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Abstract— We present results from a week-long experimental
evaluation of a scalable control algorithm for a commercial
building heating, ventilation, and air-conditioning (HVAC) sys-
tem. The experiments showed that the controller resulted in
37% energy savings without sacrificing indoor climate. In
contrast to prior work that reports energy savings without
a careful measure of the effect on indoor climate, we verify
that the controller achieves the energy efficiency improvements
without any adverse effect on the indoor climate compared
to the building’s baseline controller. This is established from
measurements of a host of environmental variables and analysis
of before-after occupant survey results. We present a complete
system to retrofit existing buildings including the control algo-
rithm and the supporting execution platform which includes
the deployment of a wireless sensor network. Results show that
there is a large variation in energy savings from zone to zone,
which indicates that estimating energy savings potential of novel
HVAC control systems is not trivial even from experiments—
something that prior work with uniformly positive messages
did not emphasize.

I. INTRODUCTION

Buildings consume nearly 40% of the energy in the
United States, and a significant fraction of this energy is
due to heating, ventilation, and air-conditioning (HVAC)
systems [1]. Energy-efficient control of HVAC systems has
become an active topic of research lately.

A number of recent papers have examined Model Predic-
tive Control (MPC) for HVAC applications. Experimental
evaluations of MPC have been reported in [2]–[4] with
positive results: the controller has been able to reduce energy
usage while satisfying constraints on space temperatures.
One of the bottlenecks in applying MPC to building con-
trol is the variation from building to building in terms of
equipment and dynamics, which requires building-specific
tuning of models used in MPC computations. Consequently,
such controllers may not be suitable for scaling up to a large
number of buildings.

It has been shown in our prior work that it is possi-
ble to significantly reduce the energy used in maintaining
indoor climate with rule-based control (RBC) algorithms
that use real-time measurements of occupancy, which are
simpler to apply than MPC [5]. It was concluded through
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an extensive simulation study in [5] that the rule-based
Measured Occupancy-Based Setback (MOBS) controller had
performed similarly compared to a much more complex
MPC-based controller in terms of both energy consumption
and indoor climate conditioning. An independent study ob-
tained similar conclusions [6]. Experiments in a single zone
of a building corroborated these findings [7]. In contrast to
prior work on MPC-based HVAC control, the MOBS con-
troller does not require any building-specific or zone-specific
tuning, which makes it highly scalable for deployment.

This paper reports the results of scaling up the implemen-
tation of the MOBS controller to several zones of a commer-
cial building. Occupancy measurements were obtained with
the help of low-cost, wireless sensor nodes equipped with
motion detectors.

Our experiments were conducted in twelve zones of a
commercial building on the University of Florida’s campus.
The results of the experiments confirm that the predicted
performance of the MOBS controller from simulations and
single-zone experiments does indeed persist when the control
system is scaled up to multiple zones. Average energy
savings of 37% were achieved without any adverse effects
on the indoor climate as measured by temperature, humidity,
and CO2 levels as well as occupant feedback obtained from
surveys before and during the tests. While the results were
generally positive, both thermal comfort metrics and energy
savings varied considerably among zones.

Among the prior work, [8]–[10] have also proposed and
experimentally evaluated energy-efficient RBC algorithms
that are scalable to a large number of buildings. However,
these papers only report measurements of temperature as an
indicator of indoor climate, while in practice both thermal
comfort and indoor air quality (IAQ) must be maintained.
Even thermal comfort is not completely determined by
temperature alone; humidity is another important factor.

As an additional validation of the objective assessment of
occupant comfort, we include the results of surveys of occu-
pants’ comfort and perceptions of IAQ before and during the
experiments for subjective assessment. While many works
in the literature have implemented new control algorithms
and analyzed their performances via varying degrees of
energy and comfort analysis, to our knowledge none have
methodically examined if the tested controller has led to any
change (positive or negative) in the occupants’ perceptions
of thermal comfort and IAQ. The ultimate metric for comfort
is occupants’ opinions, and we provide these in our analysis.

