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Negative Thinking in Branch-and-Bound: The Case
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Evguenii I. Goldberg, Luca P. Carloni, Student Member, IEEE, Tiziano Villa, Robert K. Brayton, Fellow, IEEE, and
Alberto L. Sangiovanni-Vincentelli

Abstract—We introduce a new technique for solving some dis-
crete optimization problems exactly. The motivation is that when
searching the space of solutions by a standard branch-and-bound
(B&B) technique, often a good solution is reached quickly and
then improved only a few times before the optimum is found:
hence, most of the solution space is explored to certify optimality,
with no improvement in the cost function. This suggests that more
powerful lower bounding would speed up the search dramatically.
More radically, it would be desirable to modify the search strategy
with the goal of proving that the given subproblem cannot yield
a solution better than the current best one (negative thinking),
instead of branching further in search for a better solution
(positive thinking).

For illustration we applied our approach to the unate covering
problem. The algorithm starts in the positive-thinking mode by a
standard B&B procedure that generates recursively smaller sub-
problems. If the current subproblem is “deep” enough, the algo-
rithm switches to the negative thinking mode where it tries to prove
that solving the subproblem does not improve the solution. The
latter is achieved by a new search procedure invoked when the dif-
ference between the upper and lower bound is “small.” Such a pro-
cedure is complete: either it yields a lower bound that matches the
current upper bound, or it yields a new solution better than the
current one. We implemented our new search procedure on top of
ESPRESSOand SCHERZO, two state-of-art covering solvers used for
computer-aided design applications, showing that in both cases we
obtain new search engines (respectively,AURA and AURA II ) much
more efficient than the original ones.

Index Terms—Branch and bound techniques, combinatorial op-
timization, covering problems, logic optimization.

I. INTRODUCTION

BRANCH-AND-BOUND (B&B) is a common search
technique to solve exactly problems in combinatorial

optimization. B&B improves over exhaustive enumeration,
because it avoids the exploration of those regions of the solution
space, where it can be certified (by means of lower bounds)
that no solution improvement can be found.

B&B constructs a solution of a combinatorial optimization
problem by successive partitioning of the solution space. The
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Fig. 1. Structure of B&B.

branch refers to this partitioning process; theboundrefers to
lower bounds that are used to construct a proof of optimality
without exhaustive search. The exploration of the solution space
can be represented by a search tree, whose nodes represent sets
of solutions, which can be further partitioned in mutually exclu-
sive sets. Each subset in the partition is represented by a child
of the original node. An algorithm that computes a lower bound
on the cost of any solution in a given subset prevents further
searches from a given node if the best cost found so far is smaller
than the cost of the best solution that can be obtained from the
node (lower bound computed at the node). In this case the node
is killed and no children need to be searched; otherwise it is
alive. If we can show at any point that the best descendant of a
node is at least as good as the best descendant of a node,
then we say that dominates , and can kill . Fig. 1 shows
the standard algorithm [1]. Anactivesetholds the live nodes at
any point. A variable is an upper bound on the optimum cost
(cost of the best complete solution obtained so far).

An important feature of many practical discrete optimization
problems is that the current best solution can be improved only
very few times. In turn this is related to how much the solu-
tion space is “diversified,” i.e., different solutions have different
costs. For example, if the first solution found for an instance of
the graph coloring problem has 20 colors and an optimum so-
lution takes 15 colors, we can have no more than five improve-
ments to the current best solution. On the other hand, the number
of subproblems generated at a “deep enough” level of the search
tree is very large. For instance even at level ten of a B&B search
tree, as many as subproblems may be generated. This means
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that only for a tiny fraction of subproblems can a better so-
lution be found, whereas in the overwhelming majority of sub-
problems the solution is not improved. Therefore, for a “deep”
subproblem it is reasonable to be negative, trying to prove in the
first place that the current best solution cannot be improved.

A B&B procedure may be seen as consisting of positive
and negative thinking search modes. The positive thinking
mode looks for a better solution by branching, while the
negative thinking mode tries to prune the current path by lower
bounding. Intuitively, when solving a subproblemthe relation
between positive and negative modes should be “proportional”
to the ratio between the probability of finding a better solution
and that of proving that the current best solution cannot be
improved. However, in traditional B&B the boundary between
positive and negative modes is rigid and depends solely on the
power of the lower bounding procedure. So if the latter fails to
prune the path leading to a node associated with a subproblem

, then B&B tries to solve in the positive thinking mode,
even though the chances of improving the solution by means
of are very small.

