
A Method to Abstract RTL IP Blocks into C++ Code and
Enable High-Level Synthesis

Nicola Bombieri1, Hung-Yi Liu3, Franco Fummi1,2, Luca Carloni3
Dip. Informatica - Università di Verona, Verona - Italy1

EDALab s.r.l., Verona - Italy2

Dept. Computer Science - Columbia University, NY - USA3

nicola.bombieri@univr.it1, franco.fummi@{univr.it, edalab.it}1,2, {hungyi, luca}@cs.columbia.edu3

ABSTRACT
We present a method to automatically generate a synthesiz-
able C++ specification from the given RTL design of an IP
block, by abstracting away most of its micro-architectural
characteristics while preserving its functionality. The goal
is twofold: recover the IP block specification for system-level
design, and enable the derivation of more optimized imple-
mentations through high-level synthesis.The C++ specifica-
tion can be generated with different interfaces thus allowing
the IP model to be reused across different system platforms.
Experimental results show that the proposed approach not
only enhances the reusability of the recovered IP block but
also unveils a richer design space to explore.

Categories and Subject Descriptors
B.5 [REGISTER-TRANSFER-LEVEL IMPLEMEN-
TATION ]: Design Aids - Optimization

General Terms
Design, Performance

Keywords
RTL IP reuse, System-level Design

1. INTRODUCTION
Reuse of existing and already verified RTL IP components

is a key strategy to cope with the complexity of designing
modern SoCs under ever stringent time-to-market require-
ments. To achieve a 10x gain in design productivity by the
year 2020 is expected to require that a complex SoC will
consist of 90% reused components [9]. The reusability of an
RTL IP component is not always guaranteed since it depends
on the designers’ ability to implement it independently from
a specific integration context.
While design reuse methodologies have been proposed for

almost a decade, often the main priority of RTL design-
ers is to optimize a given component for a particular SoC
product. Furthermore, the level of abstraction of RTL is
inherently limited in its capability of expressing efficiently
many alternative micro-architectural choices and interface
configurations for a given IP: typically a Verilog or VHDL
description that is aimed at deriving an efficient logic synthe-
sis implementation only specifies one I/O interface protocol
(e.g. how many input data are sampled at each clock cycle)
and one internal micro-architecture (e.g., the depth of the
internal pipeline of a datapath).
Sustained by the increasing need to start the design and

validation of multi-core SoCs at higher levels of abstrac-
tion (system-level design) [5], the use of high-level synthesis
(HLS) is gaining consensus [11]: indeed, there are now sev-
eral commercial HLS tools which are capable to take a single
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Figure 1: The proposed methodology for RTL IP
block recovery and reuse.

C/C++ or SystemC specification of an IP component and
generate many alternative RTL implementations, each op-
timized for a given SoC. Starting from a specification given
in one of these languages, designers can configure the rich
set of knobs offered by HLS tools to explore a design space
that is much richer than the one offered by the combination
of an RTL specification and a logic synthesis tool.

Still, while new SoC designs are increasingly started at
the system level, there is a large body of RTL IP blocks
which have been designed in VHDL or Verilog by both in-
dustry designers and third-party vendors over the years. The
motivation for our work is precisely the observation that it
would be nice to recover the core functionality of these de-
signs, make them suitable for HLS and system-level design,
and, ultimately, enhance their reusability.

Our main contribution is a method to automatically gen-
erate a C++ code specification optimized for HLS from the
RTL design of a given component, by abstracting away most
of its micro-architectural characteristics while preserving its
functionality.

We implemented this method in a new tool, called R2C,
which is used in Step 1 of our proposed methodology for RTL
IP block recovery and reuse enhancement (as illustrated in
Fig. 1). The C++ code generated by R2C can be used for
efficient design-space exploration using a commercial HLS
tool (Step 2) and, after the application of traditional logic
synthesis, ultimately to obtain a final implementation that
is optimized for a given SoC design context (Step 3.) The
enhanced reusability is the combined result of: (a) enabling
design-space exploration at the system-level where simula-
tions of the whole SoC can be done with more complex user
case scenarios, (b) leveraging HLS to evaluate alternative
micro-architectures, and (c) generating the C++ specifica-
tion with different I/O interfaces, which is a feature of R2C.

The application of the proposed methodology to two case
studies not only confirms this reusability enhancement but
it also typically leads to final design implementations that
are better than the original RTL design in terms of either
performance or area occupation and, sometimes, in both
cases.