This paper is organized as follows. Section II describes
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the building, HVAC system, control algorithms, and wireless
sensor network (WSN) used in the experiments. We define
our evaluation criteria in Section III. Experimental results
are discussed in Section IV. Finally, Section V provides a
summary of our results and avenues for future research.

II. SYSTEM ARCHITECTURE

Tests were carried out in Pugh Hall (see Figure 1) on
the University of Florida campus, which is a LEED Silver-
certified building with a floor space of 40,000 sq. ft. and
a variable air volume (VAV) HVAC system that has 3 air
handling units (AHUs) and 65 VAV boxes. Each AHU
conditions a mixture of outside and return air and then
distributes the conditioned air to a number of VAV boxes
through a single supply duct. Each VAV box has an airflow
damper and a re-heat coil to modulate the flow rate of
conditioned air delivered to its zone and re-heat the air. In the
tests, twelve zones—each consisting of a single room—were
controlled using the MOBS control algorithm described in
Section II-A. The control commands at each VAV box were
airflow damper position and re-heat valve position. Set points
at the AHU were not manipulated by the MOBS controller.

The control system consists of the following components:
(i) a control algorithm for computing commands for the
HVAC equipment, (ii) a wireless sensor network (WSN),
and (iii) a software infrastructure for data management
and control execution. Control computation was performed
on-line in a computer using MATLAB c©. Commands are
executed by overriding the commands computed by the
building automation system with those computed by the
MOBS controller using a higher priority in BACnet [11]. The
control algorithm reads measurements from sensors through
a relational database where the measurements are stored.
Commands to the controlled VAV boxes are updated every
five minutes.

A. Control algorithm

The controller currently used in Pugh Hall (the base-
line controller) is very close to a dual-maximum control
scheme [12], but the exact nature of the controller is un-
known due to its proprietary nature. Detailed descriptions
of the dual-maximum and the MOBS control logics are
available in [5]; we provide a brief sketch here for the sake
of completeness.

The dual-maximum control logic has four modes of op-
eration of a zone based on the measured zone temperature:
(i) re-heating, (ii) heating, (iii) dead-band, and (iv) cooling.
Each mode is activated if the room temperature remains
within a certain temperature band for more than ten minutes:
(i) re-heating: below the re-heating set point (TRTG); (ii)
heating: between the re-heating and the heating set point
(THTG); (iii) dead-band: between the heating set point and
the cooling set point (TCLG); (iv) cooling: above the cooling
set point. In re-heating mode, the temperature of the air
supplied to the zone is set to its maximum value (Thigh),
and supply air flow rate is varied by a PID controller. In
heating mode, supply air flow rate is set to its minimum

value (V̇min) while supply air temperature is varied via a PID
controller. In dead-band mode, supply air flow rate is set to
its minimum value, and no re-heating is performed (i.e., the
re-heat valve remains closed). In cooling mode, supply air
flow rate is varied using a PID controller, and no re-heating
is performed.

The baseline controller in Pugh Hall also employs a
nighttime setback in which temperature set points are relaxed
during the night when the building is presumed to be
unoccupied (10:30 PM-6:30 AM).

The MOBS controller, which was proposed in [5], is
similar to that of the dual-maximum controller. Instead
of pre-specified, building-wide times for unoccupied mode
(nighttime setback), real-time occupancy measurements are
used to determine unoccupied times for each zone individ-
ually (occupancy-based setback). When a zone has been
unoccupied for more than five minutes, it switches to the
unoccupied mode; otherwise, it remains in the occupied
mode. The heating/cooling/re-heating set points used in the
MOBS controller were chosen to be the same as those used
by the baseline controller; see Table I.

Apart from the zone temperature bounds, the MOBS
controller determines the minimum air flow rate and min-
imum outside-air flow rate based on whether the zone is in
occupied or unoccupied mode in accordance with ASHRAE
ventilation standards [13]. The air flow rates are computed
based on the measured occupancy count—i.e., the number
of occupants.