The key point of our approach is to shift the boundary be-
tween the two modes of B&B in order to exercise more nega-
tive thinking. Namely, when the lower bound procedure fails to
prune the current branch, while being “close” to do it, we apply
negative thinking by invoking a special incremental problem
solving procedure on the subproblem.

The incremental problem-solving procedure is based on the
following observation. Typically a lower bound on optimal so-
lutions to a problem is computed by extracting a subproblem

for which: 1) finding an exact solution is very easy and 2)
the cost of an exact solution to is not more than the cost of
an exact solution to . For instance, when solving the graph
coloring problem, a maximum size complete subgraph is ex-
tracted, since optimal coloring of a complete graph is trivial.
When solving UCP, a maximum subset of independent rows is
extracted, because finding an optimal covering of independent
rows is trivial. In both cases the ease of finding an optimal solu-
tion is due to the solution space “regularity”: e.g., any coloring
of a complete graph can be obtained from another by permuta-
tion; the set of all irredundant coverings of a set of independent
rows can be represented as a single Cartesian product.

Let be a subproblem of with a regular solution space.
If the cost of the optimal solutions of is not large enough to
prune the current path of the search tree, we can augmentto
make it “closer” to . Let be such an augmented problem.
Then, instead of solving anew, we can find the optimal so-
lutions of by refining the set of optimum solutions of .
This should not be hard to do because the set of solutions of
by hypothesis can be represented in a compact form. The set of
optimum solutions of is in general less regular than for,
but their cost has increased. In the negative thinking mode,
is augmented to increase as much as possible the cost of the op-
timum solutions of the augmented problem; to that purpose,
we look first for the most difficult “obstacles” in the sequence
from to , trying to prove that no solution of can over-
come the obstacles and be extended to a solution ofthat is
better than the current best one. This is achieved by clustering
similar solutions: i.e., we group in a cluster those solutions of

which have the same reason for not producing solutions of
costing less thanubound.
In this paper we introduce a unate covering problem (UCP)

solver working in two modes. In the positive thinking mode it
uses a standard B&B procedure likemincovin ESPRESSO[2] or
the one available inSCHERZO[3]. When the lower bound on op-
timal coverings for the current submatrixis close to bounding
the search, the solver switches to the negative thinking mode,
by invoking an incremental problem solving procedure termed
raiser. The procedureraiser starts with amaximal set of inde-
pendent rows(MSIR) of of size (that failed to bound the
search) and constructs the set of irredundant coverings of the
MSIR. Then,raiseradds to the MSIR new rows from, which
are the most difficult to cover by solutions of the MSIR. The
solutions of the augmented set of rows are computed, possibly
increasing the minimum solution cost; if all solutions with cost
less than are eliminated, thenraiser proved that the current
subtree can be pruned away.

The paper is organized as follows. Section II shows how an
incremental solver is incorporated into the standard B&B proce-
dure for UCP. Section III describes how to represent and recom-
pute efficiently the solutions of UCP in the negative thinking
search mode. The raising procedure is explained in detail in Sec-
tion IV. Experimental results are discussed in Section V. Con-
clusions are given in Section VI.

II. I NCORPORATING ANINCREMENTAL SOLVER INTO B&B
FOR UCP

A. Revisiting the Procedure mincov

In this paper we apply the proposed search technique to UCP,
a problem of wide interest in logic synthesis and operations re-
search [4]. UCP can be stated as follows.

Definition 1: Given a Boolean matrix (all entries are zero
or one), with rows, denoted as , and columns,
denoted as , and a cost vector of the columns of
( is the cost of the th column), minimize the cost

, where , subject to

(1)

The constraint , ensures that the nonzero
elements of determine a column set , which
coversall rows of , that is, , such that .
Thus, the minimum unate covering problem is to find a column
set of minimum cost, which satisfies the constraint of (1). For
simplicity we will assume that , . We will also say
that two rows are independent or nonintersecting when there is
no column that covers both. We will denote an instance of UCP
with matrix by the notationUCP( ). Notice that UCP can be
seen as a matrix formulation of theMINIMUM COVERproblem
[5].

An exact solution is obtained by a B&B recursive algorithm,
mincov,which has been implemented in successful computer
programs such asESPRESSOand STAMINA. Branching is done
by columns, i.e., subproblems are generated by considering
whether a chosen branching column is or is not in the solution.
A run of the algorithm can be described by its computation tree.
The root of the computation tree is the input of the problem, an
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edge represents a call tomincov,an internal node is a reduced
input. A leaf is reached when a complete solution is found or
the search is bounded. From the root to any internal node there
is a unique path, which is the current path for that node. The
inputs of themincovalgorithm are the following:

• a covering matrix ;
• a set of columns denotedpath(initially empty) that are the

partial solution on the current path from the root;
• a vector of nonnegative integers, whose th element is

the cost (or weight) of theth column of ;
• a lower boundlbound(initially set to 0), which is the cost

of the partial solution on the current path (a monotonic
increasing quantity along each path of the computation
tree);

• an upper boundubound(initially set to the sum of weights
of all columns in ), which is the cost of the best overall
complete solution previously obtained (a globally mono-
tonic decreasing quantity).

