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ABSTRACT
Technology scaling allows the integration of billions of transistors on the
same die but CAD tools struggle in keeping up with the increasing design
complexity. Design productivity for multi-core SoCs increasingly depends
on creating and maintaining reusable components and hierarchically com-
bining them to form larger composite cores. Characterizing such composite
cores with respect to their power/performance tradeoffs is critical for de-
sign reuse across various products and relies heavily on synthesis tools. We
present CAPS, an online adaptive algorithm that efficiently explores the de-
sign space of any given core and returns an accurate characterization of its
implementation tradeoffs in terms of an approximate Pareto set. It does so
by supervising the order of the time-consuming logic-synthesis runs on the
core’s components. Our algorithm can provably achieve the desired pre-
cision on the approximation in the shortest possible time, without having
any a-priori information on any component. We also show that, in practice,
CAPS works even better than what is guaranteed by the theory.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Automatic synthesis
General Terms
Algorithms, Design, Performance
Keywords
System-Level Design, System-on-Chip, Design Reuse.

1. INTRODUCTION
Future multi-core systems-on-chip (SoC) will host billions of

transistors to implement an ever growing, increasingly-heteroge-
neous collection of functional blocks. Growth in available transis-
tors has outpaced the CAD tools’ ability to design them (design
productivity gap), a gloomy trend for the entire semiconductor in-
vestment cycle [15]. As explained in [6], it is necessary to go be-
yond current design methodologies that are “built around hard de-
sign blocks for a specific technology” and develop instead new ones
that rely on “soft design blocks or macros, described at a higher
level of abstraction, such as RTL description in Verilog” [6]. These
functional blocks, aka soft Intellectual Property (IP) cores, are de-
signed, validated, and properly characterized only once and in a
way that simplifies migration across technology nodes and design
reuse. Furthermore, the bulk of the design effort will consist in the
system-level optimization of the specific SoC under design through
the proper selection and composition of the parametrized soft IP
cores [6]. For most chip designs, the goal of system-level optimiza-
tion will be neither low power nor high performance, but instead an
elusive combination of these two objectives: i.e. achieving power
efficiency without affecting the system’s performance [14].

In this component-based design approach, high-level and logic
synthesis tools will play a central role. Only a small number of
function blocks will be designed from scratch for a new product.
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Figure 1: Compositional Approximation of Pareto Sets.

Most of the soft IP cores will be selected for reuse from in-house
libraries of legacy designs or acquired from third-party providers.
Indeed, according to the ITRS, in order to achieve a 10× design-
productivity improvement by 2020, an SoC for embedded appli-
cations (either consumer mobile or consumer stationary) will need
to consist of 90% of reused design [15]. This requires to create
and maintain reusable cores, a task that is estimated to be 2–5×
more difficult than their creation for one-time use [15]. Hence, de-
signers will increasingly rely on synthesis tools for the automatic
generation of the low-level circuit implementation of a given soft
IP core after having explored various configurations of its high-
level parameters to achieve a system-level optimization objective.
Synthesis-driven design space exploration, however, faces major
challenges. The effectiveness of synthesis tools is limited by the
long execution times that they suffer even when applied to a medium-
size IP core. Not only to synthesize an entire complex SoC in a sin-
gle run goes beyond the capabilities of today’s synthesis tools, but
to fully characterize a medium-size IP core with respect to its oper-
ating points in terms of power and performance may easily require
tens of logic synthesis runs for each of its components.