TABLE I

CONTROLLER SET POINTS (◦ F)

Tset T
unocc

RTG
T

occ

RTG
T

unocc

HTG
T

occ

HTG
T

unocc

CLG
T

occ

CLG

72.0 69.7 71.2 70.0 71.5 74.5 76.0

B. Wireless sensor network

The MOBS controller requires real-time measurements of
occupancy count in each zone. Even though not used in
control computation, measurements of humidity and CO2

concentration are desired for post facto analysis to determine
a controller’s effect on thermal comfort and IAQ. These
sensors were not available in the building. A wireless sensor
network was therefore deployed to obtain these measure-
ments. Each wireless sensor node (shown in Figure 2)
measures occupant presence (through a PIR sensor), CO2

concentration, temperature, and relative humidity. Each node
is equipped with a TI MSP430 microprocessor and a CC2500
radio operating in the 2.4 GHz band. Nodes use their radio
transceivers to transmit their measurements to base stations
throughout the building using TI’s SimpliciTI communica-
tion protocol. The base stations are Dreamplug computers
running Linux with their own radio transceivers. The base
stations write the sensor data to a database through the
Internet. For more information about the WSN and its design,
the reader is referred to [14].
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Fig. 1. Pugh Hall and the locations of the wireless nodes (circles) on each floor. Base stations are represented by stars.
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Fig. 2. Wireless sensor node deployed in Pugh Hall [14].

A PIR sensor only provides presence/absence measure-
ments, but the MOBS controller requires occupancy count
measurements. Occupancy count was estimated by assuming
that whenever a room is occupied, it is occupied by its design
occupancy. All of the rooms except the conference rooms had
a design occupancy in the range of 2 to 4.

III. EVALUATION CRITERIA

We measure the performance of a controller in terms of
how well it maintained indoor climate for occupants and how
much energy it consumed per day.

A. Indoor climate

We evaluate indoor climate through thermal comfort and
IAQ. Thermal comfort is determined by many factors; here
we consider temperature and humidity. ASHRAE standard
55.1 [15] specifies a range of temperature-humidity values
in which a majority of building occupants are believed to

be comfortable, which is shown in Figure 3. To perform an
objective comparison of temperature-constraint maintenance,
we define the following measure, called daily temperature
deviation, with a unit of ◦F·minutes:

∆T =

∫
1

0

d(T (t), [Tlow(t), Thigh(t)]dt (1)

where t is in the unit of days, Tlow and Thigh are the lower
and upper bounds on the space temperature, respectively, and
d(x, I) indicates distance between x and the interval I . A
similar metric for humidity, ∆H , is also defined. The interval
for the humidity metric is chosen as 0 to 0.012 in accordance
to ASHRAE thermal comfort standards; see Figure 3. Since
there is no universally accepted measure of IAQ, we take
CO2 concentration as a rough measure of IAQ.

Physical variables do not capture all factors that affect
thermal comfort. The ultimate measure of comfort is occu-
pants’ perceptions of comfort. To determine the controllers’
effects—if any—on occupants’ perceptions of comfort, web-
based surveys were conducted during both baseline and test
weeks that asked occupants to rate if their workspaces felt
un/comfortable overall and stuffy/fresh.

B. Energy consumption estimation and comparison

There are three sources of power consumption: cooling
power, heating power, and mechanical (fan) power. We
estimate the cooling power consumed by each zone from
measurements of the air entering and leaving the zone. The
total cooling power consumed by the zones in which the
MOBS controller was tested is then estimated by summing
the power of each zone. A similar method is used to estimate
the heating power. Fan power consumption is estimated
based on a linear model relating the measured power and
mass flow rate.

Ideally, comparisons between two distinct controllers
should be made by testing them under identical conditions,
which is impossible to perform in practice since weather and
occupant-related loads are never exactly the same for any
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Fig. 3. Green dots: measurements of temperature and humidity in one
of the test rooms during April 24, 2013. The dashed region is where
“80% of sedentary or slightly active persons find the environment thermally
acceptable” [15].

two days. As an alternative, we compared each day of the
week of experiments with the same day of another, baseline-
controlled week with similar weather conditions.