The best column cover for input extended from the partial
solutionpath is returned as the best current solution, if it costs
less thanubound. An empty solution is returned if a solution
cannot be found which beatsubound. Whenmincov is called
on with an empty partial solutionpathand initial lboundand
ubound,it returns a best global solution.

The flow of a UCP solver based on B&B enhanced by an
incremental solver is shown in Fig. 2. The parts of text not in
bold font correspond to the originalmincovalgorithm, stripped
away of some additional features like matrix partitioning and
Gimpel’s reduction. Given a matrix , most existing UCP
solvers employ column branching to decompose the problem
and use an MSIR to compute a lower bound of UCP(since
no column covers two rows from an MSIR).1

The parts of text in bold font refer to the added incremental
solver, whose main search engine is the procedureraiser. The
raiser procedure performs “negative thinking” and is invoked
when the following situation occurs: MSIR is a lower bound
not sufficient to prune the subtree rooted at the current node,
whereas increasing the lower bound by a small integerwould
allow such pruning. In this case,raiser starts from the sub-
problem UCP(MSIR), whose solution space is very regular, and
tries gradually to extend it to the entire problem UCP: as a
result,raisereither returns a minimum cost solution of UCP
(if the lower bound cannot be raised by) or returns the empty
solution.

The value corresponds to thedifferencebetween the cur-
rent upper bound and the current lower bound. Ifdifference 0,
the current branch can be pruned because it cannot lead to a
solution improvement. Ifdifference , the search can
be continued withinraiser instead of marching on with column
branching. However, practically,raiser is invoked only if

, where is a parameter fixeda
priori . The value of is usually a small number in
the range from one to three for two reasons.

1) If is small, then the node is deep enough to warrant the
application of negative thinking,

1Notice that ILP-based covering solvers, such asBCU [6], do not need to com-
pute the MSIR.

Fig. 2. AuraMincov:mincovenhanced by incremental raising.

2) If is small, then the fact that UCP(MSIR) has a regular
solution space can be used.

In the following section the basic idea behind theraiser is pre-
sented (the details are given in Section IV). A discussion on the
impact of different values of is given in Section V.

B. Introducing Raiser to Improve the Lower Bound

To introduceraiser we need the following notation.

• UCP is the size of a minimum solution of
UCP .

• Let be a submatrix of , where the set of columns
and rows of are defined, respectively, as

and . is a lower bound
submatrixif its minimum solution is a lower bound for
UCP .

• An MSIR of is usually chosen as a lower bound subma-
trix , denoted also as MSIR . If is a MSIR
then UCP .

• denotes the submatrix obtained by adding a row
to .

• Let be a solution of UCP . A column is redun-
dant if is also a solution. A solution of UCP
that does not contain redundant columns is saidirredun-
dant.
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• denotes the set of all irredundant solutions of
UCP consisting of or fewer columns. ,
where UCP , is the set of all minimum
solutions of UCP .

• The solutions of UCP are represented by sets with the
structure of multivalued cubes [2]. We define acube to
be the set where ,

and , , . The subsets
are thedomainsof cube . denotes a set of sets

consisting of columns. In contrast to common cubes used
for the representation of multivalued functions, cubes here
may have different numbers of domains. For example, if

, then sets
and are

both cubes.
• is the set of all columns covering row .
• The cost of every set of columns in is the number of

domains of , denoted by , since the cost of a set
of columns is its cardinality.

• A set is apartial solutionof UCP if it is
not a solution of UCP .

• A set of partial solutions iscompleteif for any solution
of UCP there is a partial solution in with
.

We now describe the idea underlying the method for an
incremental improvement of the lower bound. Suppose that
for a lower bound submatrix of we know a set of so-
lutions . The lower bound given by is equal to

UCP . Now add a row of to . Obviously
, since in general some

solutions from do not cover and so are not
contained in . So after adding a set of rows

of to , if
then the lower bound for UCP has improved by 1. If

, then the lower
bound has improved by .

We start from a submatrix which is an MSIR (since the
solutions of an MSIR can be represented compactly) and then
we add rows to the MSIR with the goal to improve the ini-
tial lower bound given byMSIR . The proposal relies on the
fact that, knowing , it is not difficult to recalculate

. In Section III we explain how to represent
and update efficiently the set of solutions of a matrix.