Contributions. We present a novel and general approach to ef-
fectively coordinate the execution of synthesis runs needed to ex-
plore the design space of a system that consists of a set C of inter-
acting components. We model this computational task as a multi-
objective optimization problem, in a rigorous mathematical frame-
work, which we then solve with CAPS, a new algorithm that can
derive an approximation of the Pareto set of the system by itera-
tively invoking a commercial tool (the oracle) to synthesize various
instances of the components and, in doing so, implicitly build ap-
proximations for their Pareto sets (Fig. 1). CAPS is optimal in our
framework, and experimental results show that it works extremely
well in practice. In particular, our algorithm:

• is the (provably) optimal online algorithm, within a natural
framework of bi-objective optimization problems, in terms
of (i) the accuracy of the returned approximation and (ii) the
CPU time needed to achieve such an approximation;

• is inherently scalable; it works only on the single compo-
nents, and never runs a synthesis of the whole system, which
would be impractical and/or infeasible for large systems;

• copes with the inherent limited-information setting in our
context: i.e. the facts that no information about any com-
ponent is known a-priori and at any given step the synthesis
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Figure 2: Point b ǫ-covers all points in the shaded region (left);
Computing the ratio distance between curves S and S′ (right).

tool can only sample one point of the design space of one
component;

• works on a bi-objective optimization problem coping with
the typical asymmetry of synthesis tools, which allow con-
trollability only on the clock period, but leave just observ-
ability on the power and area of the returned implementation.

In Sections 2 and 3 we provide a rigorous presentation of our al-
gorithm and its theoretical properties, while in Section 4 we demon-
strate the practical advantages of our approach with a rich set of
experimental results. Related work is discussed in Section 5.

2. MODEL AND BASIC DEFINITIONS
A multiobjective optimization problem Π has a set I of valid in-

stances, every instance I ∈ I has a set of feasible solutions S(I).
There are d objective functions, f1, . . . , fd, each mapping an in-
stance I and a solution s ∈ S(I) to a value fj(I, s). The problem
specifies for each objective whether it is to be maximized or mini-
mized. We assume that the objective functions have positive values.
In our context, a “feasible solution” at the system/component level
is an implementation of the system/component.
Dominance Relation, Pareto Set. We say that a d-vector u domi-
nates another d-vector v if it is at least as good in all the objectives,
i.e. uj ≥ vj if fj is to be maximized (uj ≤ vj if fj is to be min-
imized). Similarly, we define domination between any solutions
according to the d-vectors of their objective values. The Pareto set
P (I) of an instance I is the set of undominated d-vectors of values
of the solutions in S(I). For any instance, the Pareto set is unique.
Approximate Pareto Set. We say that a d-vector u ǫ-covers an-
other d-vector v (ǫ ≥ 0) if u is at least as good as v up to a factor
of 1 + ǫ in all the objectives, i.e. uj ≥ vj/(1 + ǫ) if fj is to be
maximized (uj ≤ (1 + ǫ)vj if fj is to be minimized). Given an
instance I and ǫ > 0, an ǫ-Pareto set Pǫ(I) is a set of d-vectors of
values of solutions that (1 + ǫ)-cover all vectors in P (I).

Throughout this paper, we will be concerned with bi-objective
problems, i.e. optimization problems with two objective functions
(or criteria), which we denote with symbols x and y, respectively.
In the experiments of Section 4, x is the clock period of a circuit
and y is either its power dissipation or area occupation. Hence, in
our setting, both objectives are to be minimized. Consider the plane
whose coordinates correspond to the two objectives. Every feasible
solution (design) s is mapped to a point q on this plane. We use
x(q), y(q) to denote the coordinates of q, i.e. q =

`

x(q), y(q)
´

.
We define the ratio distance from p to q as RD(p, q) = max{

x(q)/x(p)−1, y(q)/y(p)−1, 0}. By definition, the value RD(p, q)
is the minimum value of ǫ ≥ 0 such that q ǫ-covers p. Intu-
itively this measure captures “how much worse is point q from
point p”. Note that this notion is asymmetric in p and q, which
is why the ratio distance is not symmetric (see example below). If
S, S′ ⊆ R

2
+, we define the ratio distance between sets of points

as RD(S, S′) = maxq∈S minq′∈S′ RD(q, q′). In words, for a
given point q ∈ S we find its closest point q′ ∈ S′ (according to
the ratio distance) and then take the maximum over all points in S.

Figure 3: The oracle solves the Restricted Problem while guar-
anteeing that there are no solution points in the shaded region.