Related Work. Several methods for translating RTL
VHDL and Verilog models into C/C++ descriptions tar-
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geting verification of hardware models via simulation have
been proposed in the literature or implemented in commer-
cial tools [7, 8, 14, 15, 4, 3]. In [7], a VHDL to C++ con-
verter transforms VHDL test-benches to C++ source. Dur-
ing the conversion, the C++ source is compiled into a small
simulation kernel that runs the whole simulation with the in-
terconnected hardware board. In [8, 14], various translation
tools allow designers to use C++ executable files in place
of VHDL models for decreasing simulation time compared
to the typical acceleration process with hardware descrip-
tion language simulators. In [15], a methodology, which was
then implemented in the tool VTOC, is proposed to convert
synthesizable Verilog into C++. VTOC tries to reduces the
number of delta cycles by topological sorting all processes
and by applying process merging. Since the goal of these
methods is the verification of the given RTL design, all the
implementation details included in the RTL descriptions and
strictly related to the hardware modeling (e.g., clock accu-
racy, bit accuracy) are maintained during the translation to
the software domain.
Carbon Design System [4] provides commercial products

that convert Verilog or VHDL RTLmodels into cycle-accurate
and register-accurate SystemC models. Carbon’s tools aim
at creating complete virtual platforms in order to gain both a
fast and accurate system validation. In [3], the C++ gener-
ation from RTL IPs aims at abstracting many architectural
details for fast simulation. The process synchronization re-
lies on a dynamic scheduling, which is embedded into the
generated C++ code.
Differently from all the techniques presented in literature

that target C++ code generation for simulation and verifi-
cation, the proposed method is aimed at the generation of
C++ for HLS. As discussed in the following sections, the
different goal leads to important differences in the approach
of generating C++ code.

2. METHODOLOGY
The main technical problem we address in this paper is

the following: Given a synthesizable RTL IP implemented in
hardware description language, generate a sequential C++
code that preserves the RTL IP semantics and that can be
synthesized by HLS, with the aim of:

• Minimizing the implementation cost of the RTL de-
signs that can be synthesized by the C++ code through
HLS; and

• Maximizing the design space of the synthesized RTL
designs.

The proposed method relies on three key concepts:

1. During the generation of C++ code, the scheduling of
RTL statements is resolved statically at compile time. Moti-
vated by area optimization purposes, this approach is differ-
ent from the related works mentioned above, which preserve
dynamic scheduling kernels. In fact, even though dynamic
scheduling allows great simulation performance, it leads to
area overhead costs once synthesized, as explained in Section
2.1.
2. Static variables in the C++ code are generally synthe-
sized into registers at gate level. As explained in 2.2, R2C
tries to reduce the number of static variables during the
generation of C++ code, again to minimize area overhead.
3. R2C performs loop-rolling transformations on both in-
ternal logic and the I/O interface. The goal is to generate
loops in the C++ code. Loops are strategic in helping HLS
tools to produce good quality synthesis results as well as a
richer design space to explore, as explained in Section 2.3.
Consider for example the JPEG of Fig. 2, a synthesizable

RTL IP model implemented in Verilog, and the generated
C++ implementation of Fig. 3(a). The JPEG consists of
three components: A discrete cosine transform (DCT) mod-
ule, a quantization (QNR) module, and an entropy coding

dctin1= v1;

dctin2= v2;

dct(dctin1,dctin2, &dctout1,&dctout2);

//1° invocation, results in stage 1

dctin1= v3;

dctin2= v4;

dct(dctin1,dctin2, &dctout1,&dctout2);

// 2° invocation, results in stage 2

…

dctin1= v15;

dctin2= v16;

dct(dctin1,dctin2, &dctout1,&dctout2);

// 8° invocation, results ready

resultdct1=dctou1;

resultdct2=dctout2;

dctin1= v17;

dctin2= v18;

dct(dctin1,dctin2, &dctout1,&dctout2);

resultdct3=dctou1;

resultdct4=dctout2;

…

(b) (c)

C++

#define stages 8

static long coef_pipe[stages+1];

dct( long in1, 

long in2, 

long *out1,

long *out2) {

coef_pipe[0] = cos_table(in1);

for (i=stages; i>0; i--){

coef_pipe[i] = coef_pipe[i-1];

}

out1 = coef_pipe[stages] * in2;

out2 = coef_pipe[stages];

} C++

jpeg(din1,din2, &dout1,&dout2){

dct(dctin1,dctin2, &dctout1,&dctout2){

… }

qnr(qnrin1,qnrin2, &qnrout1,qnrout2){

… }

rle(rlein1,rlein2, &rleout,&rleout1,rleout2){

… }

}
C++

(a)

Figure 3: (a) The main structure of the JPEG ex-
ample when translated in C++, (b) the C++ code
generated from the pipelined RTL DCT, and (c) the
sequence of dct() invocations due to the pipeline na-
ture of the RTL IP component.

that runs the run-length coding (RLE). R2C implements
each RTL IP component through a C++ function. The
main function implementing the JPEG is obtained by the
sequential call of the three functions, ordered according to
the RTL IP dataflow.

Fig. 3(b) shows the C++ code generated from the pipelined
RTL code of the DCT component. The RTL signals imple-
menting the pipeline stages are translated into C++ static
variables (coef pipe[ ] in the example). As a consequence,
for returning the first results, the C++ function implement-
ing the DCT module must be invoked as many time as the
number of pipeline stages (see Fig. 3(c)). Then, after such a
kind of functional latency, each function invocation returns
one result.

2.1 The static scheduling in the C++ code
The RTL-to-C++ abstraction consists of mapping each

synchronous process ps of the RTL model MRTL into a C++
function fs of the C++ model MC++, where each sequential
statement of the process is mapped into a C++ statement.
The translation of RTL statements into C++ statements is
merely syntactic and the order of statements in the RTL
process is preserved in the C++ function.