The previous discussion motivates theraiser procedure. At
any given node in the search tree, the MSIR for the corre-
sponding matrix is computed. If MSIR

, where is the best current solution, then the
raiser procedure is applied to UCP , otherwise branching
on columns continues. The outcome ofraiser may be one of
the following: 1) the lower boundMSIR can be increased by

MSIR and the recursion in the node
stops, or 2) a minimum solution of UCP is found
such that is the new best current solution
of UCP .

Notice that improving the lower bound even by a small
amount may lead to considerable runtime reductions. For
example, in [7] the limit lower bound is defined, which allows
some branches of the search tree to be pruned. The effect is

to reduce the runtimes for some examples by a factor of ten
or more. It can be shown that the limit lower bound technique
prunes no more branches of the search tree than the application
of raiser when is equal to 1.

The challenge is to design an efficient procedure to imple-
mentraiser. In fact, a “naive” implementation where one stores
the set of solutions MSIR may require too
much memory. Indeed, ifraiser fails to raise the lower bound
then itself will be taken as a lower bound submatrix and we
will have to store all irredundant solutions of UCP with
MSIR or fewer columns. Our solution to the potential
memory problem relies on using a data structure called “cubes”
and a new scheme of branching on rows. Before embarking on
a detailed description of theraiser procedure (found in Sec-
tions III and IV we illustrate the idea with an example.

C. Example: Lower Bound by raiser

Consider the following matrix :

Since MSIR , the lower bound is three.
Suppose this value is not sufficient to prune the current path of
the search tree, but a lower bound of four would suffice. We
show howraisercan increase the lower bound by one by means
of incremental problem solving. The set of all irredundant so-
lutions of the subproblem UCPMSIR is given by the cube

, i.e., any set of three
columns such that , , and is
an irredundant solution of UCPMSIR .

Consider UCPMSIR , whose irredundant solutions
can be obtained from UCPMSIR given by cube . We
partition into two cubes:
and . All sets of columns
specified by are solutions of UCPMSIR , since
they cover row , but none of the sets specified by is a
solution because they do not cover. For sets of columns from

to be extended to solutions of UCPMSIR , one
must add to one more domain, , since

are solutions
of UCP MSIR .

Since we want to raise the lower bound from three to four,
we can discard the solutions specified by (they cost four)
and focus only on the solutions specified by(they cost three).
The goal is to increase by one their cardinality. Now consider the
solutions of UCPMSIR that can be obtained
from . Cube can be partitioned into two cubes:

and .
Cube specifies solutions of UCPMSIR that are
also solutions of UCPMSIR , whereas cube
does not contain any solution of UCPMSIR .
For sets of columns from to be extended to solutions also of
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UCP MSIR , one must add domain to .
The solutions specified by consist of four columns
and so are discarded. Finally none of the sets of columns speci-
fied by covers row , so UCP MSIR

. hence, a stronger lower bound of four is obtained
on the solutions of UCP .

III. REPRESENTATION ANDRECOMPUTATION OF THE

SOLUTIONS

As a stepping stone to the algorithm for raising the lower
bound the method for representing and updating the set of solu-
tions of a matrix is presented first.

Let be a submatrix of and a row from
. Let be a solution of UCP .

Definition 1: denotes the set of
solutions of UCP obtained according to the following
rules.

1) If is a solution of UCP , then
;

2) If is not a solution of UCP , i.e., no column
of covers , then

.
So gives the solutions of UCP that
can be obtained from the solution of UCP . According
to 2), if is not a solution of UCP , then we obtain

solutions of UCP by adding to the columns
covering .

is a complete operator, i.e., every irredundant solution
of UCP can be obtained by the recomputation of

a corresponding irredundant solutionof UCP :
Theorem 1: For any irredundant solution of UCP

there is an irredundant solutionof UCP such that
is an element of . A proof can be found in the
Appendix I-A. From Theorem 1 follows directly:

Corollary 1: Let be a set containing all irredundant so-
lutions of UCP . Let

then contains all solutions of UCP .2

We give an operational definition of
when solutions are represented by multivalued cubes defined in
Section II-B. Applying the operator to a cube of solutions
leads to a collection of cubes of solutions, thereby providing a
natural clustering of the recomputed solutions. This supports
the design of a raising algorithm based on branching by subsets
of solutions, each subset being one of the recomputed cubes of
solutions. Let be a MSIR of . The set of all irredundant (and
minimum) solutions of UCP can be represented as the cube

, where are the rows of .
Let be a submatrix of and be a row from

. Let be a cube of solutions of
UCP . Using

2There are examples showing thatRec(A + A ; S) may contain also re-
dundant solutions.

can be rewritten as

(2)

where is the set of solutions contained in which
cover and is the set of solutions contained in
which do not cover .