We perform a search over all days of 2013 and all available
days of 2014, and the day with the most similar weather
conditions is used as the baseline day. In evaluating weather
similarity, we consider both enthalpy and temperature as
evaluation criteria because the power consumption of the
AHU is a function of the outside-air enthalpy but the deci-
sions of the baseline controller are based on the temperature.
Additionally, we only consider the same days of the week
(e.g., only Mondays are compared to the Monday of the
test week). This decreases the chance of vastly different
occupancy schedules between the test and baseline days.
Additionally, holidays were not considered.

IV. RESULTS AND DISCUSSION

The MOBS controller was implemented for six days from
00:00 hours April 21, 2013 through 24:00 hours April
26, 2013. The rooms/days in/during which the test was
conducted are called the test rooms/days. The locations of
the test rooms are shown in Figure 1.

A. Thermal comfort and IAQ

Figure 3 shows measurements of temperature and humid-
ity in one of the test rooms for a test day. For this room and
day, the daily temperature deviation, ∆T , defined in (1) was
0. This was not the case for all rooms and days; Figure 4
shows box plots of ∆T for each of the test rooms during the
test period and the corresponding baseline days. As with the
baseline controller, ∆T was small for most zones on the test
days, but a few zones had occasional large violations. ∆H

was uniformly 0 in all test zones on all test days.
The large daily temperature violations that occurred in

rooms 3 and 4 were due to actuator saturation: the maximum
air flow rates allowed in those rooms were not enough to
service the large thermal loads experienced by them. Rooms
3 and 4 were small study rooms and were subjected to
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Fig. 4. Box plot of daily temperature violation of each room during the
test (six samples per column).

large thermal loads due to the presence of students and their
electronics during the test week, which coincided with the
period of final exams for the semester.

Figure 5 shows the temperature, humidity, and CO2

concentration measurements in room 11 during a test day
(Wednesday, April 24, 2013) and the corresponding baseline
day (Wednesday, May 15, 2013). Included in the figure
are the zone temperature bounds for each controller. For
the MOBS controller, these bounds are computed in real-
time based on occupancy measurements provided by the
wireless sensors. Note that the bounds are stricter during
the occupied periods than during the unoccupied ones. The
baseline controller changes its bounds only twice during the
day due to the nighttime setback. Note also the spike in
CO2 concentration around 7 PM. Room 11 is a heavily used
conference room, and the spike may have been caused by the
presence of a group of people much larger than the design
occupancy. This was the only instance for any room in which
the CO2 concentration exceeded 1000 ppm.

B. Energy savings

Figure 6 shows the total daily energy consumption (over
all twelve test zones) of both the baseline and MOBS
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Fig. 6. Daily energy consumption of MOBS and baseline controllers and daily mean ambient temperature.
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Fig. 5. Results of the MOBS controller on April 24, 2013, and of the
baseline controller on May 15, 2013 (best matching baseline day for April
24), for a specific room. The dashed lines represent the upper and lower
temperature bounds (left axis).

controllers. For the entire week, the MOBS controller re-
sulted in the consumption of 1.73 MWh while the baseline
controller consumed 2.75 MWh—indicating the MOBS con-
troller reduced energy usage by 37%. The energy savings
were comparable to the reduction in airflow (32%). By using
occupancy measurements rather than a fixed schedule, the
total flow during the daytime was reduced.

These savings are close to those observed in the single-
zone experimental study reported in [7], which were 40%.
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Fig. 7. Box plot of daily energy savings as percent of average baseline.

The simulation study in [5] indicated energy savings of 42-
60% from the MOBS controller depending on weather and
zone type. We believe the difference between simulation
and experiments is mostly due to the nighttime setback
implemented at the AHU during the experiments that was
not incorporated in the simulation study.

