Martin. Subtleties of
transactional memory atomicity semantics. Computer Archi-
tecture Letters, 5(2), 2006.

[10] H.-J. Boehm and S. V. Adve. Foundations of the C++ concur-
rency memory model. In ACM SIGPLAN Notices, volume 43,
pages 68–78, 2008.

[11] D. Bruening, T. Garnett, and S. Amarasinghe. An infrastruc-
ture for adaptive dynamic optimization. In Proc. of the Intl.
Symp. on Code Generation and Optimization (CGO), pages
265–275, 2003.

[12] D. Bruening, V. Kiriansky, T. Garnett, and S. Banerji. Thread-
shared software code caches. In Proc. of the Intl. Symp.
on Code Generation and Optimization (CGO), pages 28–38,
2006.

[13] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized
concurrency: The secret to scaling concurrent search data
structures. In Proc. of the Intl. Conf. on Architectural Support
for Programming Languages and Operating Systems (ASP-
LOS), pages 631–644, 2015.

[14] J. H. Ding et al. PQEMU: A parallel system emulator based on
QEMU. In Proc. of the Intl. Conf. on Parallel and Distributed
Systems (ICPADS), pages 276–283, 2011.

[15] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact
and concurrent memcache with dumber caching and smarter
hashing. In Proc. of the USENIX Symp. on Networked Systems
Design and Implementation (NSDI), pages 371–384, 2013.

[16] Ferdman et al. Clearing the clouds: A study of emerging
scale-out workloads on modern hardware. In Proc. of the Intl.
Conf. on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 37–48, 2012.

[17] M. Herlihy. Wait-free synchronization. ACM Trans. on Pro-
gramming Languages and Systems, 13(1):124–149, 1991.

[18] D.-Y. Hong et al. HQEMU: A multi-threaded and retargetable
dynamic binary translator on multicores. In Proc. of the Intl.
Symp. on Code Generation and Optimization (CGO), pages
104–113, 2012.

[19] X.-W. Jiang et al. A parallel full-system emulator for RISC
architure host. In Advances in Computer Science and its
Applications, pages 1045–1052. 2014.

[20] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori.
KVM: the linux virtual machine monitor. In Proc. of the
Ottawa Linux Symposium, volume 1, pages 225–230, 2007.

[21] C. Lameter. Effective synchronization on Linux/NUMA sys-
tems. In Gelato Conference, 2005.

[22] H. Le et al. Transactional memory support in the IBM
POWER8 processor. IBM Journal of Research and Devel-
opment, 59(1):8–1, 2015.

[23] C.-K. Luk et al. Pin: Building customized program analy-
sis tools with dynamic instrumentation. In Proc. of the ACM
SIGPLAN Conf. on Programming Language Design and Im-
plementation (PLDI), pages 190–200, 2005.

[24] D. Lustig et al. ArMOR: defending against memory consis-
tency model mismatches in heterogeneous architectures. In
Proc. of the Intl. Symp. on Computer Architecture (ISCA),
pages 388–400, 2015.

[25] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast
multicore key-value storage. In Proc. of the European Conf.
on Computer Systems (EuroSys), pages 183–196, 2012.

[26] P. E. McKenney and J. D. Slingwine. Read-copy update:
Using execution history to solve concurrency problems. In
Parallel and Distributed Computing and Systems, pages 509–
518, 1998.

[27] M. M. Michael. ABA prevention using single-word instruc-
tions. IBM Research Division, RC23089 (W0401-136), Tech.
Rep, 2004.

[28] M. M. Michael. Hazard pointers: Safe memory reclamation
for lock-free objects. IEEE Trans. on Parallel and Distributed
Systems, 15(6):491–504, 2004.

[29] N. Nethercote and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. In Proc. of the
ACM SIGPLAN Conf. on Programming Language Design and
Implementation (PLDI), pages 89–100, 2007.

[30] S. Snapdragon. Processors: System on chip solutions for a
new mobile age. White paper, ARM, 2011.

[31] G. Southern and J. Renau. Deconstructing PARSEC scalabil-
ity. In Proc. of the Annual Workshop on Duplicating, Decon-
structing, and Debunking (WDDD), 2015.

[32] J. Triplett, P. E. McKenney, and J. Walpole. Resizable, scal-
able, concurrent hash tables via relativistic programming. In
Proc. of the USENIX Annual Technical Conference (ATC),
2011.

[33] Z. Wang et al. COREMU: A scalable and portable parallel
full-system emulator. In Proc. of Principles and Practice of
Parallel Programming (PPoPP), pages 213–222, 2011.

[34] J. Zeng, Y. Fu, and Z. Lin. PEMU: A Pin highly compatible
out-of-VM dynamic binary instrumentation framework. In
Proc. of the Intl. Conf. on Virtual Execution Environments
(VEE), pages 147–160, 2015.

[35] X. Zhang et al. HERMES: A fast cross-ISA binary translator
with post-optimization. In Proc. of the Intl. Symp. on Code
Generation and Optimization (CGO), pages 246–256, 2015.

220


	Introduction
	Background and Related Work
	Dynamic Binary Translation
	Parallel Cross-ISA Machine Emulation

	Emulator Design
	CPU Execution
	Memory Map
	Translation Block Cache

	Correct, Cross-ISA Memory Accesses
	Mismatches in the Memory Consistency Model
	Compare-and-Swap (CAS)
	Load-Locked/Store-Conditional (LL/SC)

	Evaluation
	Setup
	Single-Threaded Performance
	Parallel Workloads
	Server Workloads
	Mismatches in the Memory Consistency Model
	Bus-Locked Atomics
	Load-Locked/Store-Conditional (LL/SC)

	Additional Related Work
	Conclusion