Now we want to rewrite and as unions
of disjoint cubes. There are three cases.

1) for some , . Then any solution
from covers the row and so .

2) for any . Then no solution
from covers and so

.
3) Cases 1) and 2) are not true, i.e., no is a subset of

, intersects at least one domain, and we
assume w.l.o.g. that intersects the first domains

. Then cube can be partitioned into the
following pairwise nonintersecting cubes:

...

(3)

It is not hard to check that

and that for any pair . Moreover, the
first cubes give the solutions of UCP from which cover

and the cube gives the solutions of UCP from
which do not cover . Therefore

(4)

In summary, (2)–(4) define operationally the operator over
the cubes of solutions, consistently with Definition III.1. Al-
though generating nonintersecting cubes of solutions

is not required by Definition III.1 of , it avoids
the occurrence of the same partial solution in more than one
branch.

The following revised operational definition of avoids
the generation of some redundant solutions, namely, of any
solution of UCP from
that strictly contains a solution of UCP from

. The next theorem tightens the operational definition
of and states that no irredundant solutions are lost.

Theorem 2: If the computation of the operator is modi-
fied as follows:

(5)

no irredundant solution of is discarded. A proof can
be found in the Appendix I-A. In addition, another method for
avoiding the repeated generation of some solutions is discussed
in the Appendix I-B. In practice, avoiding generation of repeated
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solutions gives a 30%–40% speed-up on the overall computa-
tion. In the following section we discuss the raising procedure
in detail, showing how these techniques are embedded in the al-
gorithm.

IV. THE RAISING PROCEDURE

Fig. 2 shows how a traditional UCP solver is enhanced by
the technique to raise incrementally the lower bound. After the
computation of the lower bound, if the gapdifferencebetween
the upper and lower bound is a small positive number, i.e., less
than a global parameter , the raiser procedure is
invoked with a parameter set to the value ofdifference. In
this case, we say that a-raiser has been invoked. Intuitively
if the gap is small, we conjecture that a search in this subtree
will not improve the best solution.-raiser either confirms the
conjecture and proves that no better solution can be found, or
disproves the conjecture and improves the best solution by at
least one.

A. Overview of the Raising Algorithm

The -raiser procedure is based on row branching. Given a
covering matrix , for which MSIR , the irredun-
dant solutions of UCP are represented by the cube

, in which are the rows
in the MSIR. A “good” row is chosen from . According to
(2)–(5), MSIR is represented by cubes
where is the number of rows of the MSIR intersecting .
This is applied recursively for each of the cubes.

The process can be described by a search tree, calledcube
branching tree. The initial cube of solutions corresponds to
the root node, to which we associate also a pair of matrices
MSIR and MSIR . In each node a choice of an un-
selected row from the second matrix of the node is made. The
chosen row is removed from the second matrix and added to the
first. The number of branches exiting a node is the number of
cubes generated by the operator; each child node gets one of
the cubes obtained after splitting. Thus, the cube corresponding
to a node represents a set of solutions covering the first matrix
of the pair (that is a “lower bound submatrix” for the node).

Some useful facts are as follows.

• When applying -raiser, the branches corresponding to
cubes of more thanMSIR domains are pruned.

• If, at a node, row is chosen such that no solution from
the cube of the node covers , then there is no splitting
of the cube, since yields only one cube

.
• The following reduction rule can be applied to the second

matrix of the pair: if a row is covered by every solution of
the cube corresponding to the node, then the row can be
removed from the matrix.

The recursion terminates if either of the following.

1) There is a node such that there are no rows left in the
second matrix of the pair and the corresponding cube has

domains, where MSIR . This means that
the lower boundMSIR cannot be improved by. Any
solution from the cube can be taken as the best current
solution of UCP .

2) From all branches, nodes are reached corresponding to
cubes with a number of domains MSIR . In this
case the lower bound has been raised toMSIR , since
no solution of UCP exists such that MSIR

.