In the same way, each asynchronous process or global
statement (i.e., statement outside synchronous processes) of
MRTL is mapped into a C++ function fa of MC++.

Then, RTL signals are mapped into C++ variables, by
preserving the corresponding data width and type. In cer-
tain specific cases, as explained in Section 2.2, signals are
mapped into static variables to preserve the IP semantics.
For the sake of clarity and without loss of generality, we
do not dwell on other hardware description language dec-
larations (e.g., variables, constants, subprograms, etc.) for
which the RTL semantics is easily mappable into the C++
semantics.

Data types used at RTL, which are bit-accurate and im-
plement the multi-value logic, are maintained in the gener-
ated C++ implementation. Different libraries of such bit-
accurate data types and corresponding operators are avail-
able (e.g., Accellera Systems Initiative [2], Mentor [12], etc.).
The proposed approach is independent of the data type li-
brary and any of those already existing can be adopted.

To preserve the RTL IP semantics, the C++ functions
generated from the RTL processes have to be executed in the
same partial order as the corresponding RTL processes are
executed in the RTL model. That is, concurrent processes
can execute in a non-deterministic order, while the order
between non concurrent processes must be preserved.

To do that, R2C implements a static scheduling of func-
tions. At compile time, R2C resolves the order of func-
tion calls according to the order of RTL processes in the
process communication graph. Consider, for example, the
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6. /* async. block dist. 1*/

7. fa0();

8. fa2();
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Figure 4: (a) Process communication graph (PCM)
of RLE, (b) the corresponding static scheduling of
functions in the C++ code.

RLE component of the JPEG RTL IP. Fig. 4(a) repre-
sents such a component through a graph, each process be-
ing a vertex and each signal being an oriented edge. The
graph, which is automatically extracted from the RTL de-
scription, represents the synchronization and communica-
tion net among processes. The RLE component consists
of four synchronous processes (ps0-ps3), three asynchronous
processes (pa0-pa2), two input ports (s3, s4), two output
ports (dout1, dout2), and seven internal signals (rlesig1-
rlesig9).
The generated functions are firstly grouped into synchronous

and asynchronous blocks, according to their distance (in
clock cycles of latency) from the input ports. The idea is
that the functions are invoked by alternating a group of
synchronous to a group of asynchronous functions, accord-
ing to the block distance from the inputs. Fig. 4(b) shows,
for example, an overview of the generated C++ code (and
in particular the order of the function calls) generated from
the RTL model of Fig. 4(a). Notice that the outputs of the
RTL model have different latencies, since the PCM has a
n-iteration loop on the data flow. This implies rle() to be
called multiple times for generating the first result on dout2
and a static variable to implement the memory element for
rlesig7, as explained in the next section.
R2C generates the C++ model with static scheduling

since it targets better synthesis results rather than simu-
lation performance. In contrast, the techniques presented
in literature [3, 4] implement a dynamic scheduling of func-
tions, targeting C++ code generation for fast simulation and
verification. Even though dynamic scheduling outperforms
static scheduling in traditional simulation environments, it
takes extra logic to be implemented. Such an extra logic
would imply more area in the synthesized circuit with no
benefits to delay. A more detailed comparison between static
vs. dynamic scheduling is given in Section A.1 of the Ap-
pendix.

2.2 Static variable minimization
When producing C++ code from the given RTL IP code,

R2C generates static variables from RTL signals as part of
two possible scenarios::

• From RTL communication signals between synchronous
processes. If there are asynchronous processes in the
path between them, only the signals outcoming the
synchronous processes are mapped into static variables
(e.g., rlesig1, rlesig4, rlesig6, rlesig8, and rlesig9 in
Fig. 4(a));

• From RTL signals that form dataflow loops (e.g., rlesig7
in Fig. 4(a) that implements a pipeline barrier).

Since static variables in C++ code always lead to the syn-
thesis of registers, R2C aims at area optimization by gener-
ating C++ code with a reduced number of static variables.
Beside area optimization, static variable minimization in the
C++ code is a key aspect as it allows the C++ functional
latency to be reset (set to the minimal value one):

Definition 1. Considering the generated MC++, we de-
fine functional latency as the number of invocations of the
C++ main function (e.g., jpeg()) for reading the inputs
and producing the output results. The latency of the orig-
inal IP is reset when the generated MC++ has functional
latency equal to one invocation.

for (i=0; i ≤ n; i++)

f( vi , &resi);
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/*f body on

din[i], dout[i]*/

}
M1

C++

Figure 5: Loop rolling on I/O

If the functional latency is not reset, the latency of any
MRTLi synthesized from the C++ code is:

LatencyMRTLi
= LatencyHLS × Functional latencyMC++

where LatencyHLS is the latency inferred to the RTL
model by HLS (e.g., to break critical path, etc.).

R2C abstracts the static variables generated from the
RTL communication signals between processes, into non-
static variables. Consider, for example, the RTL RLE dataflow
(s3, s4) → dout1 shown in the leftmost side of Fig. 4(a). It
traverses at least two synchronous processes thus involving
a latency of two clock cycles on dout1. The corresponding
C++ implementation consists of the function-call sequence
< fs1(), fs2(), fa0(), fa2(), fs0(), fa1() >. In this case,
the main C++ function rle() reads inputs s3, s4 through
fs1(), fs2() and, after the function-call sequence, generates
the result dout1 with a functional latency equal to one in-
vocation. Signals rlesig1-rlesig6 are all mapped into (non-
static) variables.