As a corollary, set S ⊆ A is an ǫ-Pareto set for A if and only if
RD(A, S) ≤ ǫ. These definitions are illustrated in Fig. 2.
Example: Consider the points q1 = (1, 10) and q2 = (5, 6). Intu-
itively, we would like to say that q2 is 4 times worse than q1 (because
of the ratio in the first coordinate), while q1 is only 2/3 times worse than
q2 (because of the ratio in the second coordinate). This is captured by
the ratio distance and approximate dominance relation. According to our
definitions, RD(q1, q2) = 4 and q2 4-covers q1. On the other hand,
RD(q2, q1) = 2/3. Hence, q1 2/3-covers q2. 2

Restricted Problem and Oracle Access. We stress that the objec-
tive space of our bi-objective problem is not given explicitly, but
rather implicitly through the instance. In particular, we access the
objective space I of Π via an appropriate oracle. We now describe
our way of accessing the Pareto set for each individual component.
Fix a component Ci. We assume we can efficiently minimize one
objective (the y-coordinate, aka power) subject to a constraint on
the other (the x-coordinate, aka clock period). Our oracle is an
efficient program that solves the following optimization problem.

Restricted Problem (for the y-objective): For a given component
Ci (e.g. with a set of possible feasible designs S(Ci) discoverable
by the commercial tool) and a bound b, either return a feasible so-
lution point (i.e. a design for this component) qi satisfying x(qi) ≤
b and y(qi) ≤ min {y over all designs q ∈ S(Ci) with x(q) ≤ b}
or report that there does not exist any solution q such that x(q) ≤ b.

For simplicity, we will drop the instance from the notation and
use Restrict(i)(y, x ≤ b) to denote the solution returned by the cor-
responding oracle. (The superscript “(i)” means that we are dealing
with the i-th component.)

We call an oracle that satisfies the above “ideal”. In Sections 2
and 3 we assume an ideal oracle. In Section 4 we discuss the perfor-
mance of our approach when the oracle presents a noisy behavior.
In practice, if the oracle does not return a solution, it returns its best
achievable value for x, i.e. its lowest bound (Fig. 3.)
Combining Components. Let n ≥ 1 be the number of compo-
nents {Ci}

n
i=1. Let qi ∈ S(Ci), i ∈ [n] be a feasible design

for the i-th component and q be the design for the system ob-
tained as the union of the qi’s. In particular, qi is a 2-dimensional
vector – point in the xy plane – whose first coordinate is the x-
value (the clock period of the corresponding design) and whose
second coordinate is its y-value (its power) We assume there are
two combining functions fx, fy : R

n → R that specify how q
is related to the qi’s. In particular, x(q) = fx(x(q1), . . . , x(qn))
and y(q) = fy(y(q1), . . . , y(qn)). Both functions are assumed
to be monotone increasing in each coordinate and efficiently com-
putable. In our concrete setting, fx(x1, . . . , xn) = maxi xi and
fy(y1, . . . , yn) =

P

i
yi, i.e. the clock period is the maximum

of the periods and the total power is the sum of the component
powers. Note that the algorithmic results of Section 3 are quite
general, as far as the choice of the combining functions fx, fy

is concerned. In fact, they apply as long as these functions are
monotone, efficiently computable, and relatively smooth (e.g. if
|f(x) − f(y)| ≤ c · ‖x − y‖ for an appropriate constant c > 1),
which is practically often the case.
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Figure 4: Geometric interpretation of CAPS algorithm (for one
component): the ideal oracle guarantees that no solution points
exist in the dark-shaded region.

3. THE ALGORITHM
Let us start with some basic notation. Recall that n denotes

the number of components. Fix component Ci, i = 1, 2, . . . , n.
We use x

(i)
min, y

(i)
min, x

(i)
max, y

(i)
max to denote the minimum and

maximum values of the coordinates for component Ci. We de-
fine the maximum ratio between the objective values to be αi =

x
(i)
max/x

(i)
min. Intuitively, αi represents the “range” of the x-values

in the objective space for Ci. Let α = maxi=1,...,n αi be the max-
imum ratio over all components. It is clear that α > 1; in practice,
it is bounded by a small constant. To avoid clutter in the relevant
expressions, we will henceforth assume that α = O(1).