Theorem 1: The -raiser procedure is correct.
Proof: The -raiser procedure starts with the set of so-

lutions of UCPMSIR , which is a complete set of partial so-
lutions of UCP . Since by Theorem 1 the operator pre-
serves completeness of a set of partial solutions, the set of cubes
of any cut of the -raiser search tree is a complete set of par-
tial solutions, where a cut is a set of nodes that intersects any
path from the root to a leaf (nodes in a cut can be either leaf
nodes of the search tree or nodes that can still be split). The
invariant that any cut set of nodes is a complete set of partial so-
lutions guarantees that all solutions of UCP eventually are
explored, explicitly or implicitly. The procedure-raiser, ap-
plied to , attempts to find a complete set of partial solutions
each containing at leastMSIR columns. If such a set is
found, then no solution of UCP has less thanMSIR
columns, and so the procedure-raiser succeeds in increasing
the lower bound by .

If there is no complete set of partial solutions consisting of at
least MSIR columns, then by construction the-raiser
procedure creates a leaf node with a cube containing solutions
of MSIR columns, where . If so, the procedure

-raiser is tightened to be the procedure-raiser, , and
the search is continued. If the lower bounding goal of-raiser
is achieved, it returns a solution ofMSIR columns,
which is the minimum computed so far. If instead-raiser fails
to raise the lower bound by , then by construction it exhibits
a solution of UCP consisting of MSIR columns,
where . So -raiser is tightened again to be the proce-
dure -raiser and the search is continued, until eventually all
solutions of UCP are enumerated. Notice that by construc-
tion, at any given node of a cut set, a lower bound, an upper
bound , and a -raiser procedure with are defined.

B. Complexity of the Raising Algorithm

The complexity of the raising algorithm is dictated by the size
of the cube branching tree, which, in the worst case, is exponen-
tial in the cardinality of the set of rows MSIR ,
i.e., the set of rows that are different from MSIR and not
covered yet when -raiser is invoked. However, the following
considerations can also be made.

1) If the number of uncovered rows is extremely large
and no better solution exists in the current branch of
the column branching tree (i.e., the procedureraiser
succeeds in raising the lower bound), then the size of
the cube branching tree is usually small. This is due to
the fact that there is a large choice of rows which can
be selected to improve the lower bound and, therefore,
usually it is easy to find quickly witnesses that no better
solution can be found in the current branch.

2) If the number of uncovered rows is small, we have also
an easy case because the size of the cube branching tree
is exponential in the small number of uncovered rows.
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This situation may happen regardless of whether-raiser
improves the solution or not, but, in practice, the former
case is more common.

3) The worst case is when-raiser ends up disproving so-
lutions which are “close” in quality to the current best.
In this case, the number of rows in the set
MSIR is neither big nor small and the size of the cube
branching tree can grow fairly large.

C. Example: Upper Bound by raiser

Consider1-raiserapplied to the following matrix :

Suppose that the set of rows is chosen as
MSIR . The set of irredundant solutions of UCP is

for which

gives a lower bound of three (has three domains). The root
node of the search tree is specified byand the pair
where . The aim of applying
1-raiserto is to improve the lower bound from three to four.

Choose row from to be added to . Since
then row intersects all three rows of . There-

fore, by (2)–(4) the set of all irredundant solutions of no more
than four columns of is obtained as follows:

so that3

Cube describes the set of solutions fromcovering
in which is necessarily covered by a column of the first

domain of (and maybe by columns of other domains) and so

3Notice that we used (5). Applying instead (2), we would obtain

C �O(A ) = f1g � f5g � f7g � f2; 3; 4; 6g

which includes the following additional solutions:f1g � f5g � f7g � f2g,
f1g�f5g�f7g�f3g,f1g�f5g�f7g�f6g.In fact, they are all redundant;
their irredundant counterparts are, respectively:f5g�f7g�f2g,f1g�f7g�
f3g, f1g � f5g � f6g, which already appear inpart1(C).

. Cube describes
the set of solutions not contained in in which row is
necessarily covered by a column of the second domain and so

. Cube describes the set of solutions from
not contained in or in which is necessarily covered
by a column of the third domain. Finally, cube describes the
set of solutions of UCP from which do not cover row
and so are not solutions of UCP .

Hence, the root node has four children nodes, each speci-
fied by one of the four cubes
and by the pair of matrices . Consider the
branch corresponding to . Sup-
pose is chosen from to be added to .
Since intersects only the second domain of

, cube splits in: ,
.

Hence, the node corresponding tohas two branches whose
pair of matrices are and and
whose cubes are, respectively, and

.4 Consider the branch corresponding
to the cube . Only row is left in . Since

intersects the third domain of , cube
splits in: ,

.
Thus the node corresponding to has two branches whose

pair of matrices are and
and whose cubes are, respectively, and

. The branch corresponding
to the cube leads to a node at which the first matrix of the
pair is equal to and the second is empty. Moreover cube
has three domains. This means that cube contains solutions
of of three columns (in this case only one solution): the lower
bound cannot be raised to four and the solution
is returned as the current best solution.