On the contrary, static variables generated from RTL sig-
nals that form loops cannot be directly abstracted. Consider
for example static variables implementing pipeline barriers.
The data transition towards the output over the pipeline
stages requires one input to be read for each stage. This
behavior, in MC++, can be implemented only through mul-
tiple invocations of the main C++ function. A more detailed
analysis of the static variable minimization and latency reset
is given in Section A.2 of the Appendix.

In the example of Fig. 4(a), the dataflow s4 → dout2 con-
tains a loop on ps2. The corresponding C++ implementa-
tion consists of the function call sequence < fs2(), fs3() >,
which must be invoked n times for generating the first re-
sult. Then, since fs2() and fs3() are subfunctions of rle(),
the whole rle() must be invoked n times (functional latency
equal to n) for generating the first result on dout2.

For resetting the functional latency during abstraction of
RTL components with loops in the dataflow, R2C performs
loop rolling on I/O, as explained in the following section.

2.3 The loop rolling
To maximize the design space of the recovered RTL mod-

els, R2C performs loop rolling transformations on the inter-
nal logic and on I/O interfaces.

When multiple instances of the same block (i.e., module
in Verilog, entity in VHDL) are explicitly instantiated in
the RTL code, R2C rolls up the instances into a loop and
resolves the binding. The loop rolling on internal logic ap-
plies over different hierarchy levels of MRTL, by generating,
as a result, nested C++ loops in MC++. A more detailed
analysis of loop rolling on internal logic is given in Section
A.3 of the Appendix.

Loop rolling is also applied to abstract the interface from
single input values to arrays of values. Consider a MC++

model, which implements functionality f , reads an input
value (called input token hereafter), elaborates, and returns
the output result (output token), as shown in the upper side
of Fig. 5. Consider that the sequence of n input values
(v0, .., vn) is generated from the environment in which the
model is inserted (e.g., a component upstream of MC++).
The computation of f over the ordered sequence of input



void dct(long in1[k],

long in2[k], 

long out1[k],

long out2[k]) {

long coef_pipe[stages+1];

for (j=0; j<k; j++){

coef_pipe[0] = cos_table(in1[j]);

for (i=stages; i>0; i--){

coef_pipe[i] = coef_pipe[i-1];

}

out1[j] = coef_pipe[stages] * in2[j];

out2[j] = coef_pipe[stages];

}

} C++

(a)

long dctin1[k]= {v1,v3,v5,v7,v9,v11,v13,v15};

long dctin2[k]= {v2,v4,v6,v8,v10,v12,v14,v16};

long dctou1[k];

long dctout2[k];

dct(dctin1,dctin2, dctout1,dctout2);

//1° invocation, results ready

…

resultdct1=dctout1[0];

resultdct2=dctout2[0];

resultdct3=dctout1[1];

resultdct4=dctout2[1];

resultdct5=dctout1[2];

resultdct6=dctout2[2];

…

(b)

C++

Figure 6: (a) The C++ code generated from the
pipelined RTL implementation with loop rolling, (b)
and the single function invocation due to the latency
reset (considering k equal to the RTL DCT latency).

tokens is represented by a for loop, in which f is called over
one new token at each iteration, by producing an ordered
sequence of output tokens (f(v0), f(v1), f(v2), etc.).
The loop rolling on the model interface consists of aug-

menting the model interface from single tokens to arrays of
tokens (see, for example, the din and dout I/Os of Fig. 5).
Then, function f is enriched with a for loop of the main
body over the input and output arrays, in order to preserve
the ordered sequence of read inputs, elaborations, and writes
of the results.
The model M1

C++ obtained through loop rolling preserves
the semantics of MC++. After accounting for the difference
between the input and output token cardinality, the itera-
tions of function calls over the data tokens do not change. In
particular, the main for loop that is used to call f is split
into two nested loops, one of them moved inside function
f . In this way, the C++ function can iteratively read and
elaborate multiple inputs (i.e., through a loop added to the
code) during one single invocation.
Loop rolling is strategic since it enriches the C++ code

with loops, which are fundamental in HLS for exploring
and enhancing the design space. In addition, loop rolling
can reduce static variables even in RTL models with cyclic
dataflow (e.g., pipelined architectures), by resetting the func-
tional latency of the C++ code. For example, Fig. 6 shows
how the C++ function implementing the DCT with loop
rolling is invoked once over arrays of input values for re-
turning arrays of results.
On the other hand, loop rolling also involves an increase

of area. This is due to the fact that the data read as input
becomes an array of input values, whose size corresponds to
the number of loop iterations (i.e., the k value in Fig. 6(a)).
With loop rolling, the interface of the generated C++

and of the RTL models synthesized from such a C++ code
differ from the interface of the starting RTL IP. This is an
advantage of our approach since it can generate both the
implementation that preserves the original interface as well
as many different ones.
In contrast, if the starting interface is a strict requirement,

the new RTL models must be extended with parallel/serial
wrappers, which also reset the latency to the value of the
starting RTL IP. In this case, however, the area introduced
by these wrappers is negligible w.r.t. the area saved by the
proposed flow.
Since M1