Our first result is that there exists an algorithm that can compute
an ǫ-Pareto set for a system of n components, whose number of
queries is independent of the size of the exact Pareto set (which
could be arbitrarily large). 1 In particular, the number of queries
depends only on the number of components n, their range α and
the desired accuracy ǫ.

THEOREM 3.1. There is an algorithm to construct an ǫ-Pareto
set for a system of n components with O((n/ǫ) · log(α)) oracle
queries.

We stress that the above theorem is non-trivial in the sense that
it provides an upper bound that does not depend on the size of the
exact Pareto set. Of course, it is not enough; the underlying algo-
rithm is non-adaptive, and our underlying goal was to compute an
ǫ-Pareto set as efficiently as possible (i.e. with as few queries as
possible). Formally, we consider the following problems:

Primal Problem. Given an error tolerance ǫ, compute an ǫ-Pareto
set for the system using as few queries to the oracle as possible. We
denote by k∗ the optimal number of queries.

Dual Problem. Given a budget k on the number of queries, make
k queries to the oracle and compute an ǫ-Pareto set for the system
for the minimum possible value of ǫ. We denote by ǫ∗ the optimal
error attainable with k queries.

We remark that these two problems have been considered in the
context of bi-objective (combinatorial) optimization problems [8,
9, 10, 22]. The main difference between these works and our set-
ting lies in the compositional aspect of the current paper (roughly,
the aforementioned results correspond to the case of one compo-
nent.) Moreover, even for a single-component setting, our oracle
is different (in fact, weaker) than the corresponding oracles used in
these works. (This is dictated by our underlying application, since
we used a commercial tool to implement the oracle.) In particular,
in addition to our oracle, those related works use a symmetric ora-
cle (which allows also to minimize x subject to a bound on y). This
makes a big difference for the performance guarantees attainable in
the two settings.

1The theorem proofs are removed due to lack of space and can be found in [16].

Algorithm 1 CAPS
Input: Oracle for the components’ Restricted Problem
Output: System Pareto set approximation
1: (bmin, bmax)← the (min, max) values of the x–objective
2: for i = 1, 2, . . . , n do
3: q(i)

r ← Restrict(i)(y, x ≤ bmax)

4: q
(i)
l
← Restrict(i)(y, x ≤ bmin)

5: Q = (q1, . . . , qm)← combine qr’s and ql’s by fx, fy

6: sort Q by increasing x–coordinates, i.e. from left to right
7: while Error≥ ǫ and queries < k do
8: for all interval (qi, qi+1) do
9: compute Errori

10: I ← (qj , qj+1) s.t. j = argmaxi=1,...,mErrori

11: Cl ← component w/ max potential error reduction in I

12: (q
(l)
k

, q
(l)
k+1)← the relevant interval of Cl

13: bm ← (x(q
(l)
k

) + x(q
(l)
k+1))/2

14: q(l)
m ← Restrict(l)(yl, xl ≤ bm)

15: qsys ← derive a new system point using fx, fy , considering q(l)
m

16: add qsys into Q, sorted by increasing x–coordinates

Next, we describe CAPS, an adaptive “online” algorithm to solve
both the primal and the dual problems. Our algorithm is “online”
in the following sense: it discovers the objective space by querying
the oracle appropriately and uses the returned solutions (points) to
compute an ǫ-Pareto set. Our algorithm is iterative. In every step,
it maintains an upper approximation and a lower approximation to
the Pareto set. As the number of iterations increases, these two
approximations become finer and finer, hence the error decreases.