D. Detailed Description of the Raising Algorithm

The procedureraiser returns one if the lower bound can be
raised by , otherwise it returns zero, meaning that the current
best solution has been improved at least once byraiser. The
following parameters are needed.

• is the matrix of rows not yet considered. Initially
MSIR, where is the covering matrix at the node (of

the column branching tree) that calledraiser, and MSIR
is the maximal independent set of rows, for the node that
calledraiser. Hence, is the covering matrix related to
the subproblem obtained by choosing the columns in the
path from the root to the node that calledraiser. The set
of chosen columns is denoted bypath.

• SolCubeis a cube which encodes a set of partial solutions
of the covering matrix . Initially SolCubeis equal to the
set of solutions covering the MSIR.

• is the number by which the lower bound must
be raised. is an input–outputparameter which is initially

4We denote byD the union of the domains of cubeC ; we write onlyD
when it is clear which cube is being considered, as before when usingD for
cubeC .
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equal to MSIR and is decreased every
time raiser improves the current best solution.

• is an inputparameter forraiser equal to MSIR .
Notice that differs from the original lower bound5

by a quantity equal to , for consistency with the
previous definition of .

• uboundis the cardinality of the current best solution.
• is an outputparameter, containing a new

best solution found byraiser if the lower bound could not
be raised by .

Fig. 3 shows the flow ofraiser. Notice that it requires a rou-
tine split cubes which, for a selection of a row covered by
of the domains ofSolCube, partitionsSolCubein disjoint
cubes, each of domains; thus, has cubes of solutions
from SolCubecovering , whereas has one cube of solu-
tions fromSolCubenot covering . The number of domains of
SolCubeis computed bynumber domains .

raiser is a recursive procedure which starts by handling
two terminal cases. The first one occurs when the variable

,6 which measures the gap between the upper
bound and the current lower bound, is nonpositive. If so, then
the solutions inSolCuberaise the lower bound of by at least

; hence, no solutions of can beat the current upper bound.
The second terminal case occurs when, after some recursive
calls, is empty. Then any solution obtained as the union of a
solution of in SolCubewith the columns in the currentpath
is the new best solution.

Routine �nd best set of non intersecting rows is in-
voked after these preliminary checks and it returns a set of rows
of denoted by . This routine, shown in Fig. 4,
implements a heuristic to find a large subset of rows of
which do not intersect any domain ofSolCubeand which do
not intersect each other. Ideally, we would like to get the best

which is a sort of “maximum set of independent
rows” related toSolCube, but this would require the solution
of another NP-complete problem. We implemented instead the
heuristic to insert first in the set the longest row that
intersects neither a domain ofSolCubenor a row previously
inserted into .

Thereafter, since no row in is covered by any
solution encoded inSolCube, for each such we must add a
new domain toSolCubemade by the columns which cover.
While we are adding these new domains, we keep decreasing
the variablestillToRaise, checking if its value becomes zero.
Finally, we can remove the set from because the
rows have been covered by the new added domains.

Notice that during the first call ofraiser, is
empty becauseSolCubeencodes the MSIR and, by definition,
every row not in the MSIR intersects at least one row in
the MSIR. However, during the recursive calls ofraiser the
original domains ofSolCubemay decrease in cardinality due to
split cubesand add set of intersecting rows SolCube .

5lbound new = jMSIRj + jpathj.
6By definition stillToRaise = lbound + n �

numberDomains(SolCube) = jMSIRj + ubound �
jMSIRj � jpathj � numberDomains(SolCube) =
ubound � jpathj � numberDomains(SolCube).

Fig. 3. Algorithm to raise the lower bound.

Hence, it may happen that a row of is not covered by any
domain ofSolCube.

After having removed the rows belonging to , an-
other optimization step can be applied successively before split-
ting SolCube. If at this pointstillToRaiseis equal to 1, it means
that we raised already the lower bound by . Therefore,
if we are forced to add one more domain toSolCube, then we
can prune the current branch. For example, a simple condition
which leads immediately to pruning is the following: consider
two rows and of which intersectSolCubeonly in one
domain . Suppose intersects only ,
while intersects only . This fact allows us to prune the cur-
rent branch. Indeed assume to coverby means of column ,
then to cover we must use a column which does not belong
to any domain ofSolCubeand so we are forced to add one more
domain toSolCube, thereby raising the lower bound by.
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Routineadd set of intersecting rows , which exploits the
previous situation, is illustrated in Fig. 5. In practice, it is in-
voked often because the conditionstillToRaise happens
very commonly in hard problems. The routine is based on two
nested cycles. The external cycle is repeated until the internal
cycle does not modifySolCube. The internal cycle computes,
for each row of , the set of the domains ofSolCubeinter-
sected by . If the cardinality of equals 1, e.g., , we
remove from all columns which are not intersected byand
then we remove from , since has been covered.