C++ works on arrays of data tokens, the model
throughput is augmented, while the functional latency is
reduced. In particular, the new functional latency involved
by loop rolling is the following:

Functional latencyM1
C++

= ⌈
Functional latencyMC++

k
⌉

where k is the parameter that sets the array size and the
loop iterations (see Fig. 5).
Parameter k plays a key role in the C++ model genera-

tion and its HLS. Considering that the functional latency of
MC++ is automatically extracted during the MC++ gener-
ation, if k is set equal to that value, the functional latency
of M1

C++ is reset. To set k with a value greater than the
functional latency would imply an increasing of the model
throughput.

Table 1: Dynamic vs. Static Scheduling on JPEG
Component DCT QNR RLE

Min Area (um2) with dynamic sched. 88,681 20,758 4,151
Max Area (um2) with static sched. 80,039 9,661 1,321

Dynamic sched./Static sched. 1.1X 2.1X 3.1X

Table 2: Static variable reduction on JPEG
Dynamic → Static sched. Static sched. + Loop rolling

Component # of var size of var # of var size of var
DCT 11 102 bits 64 768 bits
QNR 12 89 bits 46 402 bits
RLE 19 75 bits 0 0 bit

However, in general, we cannot state that setting k to
reset the functional latency or to increase throughput is al-
ways the best solution in terms of HLS quality of results.
In fact, any increase of k involves an increase of the inter-
face size, with a consequent impact on the area. In partic-
ular, the parameters of the generated C++ function (e.g.,
dctin1, dctin2, dctout1, dctout2 in Fig. 3 and Fig. 6) are syn-
thesized by an HLS tool into interface pins or memory ele-
ments at gate level, depending on the way they are passed
(i.e., by value or by reference). Thus, the value of k should
be evaluated to find the best tradeoff between reducing or
resetting the latency (i.e., k = latency) and thus saving area
from static variables, versus an increasing of size of the new
interface.

3. EXPERIMENTAL RESULTS
We applied R2C to two RTL IP designs: (i) a Reed-

Solomon decoder composed of five subcomponents (BM
lamba, Lambda roots, Omega Phy, Error correction, Out
stage), and (ii) a JPEG decoder composed of three pipelined
components (DCT , QNR, RLE) from [1]. Note that al-
though our designs represent moderate RTL IPs, we treat
them as system designs in our study, whereas their com-
ponents as IP components w.r.t. the systems. Thus, our
experimental results can demonstrate how effectively R2C
can recover the individual component designs as well as en-
rich the system-design space. For the RTL-to-C++ part in
our flow, (Step 1 in Fig. 1) we implemented our translation
tool in C++. For the C++-to-RTL part, (Steps 2 and 3 in
Fig. 1) we leveraged a recent HLS design-space-exploration
tool [10]. For our experiments, we used commercial logic-
synthesis and HLS tools with an industrial 45nm technol-
ogy.
Dynamic vs. Static Scheduling. To evaluate the area-
saving advantage by adopting static scheduling, we also im-
plemented a dynamic-scheduling engine and tested it on
JPEG as follows. For each JPEG component, given a same
clock period, we searched for the component’s minimum im-
plementation area with dynamic scheduling and its maxi-
mum area with static scheduling. The results are reported
in Table 1. Even under the biased condition in favor of dy-
namic scheduling, we can still see a 1.1X–3.1X area saving
using our static-scheduling approach.
Static-Variable minimization. Table 2 shows the num-
ber (n) and size (s) of static variables that can be reduced
by moving from dynamic to static scheduling and the con-
tribution of the loop rolling. By solely replacing dynamic
scheduling with static scheduling, R2C can on average de-
crease n by 14 and s by 89 bits over the three components.
In addition, with the aid of loop rolling on I/O interfaces,
R2C can further reduce n by 55 and s by 585 bits over DCT
and QNR. Note that for RLE, all the static variables are reset
after we apply static scheduling. Therefore, the combination
of static scheduling and loop rolling can indeed effectively
minimize the static variables, which also implies fewer imple-
mentation costs. We will see in the following experiments,
how much area saving R2C can actually achieve when these
techniques are combined.
Component-Level Exploration of Reed-Solomon. In
this set of experiments, we applied R2C with loop-rolling on
internal logic only, i.e., not on I/O interfaces. Under these
constraints, we still see interesting results from exploring the
component design spaces with our R2C flow. In Fig. 7(a)
to 7(e), we plotted the area vs. effective IO latency explo-
ration results, where effective IO latency is defined as
the product of the number of clock cycles and the length
of the clock period. For the original RTL designs (repre-
sented by red cross points in the figures and all the figures



Figure 7: Design space exploration of Reed-Solomon: (a) to (e) show the component-level exploration results
of the five components, while (f) shows the system-level Pareto curve of Reed-Solomon.