For the sake of intuition, we first describe the algorithm CAPS

for the (very special) case that the system comprises of one com-
ponent and we have oracle access to solve the Restricted Problem
for the component. In this case, we proceed as follows: We start
by computing the extreme points ql = (x(ql), y(ql)) (leftmost),
qr = (x(qr), y(qr)) (rightmost) of the Pareto set (see Fig. 4). Each
such point can be computed using appropriate queries to the oracle.
Consider the point p1 = (x(ql), y(qr)). CAPS knows that the exact
Pareto set lies entirely to the right of ql and above qr (see Fig. 4).
Consider the triangle △(qlp1qr). By definition, the error of the
initial approximation {ql, qr} is at most RD(p1, {ql, qr}). That is,
{ql, qr} is the current upper approximation to the Pareto set, while
p1 is the current lower approximation. If RD(p1, {ql, qr}) ≤ ǫ,
then CAPS terminates and returns {ql, qr}. Otherwise, we call the
oracle for b1 being the midpoint of ql, qr , i.e. b1 = (x(ql) +
x(qr))/2. Let qm be the obtained point. The right part of Fig. 4
shows the information we obtain about the space after qm is re-
turned. In particular, this implies that the error in the interval {ql, qm}
is at most RD(p2, {ql, qm}), while in the interval {qm, qr} is at
most RD(p3, {qm, qr}). The question that now arises is which in-
terval to update next. CAPS uses a greedy criterion: it selects to
update the interval in which the error is maximum. Similarly to the
first stage, it divides the chosen interval in half and queries the or-
acle appropriately. As shown in Theorem 3.2 below, CAPS finds an
ǫ-Pareto set with at most O(log(1/ǫ)) ·k∗ queries to the Restricted
routine, which is optimal.

Now consider a system comprising of many components. If we
had access to the oracle to solve the Restricted Problem for the sys-
tem, then it would be possible to implement the above described al-
gorithm and obtain the desired approximation. The main difficulty
arises from the fact that we only have access to the oracle to solve
the Restricted Problem for the individual components. However,
we can overcome this difficulty as follows: at every step we iden-
tify the interval at the system-level where the approximation error
is maximum. To achieve this, we first combine all component-level
points to derive system-level Pareto points by fx and fy , and then
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Figure 5: Power/performance trade-off of StereoDepth at
90nm.

compute for each system-level interval its corresponding approx-
imation error by ratio distances. At this point, another difficulty
arises. Since we can afford only one query at the given step, we
need to select which component to update for the selected system-
level interval. In fact, there are several ways to update an interval
at the system-level (potentially as many as the number of compo-
nents). We choose to update the component that can potentially
reduce the system error as much as possible. This requires the ap-
plication of fx, fy , and ratio distance for each component to es-
timate a potential system-level error reduction due to that compo-
nent. Once we determine the component to update and the relevant
interval in that component, we update that interval by dividing into
halves as above. This step sends a query to the oracle and updates
the selected component’s points. Finally, we add (still by fx and
fy) a new system-level point according to the component update,
and then proceed to the next system-level interval for error reduc-
tion. The iteration continues until a termination condition is satis-
fied. The pseudocode for CAPS, given as Algorithm 1, is basically
the same for both problems. The only difference is the termination
condition: for the Primal Problem, it terminates when the error falls
below ǫ; for the Dual Problem, it terminates after making k queries.

The algorithm satisfies the following properties:

THEOREM 3.2. (performance guarantee for primal problem)
Algorithm CAPS finds an ǫ-Pareto set for a system of n components
using at most O(k∗ ·n·log(1/ǫ)) queries to the oracle. Further, the
dependence of the performance ratio on both n and ǫ is necessary.

THEOREM 3.3. (performance guarantee for dual problem) Al-
gorithm CAPS finds an ǫ∗-Pareto set for a system of n components
using at most O(k ·n·log(1/ǫ∗)) queries to the oracle. Further, the
dependence of the performance ratio on both n and ǫ∗ is necessary.