Just as with temperature regulation, there was a large vari-
ation in percent energy savings between rooms. Figure 7 is a
box plot of each room’s energy savings as percent of average
baseline consumption for each room. The MOBS controller
occasionally resulted in increased energy consumption over
baseline, but positive percent savings were generally larger
than negative percent savings. This is even more so when
looking at nominal savings (in kWh, not percentage). The
largest increase in daily energy consumption was less than
14 kWh, but the largest decrease in daily energy consumption
was greater than 45 kWh. The increase in energy consump-
tion of the MOBS controller occurred in the rooms in which
the baseline controller was supplying an inadequate amount
outside air so that the MOBS controller had to increase air
flow rate to meet ventilation standards.

C. Occupants’ perceptions of thermal comfort and IAQ

Apart from variables such as temperature and humidity,
the perceived thermal comfort of an occupant depends on a
host of other variables such as air velocity, clothing, radiant
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heat, etc. [16]. Many—if not most—of these variables are
nearly impossible to measure. Finally, there are subjective
components to a person’s perception of comfort as well.

To assess the impact of the MOBS control strategy on
the occupants’ perceptions of comfort and IAQ, web-based
surveys were conducted. Occupants were e-mailed a link to a
web-based questionnaire that asked them to rate their overall
comfort and air quality in the last five minutes, both on a
numerical scale of 1 to 5, from very uncomfortable to very
comfortable and from very stuffy to very fresh.

Three waves of surveys were conducted: Wave 1 was
during the installation of the wireless sensors in the building;
Wave 2 occurred after the installation was complete but
before the MOBS control tests were conducted; and Wave
3 occurred during the week when the control tests were in
effect. Twenty-seven participants completed questionnaires
from all three Waves. In general, the occupants responded
positively to the MOBS controller, with more than 84% of
participants rating the air as fresh (above the midpoint of
the scale) and room conditions as comfortable (above the
midpoint of the scale) in all three waves.

Paired samples t-tests indicated no significant differences
in response to the item measuring overall air comfort
(un/comfortable) in the workspace between the control test
period, Wave 3 (Mean = 2.75, Standard Deviation = 2.00),
and the baseline period of Wave 1 (M = 2.71, SD = 1.92),
t(23) = -.07, p = .94. Similar results were found for paired
sample t-tests comparing perceived comfort between Wave 3
and Wave 1 (M = 2.95, SD = 1.47), with t(18) = .53, p = .60.
In terms of the perceived air freshness measure (stuffy/fresh),
it is interesting to note that participants perceived greater
freshness during the MOBS test period (Wave 3), M = 2.82,
SD = 1.59, than during the first baseline period (Wave 1), M
= 1.64, SD = 1.65, t(21) = -3.78, p < .010. However, there
were no significant differences in perceived air freshness
during the Wave 2 baseline period, M = 2.70, SD = 1.59, and
the MOBS test (Wave 3), M = 2.65, SD = 1.87, t(18) = -.53,
p = .6. In short, the MOBS controller was not associated with
decreases in reported occupant comfort and air freshness.

V. CONCLUSION AND FUTURE WORK

The primary energy savings by the MOBS controller were
achieved from reduction of air flow rate during unoccu-
pied periods. The baseline controller uses a large flow rate
throughout the day to ensure IAQ is maintained. Using
occupancy measurements, the flow rate can be reduced
during unoccupied times.

An important observation is that significant energy sav-
ings were achieved with PIR sensors that provide binary
presence/absence measurements—not occupancy count. Ac-
curately estimating the exact number of occupants in a room
is still an open problem, but our results show that, for small
office areas and even conference rooms, binary occupancy
measurements can yield significant savings without the need
for expensive hardware or complex estimation algorithms.

The overall cost of each sensor node was $215, and the
total cost of deployment in the entire building is approx-

imately $14,000. The annual HVAC energy cost of Pugh
Hall is approximately $60,000, so annual energy savings up
to $23,000 may be expected. This means the WSN will have
paid for itself in less than a year! It should be mentioned that
since there were considerable variations in energy savings
from zone to zone and from day to day, the yearly energy
savings may not be the same as the average daily savings
observed in the test.
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