hereafter), we explored the design space by adjusting the
clock period used for logic synthesis. In contrast, our ap-
proach could derive various RTLs using different HLS knobs,
which changes both clock cycles and clock periods. In par-
ticular, for four out of the five Reed-Solomon components
(see Fig. 7(a) to 7(d)), the derived RTLs can outperform
the original RTLs in terms of effective IO latency, at the
cost of increased area. Consider, for instance, BM_lambda
(see Fig. 7(a)): the left-most derived RTL has an effective
IO latency that is 6.0X shorter than the left-most original
RTL, while having only 1.5X more area. Even better, for
Out_stage (see Fig. 7(e)), one R2C-derived RTL dominates
all the original RTLs in both objectives. However, we also
observe that for Error_correction (see Fig. 7(d)), R2C can-
not derive less area-consuming RTLs by any means. The
Reed-Solomon is recovered from sequential-cell-rich RTLs.
Therefore, the recovered Error_correction C++ code can
still include many state-preserving variables, which require
registers and/or memory for implementation. We believe
the Error_correction result can be improved by recently
proposed memory optimization techniques for HLS, e.g. [13,
6], but this topic is beyond the scope of this paper.
Component-Level Exploration of JPEG. In this set of
experiments, we applied R2C with loop-rolling on internal
logic as well as I/O interfaces, and static-variable reduction
on component-communication signals as well as pipeline-
stage signals. Since the original RTLs of JPEG are pipelined
implementations, we plotted their area vs. throughput explo-
ration results in Fig. 8. In particular, Fig. 8(a) to 8(c) show
the results without loop rolling on I/O interfaces (i.e., the
token size per input/output equals one), while Fig. 8(d) to
8(f) show the results with loop rolling on the interfaces with
a token size equal to 16. In the case without I/O loop rolling,
for the components DCT and RLE (see Fig. 8(a) and 8(c), re-
spectively), compared with the original RTLs, R2C success-
fully derives area-economic implementations with compara-
ble throughputs. The maximum area savings are around
2.8X–3.0X. For the component QNR (see Fig. 8(b)), R2C is
limited by few applicable HLS knobs for exploring the design
space, but can still recover the RTL with comparable qual-
ity in both objectives. Fortunately, this limitation can be

Figure 9: System design space exploration of JPEG.

relaxed in the case with I/O loop rolling, i.e., we can have
more flexible options for loop transformation during HLS.
Therefore, in Fig. 8(e), we observe that R2C can then derive
QNR with higher throughput by up to 2.9X, at the cost of at
most 3.3X area. This capability also applies to the compo-
nents DCT and RLE (see Fig. 8(d) and 8(f), respectively). The
maximum throughput improvements are around 2.5X–5.7X,
while the area overheads are around 2.7X–4.2X. In contrast
to the Reed-Solomon case, on the JPEG components, we
see the full power of R2C, which can indeed enhance com-
ponent reusability by reducing the area cost or increasing
the throughput performance.
System-Level Exploration of Reed-Solomon & JPEG.
We now examine how those R2C-derived RTL components
can lead to better system composition. In our cases, this cor-
responds to better Reed-Solomon and JPEG IPs. We use the
system-level design-space-exploration tool [10] to select the
optimal RTL components for composing Pareto-optimal sys-
tems. The composition results of Reed-Solomon and JPEG
are shown in Fig. 7(f) and 9, respectively. For Reed-Solomon
(see Fig. 7(f)), R2C can improve the system throughput by



Figure 8: Component design space exploration of JPEG: (a) to (c) without loop rolling on I/O interfaces;
(d) to (f) with the loop rolling.

up tp 4.0X, but cannot reduce much the system area, due
to the bottleneck component Error_correction, for the rea-
sons we have discussed, which happens to dominate the total
area of Reed-Solomon. However, for the system through-
put of roughly 6-million tokens per second, the R2C-derived
Reed-Solomon requires less area than the original design.
As a result, R2C not only enhances the reusability of Reed-
Solomon as an IP core, but also re-optimizes the IP design.
For JPEG (see Fig. 9), we observe effective improvements on
both area (by up to 3.0X) and throughput (by up to 2.5X)
over the original RTLs. Since I/O loop-rolling also raises the
bandwith of the JPEG I/O interfaces, the JPEG can thus
be reused as an IP core in a broader system design context.
Main limitations. The main limitations of the proposed
method, as confirmed by the experimental results, are re-
lated to the RTL IP architecture rather than its size. The
more complex and with multi-cycle data flow the RTLmodel,
the richer of static variables the corresponding C++ code,
with a proportional limitation in area optimization. Even
though loop rolling on I/O can reduce the number of such
variables, it also involves an increase of the interface size.
Thus, RTL IPs with no (or very short) clock cycle latency,
with complex cyclic data flows, and with single instances of
simple sub-components have less opportunities to find ben-
efits from the proposed method.