4. EXPERIMENTAL RESULTS
In this section we experimentally verify: (i) the accuracy of the

approximated Pareto set produced by CAPS , and (ii) the conver-
gence time of CAPS (or, dually, the best approximation within the
time budget). We show that besides having theoretical guarantees
on its worst-case performance, in practice CAPS can return results
that are more accurate in a shorter time, even in case of a non ideal
(i.e., noisy) oracle.
Experimental Set-Up. We implemented the CAPS algorithm and
applied it to three synthesizable RTL designs: (a) StereoDepth,
an SoC for video-rate stereo depth measurement that consists of 4
blocks [7]; (b) an MPEG2 Encoder consisting of 8 blocks; and (c)
MinSoC, which consists of 8 blocks and was designed by starting
from an OR1200 processor-based SoC [1] and adding two more
cores compatible with the Wishbone standard (a DVI/VGA Video
Controller and an SD Card Controller).
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Figure 6: Component sampling of StereoDepth at 90nm to
build the system approximation of Fig 5.

To play the role of the oracle of Fig. 1 we chose a widely-
adopted commercial tool for logic synthesis equipped with two in-
dustrial standard-cell libraries developed for two technology pro-
cesses (90nm and 45nm). We define performance as the max-
imum clock frequency at which the design can run. This is the
inverse of the target clock period Tclk that is given to the oracle as
the controllable constraint.
Power/Performance Tradeoffs. Fig. 5 shows the final approxima-
tion obtained by running CAPS to solve the Primal Problem (with
error tolerance ǫ = 3%) to characterize the power/performance
trade-offs of StereoDepth with the 90nm standard-cell library. As
the clock period varies between 2ns and 5ns the power dissipation
varies between 550mW and 1400mW . The points of these curves
are computed iteratively through a sequence of 65 oracle queries
which required an aggregate 63 hours until the target ǫ = 3% is
matched. This is just 25% of the number of queries (and about 50%
of the CPU time) necessary to compute the exact Pareto set, whose
curve lays between the approximation and lower bound curves as
we expected (see Fig. 5). Now, the exact Pareto set can generally
be obtained by executing a long sequence of synthesis runs (cor-
responding to a series of equally-spaced values of Tclk) for each
component. Instead, CAPS dynamically adapts the distribution of
the queries to the portions of the design space that actually need to
be explored to improve the approximation accuracy. For instance,
as shown in Fig. 6, CAPS repeatedly invokes the oracle on block2
and, to lesser extents, on block0 and block1, while avoiding block3
after the initial queries necessary to establish its extreme points.

Fig. 7 shows the evolution of the guaranteed error ǫ (i.e. guar-
anteed by Theorem 3.2) for each new query that we obtained by
running CAPS to solve the Primal Problem (with error tolerance
ǫ = 3%) to characterize the power/performance trade-offs of the
MPEG2 Encoder with the 45nm library. As expected, the error
decreases monotonically over time, until it reaches the target ap-
proximation. For these experiments we also computed the exact
Pareto set. Hence, we can evaluate the actual approximation error
ǫa, i.e. the ratio distance between the exact and the approximated
Pareto sets. In practice, as shown in Fig. 7, after each query CAPS

returns a value of ǫa that is much lower than the guaranteed error ǫ.
Table 1 shows the convergence results for each design. Columns

“Exhaustive Search” combines pre-computed component curves to
derive an exact system curve. Given ǫ, “CAPS Primal” finds an ǫ-
Pareto curve for the system in k queries. Given k, “CAPS Dual”
finds a system Pareto curve with guaranteed error ≤ ǫ. For all de-
signs, CAPS Primal requires only 7–19% queries and 8–39% CPU
time of Exhaustive Search to achieve a guaranteed 4% ǫ (and even
less for a ǫa = 4%). On the other hand, CAPS Dual can achieve a
guaranteed 2.4–6.0% ǫ (again, an even better ǫa) in 60 queries.
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Exhaustive Search CAPS Primal (ǫ = 4%) CAPS Dual
Design Technology (ǫ = 0%) ǫ (guaranteed) ǫa (actual) (k = 60)

k CPU Time (hr) k CPU Time (hr) k CPU Time (hr) ǫ ǫa CPU Time (hr)

StereoDepth 90nm 260 126 50 (19%) 49 (39%) 44 (17%) 44 (35%) 3.2% 3.1% 60 (48%)
MinSoC 90nm 520 27 96 (18%) 9 (33%) 87 (17%) 8 (30%) 6.0% 4.7% 6 (22%)
MinSoC 45nm 520 29 37 (7%) 4 (14%) 25 (5%) 3 (10%) 2.7% 2.0% 7 (24%)

MPEG2 Encoder 45nm 520 1824 35 (7%) 142 (8%) 21 (4%) 84 (5%) 2.4% 1.5% 232 (13%)

Table 1: Power/Performance trade-offs by CAPS. The parenthesized value of “k” and “CPU Time” is a ratio over Exhaustive Search.
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Figure 7: Error convergence of MPEG2 Encoder by query in-
dex (lower axis) and CPU time (upper axis).

Importance of Synthesis-Based Tradeoff Characterization. As
discussed in the Introduction, characterizing the power/performance
efficiency of an IP component across multiple operating points is a
critical aspect of design for reusability. While we limited our exper-
iments to varying the target clock frequency Tclk for the nominal
voltage supply, we could easily extend our approach to variations of
the supply voltage and the use of alternative technology libraries.
The reader, however, may wonder why it is not sufficient to syn-
thesize just a single implementation for the smallest possible value
of Tclk at design time, and then simply reuse it also with higher
values of the operative clock period Trun across various designs
at run time. After all, this is what is typical done when applying
dynamic clock frequency scaling methods for low power. The an-
swer is given by Fig. 8 which, for the case of the OR1200 processor
core of MinSoC, shows that power not only scales down with the
running frequency of the clock, but also with the clock frequency
targeted during synthesis, i.e. the inverse of Tclk. Each of the indi-
vidual points in Fig. 8 represents the estimated power consumption
returned by the oracle for a given Tclk, i.e. corresponding to a dis-
tinct circuit implementations of the processor that can be chosen
at design time. The four lines, instead, show the power trend for
four of these implementations corresponding to scaling Trun. No-
tice, that the points are always below the lines, meaning that a cir-
cuit synthesized for the Trun at which it will operate never wastes
power with respect to another circuit that was over-optimized for
Tclk and then clocked for Trun > Tclk. Also, note that every
point that is not below the lines is actually a dominated point in
the Pareto set, which CAPS automatically eliminates. Given the
importance of design for reusability and the growing trends of de-
signing multi-core SoCs with multiple clock domains, the accurate
synthesis-driven characterization of the power/performance of an
IP core is essential to demonstrate that its design offers the best
performance across a large dynamic range of power and frequency.
Area/Performance Tradeoffs (and Noisy Oracle Behavior). We
analyze also the area/performance tradeoff because it allows us to
evaluate the CAPS algorithm when the oracle manifests a noisy be-
havior. The implication of having a noisy oracle is that it can return
a point in the area/performance plane that is not part of the Pareto
set (see Fig. 9), with a probability that is not negligible. In particu-
lar, two scenarios may arise:
• The returned point dominates other previously-returned points.
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Figure 8: Synthesis and power/performance characterization.

In this case, CAPS treats the query as valid and progress regularly.
The only difference is that after this query the current approxima-
tion error might have temporarily increased, thus violating mono-
tonicity. In fact, during the previous steps, the approximation of the
Pareto set of the system (and, particularly, the lower-bound point
that dictates the error) was based on some value which cannot be
considered valid anymore because it became dominated by the new
acquired point.

• The returned point is dominated by the current Pareto set. Not
only is the query wasted, since it does not reduce the current ap-
proximation error of the system Pareto set, but also the portion of
the space that has been just queried will likely remain the source of
the biggest error (unless there is another portions that has exactly
the same error) and CAPS will re-attempt the same query.