4. CONCLUSIONS
We proposed a method to recover the RTL design of IP

components and make it suitable for system-level design and
high-level synthesis (HLS). Our main contribution is an au-
tomatic tool that can generate a synthesizable C++ speci-
fication by abstracting away the micro-architectural charac-
teristics of the original design while preserving its function-
ality. The generated C++ specification is not only a better
starting point to explore a richer design space to implement
the component in different SoC contexts, but, after complet-
ing high-level and logic synthesis, it also typically leads to a
more optimized implementation w.r.t. the original one.
While the main motivation of our work is enabling IP re-

covery and reuse, our tool can also be used for another prac-
tical goal: as the interest for HLS is growing, often designers
who are used to work at the RTL level are eager to compare
the results that can be obtained using the combination of
HLS and logic synthesis tools against the implementation of
their designs. The problem is that their design were orig-

inally completed at the RTL using Verilog or VHDL. By
using R2C these designers would be able to jump start this
process. In turn, this could speed-up the adoption of high-
level synthesis.
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APPENDIX
A. R2C: A DIFFERENT APPROACH FOR

GENERATING C++ CODE TARGETING
HLS

Differently from all the techniques presented in literature
that target C++ code generation for simulation and verifi-
cation, the proposed method is aimed at the generation of
C++ for HLS. The different goal leads to important differ-
ences in the approach of generating C++ code. The fol-
lowing sections underline such differences and deepen some
C++ generation characteristics of R2C. In particular, Sec-
tion A.1 extends the concepts presented in Section 2.1 and
explains why R2C generates C++ code that, differently
from the related works that preserve dynamic scheduling ker-
nels, it resolves the RTL statement scheduling statically at
compile time to guarantee area optimization. Section A.2
extends Section 2.1 and gives some additional details on the
static variable minimization and latency reset. Finally, Sec-
tion A.3 extends Section 2.2 by detailing the loop rolling
process on the internal logic of the model.

A.1 The function scheduling and the function
statement order

To preserve the RTL IP semantics, the C++ functions
generated from the RTL processes have to be executed in the
same partial order as the corresponding RTL processes are
executed in the RTL model. That is, concurrent processes
can execute in a non-deterministic order, while the order
between non concurrent processes must be preserved.
To do that, the C++ IP can be implemented in two differ-

ent ways: by preserving the event-driven model of computa-
tion (i.e., dynamic scheduling of functions) or by resolving
the scheduling (i.e., static scheduling of functions).
In dynamic scheduling, the process execution order is known

at run time. Processes are woke up if and only if there has
been an event to which they are sensitive. Fig. 10(a) re-
calls, for example, the process communication graph of the
RLE component, while Fig. 10(b) shows the corresponding
process execution order resolved at run time.
In the C++ model, the functions generated from the RTL

processes are thus run as many times and in the same par-
tial order as the RTL processes are run by the hardware
description language simulator. To do that, the dynamic
scheduling activity is implemented through an event queue,
a runnable processes queue and extra scheduling functions
(see Fig. 10(c)), which are additional control logic with re-
gard to the IP functionality.
In traditional single core simulation environment, dynamic

scheduling outperforms static scheduling. Nevertheless, it
takes extra logic to be implemented (compare for example,
Fig. 10(c) and Fig. 10(d)) and it would imply more area in
the synthesized circuit with no benefits to delay. Since the
goal of the proposed method is to obtain better synthesis
results rather than simulation performance, R2C generates
the C++ model with static scheduling.
Finally, for each RTL process, R2C maps each sequential

statement into a C++ statement of the function. The trans-
lation of RTL statements into C++ statements is merely
syntactic and the order of statements in the RTL process is
preserved in the C++ function.
In general, optimizations on translation from RTL to C++

sequential statements that could provide benefits for sim-
ulation performance (e.g., removing temporary variables,
merging many RTL statements into single C++ statements,
etc.) do not necessarily involve benefits on synthesis results.
Rather, these optimizations may provide different results
depending on the adopted HLS tool.

A.2 Static variable minimization and latency
reset

The R2C capability of minimizing static variables and
reducing the functional latency during the generation of the
C++ code relies on the process organization in the starting
MRTL.
Fig. 11 shows how RTL processes and communication be-
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14. }
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9. /* sync. block  dist. 2*/ 
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12. /*async. block dist. 2*/
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14 . }
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Figure 10: (a) Process communication graph of
RLE, (b) the corresponding process execution or-
der, (c) the dynamic scheduling of functions in the
C++ code, and (d) the static scheduling of functions
in the C++ code.

tween them influence both the number of static variables and
the functional latency, and how R2C minimizes them during
the RTL-to-C++ abstraction. Consider, in a MRTL model,
two communicating processes implementing functionality f
and g, a sequence of values < v0, v1, v2, .. > that are read
from an input signal Sin, an internal signal C, and an output
signal Sout.

If the two processes are asynchronous and they implement
functionality f and g by means of pure combinational logic
(Fig. 11(a)), they do not imply any clock cycle to the la-
tency of MRTL (latency equal to 0 cc). R2C generates such
a functionality as g(f(vi)) in the abstracted MC++, with
no need of static variables for implementing C (functional
latency equal to one invocation).

In the case of Fig. 11(b), the synchronous process implies
one clock cycle to the MRTL latency (τ represents one clock
cycle of latency). That is, C involves a register at gate
level once synthesized. In the case of Fig. 11(c1), the two
synchronous processes implementing f and g infer two clock
cycles to the MRTL latency. In both cases, R2C generates
the functionality as g(f(vi)) in the abstracted MC++, with
no need of static variables for implementing C, since there
are no loops in the data flow. The functional latency is thus
reset to one invocation.