In order to overcome the source of deadlock due to the second
scenario we introduced a practical heuristic that drives the selec-
tion of the following query: when a query returns a dominated
point, CAPS performs a second query in the middle of the right
semi-space, where the clock period is longer. The rationale behind
this decision is: if the returned point is dominated, then the noise of
the oracle is a consequence of very limited room for exploration in
the left semi-space, i.e., the considered clock-period increase from
the faster design which we already sampled (left-hand bound) is
not enough to allow the tool a significant area reduction. Hence, it
is likely that the space that deserves to be explored lies on the right
semi-space, where the clock period increase is even bigger. How-
ever, if this exploration keeps returning a dominated point, we turn
to explore the left semi-space. Finally, if a dominated point is still
encountered, we search in other components.

Fig. 10(a) shows that even when CAPS has to rely on a noisy or-
acle, the approximation of the Pareto set converges and the target
error ǫ is achieved. The missing bars represent queries that returned
a dominated point. Even though the oracle is very noisy for at least
one component, the returned point is dominated only in two occa-
sions and this happens mostly at the beginning, where the space
to be researched is bigger. After just a few queries, the regions of
the space where a trade-off is meaningful will keep being queried,
while CAPS mitigates the noise of the oracle for the other regions.
Finally Fig. 10(b) shows the comparison between the estimated and
the reference Pareto sets, for the area of StereoDepth at 90nm.

5. RELATED WORK
Multiobjective Optimization is an area at the interface of oper-

ations research and computer science that has been being exten-
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Figure 9: Comparing the oracle behavior in terms of: (a) re-
turned power and (b) area when synthesizing the block2 com-
ponent of StereoDepth at 90nm for various Tclk values. The
diagonal line shows the returned clock period.

sively investigated in the literature (e.g., see [12]). While our model
is very similar to the standard multiobjective framework defined
in [18] (and further studied in [8, 9, 10, 22]) our algorithmic results
are novel and are not implied by these works.

The problem size of design space exploration (DSE) grows ex-
ponentially with the number of design parameters. To tackle DSE
problems efficiently, existing approaches evolve into four main cat-
egories. The first category aims at solution space pruning to accel-
erate DSE, e.g. by clustering parameters into super sets to han-
dle a smaller number of combinations among the sets than the pa-
rameters [13, 19]. These approaches, however, depend on correct
parameter dependencies, which are generally not available in ad-
vance. Secondly, randomized search methods have been proposed
for DSE because they can flexibly encode non-linear problem in-
stances as well as multiple objectives. Instances include Simulated
Annealing [19] and Genetic Algorithms [11, 21]. Nevertheless,
the local search algorithms are heuristics, which cannot guarantee
solution qualities, and usually require long runtime. The third cat-
egory is based on estimating metrics of interest under given con-
figurations, as opposed to actually running time-consuming simu-
lation or synthesis. Example estimators include Fuzzy Systems [2],
Markov Decision Process [4], and response surface modeling [17].
These approaches cannot work alone and should be incorporated
with optimization frameworks. Finally, the last category includes
techniques to generate representative Pareto sets, e.g. by trans-
forming convex multi-objective problems into a sequence of single-
objective ones, which are gradually solved to uniformly sample the
solution space [20] or by using a bottom-up approach that relies on
the a-priori knowledge of the configuration-performance mapping
function [5]. This is fundamentally different from our top-down
approach which is more general and more efficient (as it requires
less component queries).

Notice that most previous works optimize the target design as
a whole entity [3], but this joint-optimization approach has lim-
ited scalability with complex SoC designs. While some works
have system-composition properties [5, 11], the CAPS approach is
uniquely efficient in sampling components only when is required.

6. CONCLUSIONS
We have presented CAPS an adaptive algorithm for system-level

design characterization by compositional approximation of Pareto
sets. The algorithm is provably the best online algorithm, and em-
pirically works even better than what is guaranteed by the theo-
rems. The application to power/area-performance design space ex-
ploration shows that our approach is both effective and efficient.
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