It is important to note that the functionality implemented
by the two processes could be pipelined (Fig. 11(c2)). In
this case, the register barrier of the pipeline stage is intrin-
sically represented by C. Also in this case, R2C generates
such a functionality as g(f(vi)) in the abstracted MC++.
Since there are no feedback loops and C is translated into a
non-static variable (which does not infer on the functional
latency), the pipelined behavior of the model is abstracted
as well.

In general, a path of n synchronous processes infers a la-
tency of n clock cycles. If there are no loops in the data
path, the functionality implemented in MRTL by the se-
quence of processes ps1, .., psn is implemented, in MC++, by
one procedural function fsn(fsn−1(..fs1(vi))), which reads
the input value, elaborates, and writes the results in one
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Figure 11: Latency inferred by internal signals for
hardware description language process communica-
tion and latency reset through RTL-to-C++ ab-
straction: the latency is reset in (a), (b), and (c)
(τ represents one clock cycle of latency). The la-
tency cannot be reset in presence of feedback loops
in the datapath (d)). In this case, the feedback sig-
nal involves static variables in the C++ model.

invocation.
Fig. 11(d) shows an example of a single synchronous pro-

cess that implements a n stage pipeline. In this case, the
register inferred by the signal outcoming the synchronous
process is abstracted, while the registers implementing the
pipeline stages (register barriers) cannot. This is due to the
feedback signal, i.e., the transition over the pipeline stages
for computing the result requires one input to be read for
each stage. This behavior, in MC++, can be implemented

clk

ps2

pa1

pa2

clk

ps3

ps1

τ
1

τ
3

mac
dctu

Latency = 3 cc

dctub_1

�

dctub_8

�

dcti

dctu_1

dctu_8
�

dctu_1

dctu_8

ps1

clk

ps2

zigzag

τ
1

τ
2

Latency = 8 cc

τ
4

τ
5
τ
6
τ
7

DCT

ps3

τ
8

τ
2

τ
3

�

din1

din2 s1

s2

Figure 12: The example of latency minimization of
a FDCT IP. The system level FDCT RTL IP has
a latency of eight clock cycles. Given the pipelined
nature of process ps3 (in the zig-zag subcomponent),
the functional latency of the generated MC++ will be
five four cycles.

through multiple invocations of the procedural function. As
a consequence, R2C preserves the latency of the pipelined
MRTL in the generated pipelined MC++.

In general, the total latency of a MRTL is given by the
number of synchronous processes traversed by the data path.
The latency inferred by the internal signals between syn-
chronous processes, as in the examples of Fig. 11(a,b,c) can
be directly reset during abstraction. In contrast, the latency
is maintained in the case of Fig. 11(d).

Consider, for example, the pipelined DCT component of
Fig. 12. It is composed of different subcomponents instan-
tiated over four levels of hierarchy. The total latency of the
model is eight clock cycles. The four clock cycles of latency
inferred by the mac and dcti subcomponents is reset during
abstraction (see Fig. 11(c2)). In contrast, for the character-
istic of the pipelined zigzag subcomponent (see Fig. 11(d)),
the latency of four clock cycles is mapped into a functional
latency of four invocations in the generated MC++.

A.3 The loop rolling on internal logic
To maximize the design space of the recovered RTL mod-

els, R2C performs loop rolling transformations on the inter-
nal logic and on I/O interfaces.

Given an RTL component XRTL, which consists of n in-
stances of subcomponent YRTL

1:

X : for i in 0 to n generate
Y : Y_component
-generic map ()
-port map ();

end generate X;

Considering that the syntax of the hardware description
language loop generate statement is similar to the syntax of
the C++ for loop statement and that component YRTL (a

1For the sake of clarity, we consider subcomponents as loop
body. The VHDL and Verilog syntax allows designers to
include a set of statements as loop body instance. The pro-
posed mechanism applies in any case, even though the result
of loop unrolling for few statements does not lead to remark-
able results.
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module in Verilog, an entity in VHDL) is translated into
a C++ function fY , component XRTL is translated into
function fX as follows:

fX (&dataX) {
for (int i=0; i ≤ n; i++) {
//function parameter binding
fY (&dataY);
//function parameter binding

};
};

In contrast, when multiple instances of the same block
(i.e., module in Verilog, entity in VHDL) are explicitly in-
stantiated in the RTL code, R2C rolls up the instances into
a loop and resolves the binding, as shown in Fig. 13.
Given the MRTL model, each block instance (Z) is firstly

translated into a C++ function fZ() (Fig. 13a, b). Then,
considering k instances, a vector of k input/output variables
(i.e., vIi[k], vOj [k]) is generated for each block interface.
A for loop is finally generated by relying on such vectors,

which, thanks to the C++ pointers, guarantee the correct
I/O variables resolutions for each loop iteration without in-
curring in extra area during synthesis. The loop rolling on
internal logic applies over different hierarchy levels of MRTL,
by generating, as a result, nested C++ loops in MC++.