Notice that add set of intersecting rows is called just
after removing from the set of nonintersecting
rows,and, therefore, when all the remaining rows ofintersect
at least one domain ofSolCube. However, after cycling inside
this routine and removing some columns (thereby making
“leaner” some domains), it is possible that a row ofis not
covered anymore, i.e., . As discussed above, this
happens, e.g., when two 1-intersecting rows intersect two
different columns in the same domain. In this case the
routine returns one in order to inform the caller to prune the
current branch. If this fact does not happen before the end of
both cycles, a 0 is returned, but at least a certain number of rows
have been removed from and the corresponding intersected
domains ofSolCubehave been made “leaner.” After calling
add set of intersecting rows and removing 1-intersecting
rows, it is possible that has become empty. If so,raiser calls
found solution to update the variablesbestSolution , ubound
and .

After all these special cases have been addressed, a new row
is selected to be covered withSolCube. Row is removed

from and drives the splitting ofSolCube. The strategy to se-
lect the best row is to look for the row of which intersects
the minimum number of domains ofSolCube. The rationale is
to reduce the number of branches from the node.7 Notice that at
this stage each row of intersects at least two domains ofSol-
Cube. In case of ties between different rows, the row having the
highest weight is chosen. The weight of a row is defined as

where is the number of domains ofSolCubeintersecting ,
is a domain intersected by and .

Thus, the weight is just the fraction of solutions fromSolCube
that do not cover . If for some , then row is
covered by any solution fromSolCube. Hence, is simply
removed from and added to .

The splitting ofSolCubeis done as explained in Section III.
Then,raiser is called recursively on the disjoint cubes of the re-
computed solution. If the current best solution is not improved
in any of the calls, thenraiser returns 1, meaning that the lower
bound has been raised by. If instead the current best solu-
tion has been improved one or more times,raiser returns 0 after
having updated the current best solution and upper bound.

7Recall that there is a branch for each domain intersecting the row plus one
more branch for the nonintersecting domains.

Fig. 4. Algorithm to find the best set of rows not intersectingSolCube.

Fig. 5. Algorithm to handle the 1-intersecting rows.

V. EXPERIMENTAL RESULTS

As discussed in the previous sections,raiser can be im-
plemented on top of any existing standard B&B procedure.
We made two distinct implementations ofraiser starting
from two well-known UCP solvers, namelymincov (used in
ESPRESSO) andSCHERZO. The mincovroutine has represented
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TABLE I
EXPERIMENTAL RESULTS(ESPRESSO VERSUSAURA)

TABLE II
RESULTS OFESPRESSOBENCHMARKS (SCHERZO VERSUSAURA II)

the state-of-the-artin solving UCP problems for over ten
years and was strongly outperformed only recently by the
arrival of SCHERZO[3], [7], [8]. SCHERZOexploits a collection
of new lower bounds (easy lower bound, logarithmic lower
bound, left-hand side lower bound, limit lower bound), and
partition-based pruning. By enhancing both of these programs
with the negative thinking idea, we obtained two new search
engines, which are much more efficient than the original ones
[9], [10]: they are called respectivelyAURA ESPRESSO+
RAISER andAURA II SCHERZO RAISER.

In this section we show the dramatic impact of the nega-
tive thinking paradigm in both cases. Table I gives the results
obtained comparingESPRESSOand AURA, while Tables II and
III report experiments comparingSCHERZOand AURA II . The
benchmarks used belong to three classes: 1) a set of difficult
cases from the collection ofESPRESSOtwo-level minimization
problems (we consider as input the unate matrix which is ob-
tained after removing the essential primes), 2) three matrices
encoding constraints satisfaction problems from [11], and 3) a
set of random generated matrices with varying row/column ra-
tios and densities (e.g., means a matrix with
200 rows, 100 columns, and each column having a number of
ones between 30 and 70). For each of these matrices, the size
( in the tables) and sparsity (in the tables) are reported.

The experiments were performed on a 1-GB 625-MHz Alpha
with timeout set to 24 h of cpu time.

The tables report two types of data for comparison: the
number of nodes of the column branching computation tree
and the running time in seconds. There are several points to be
explained concerning the number of nodes.

1) Both AURA andAURA II have two types of nodes: those
of the column branching computation tree and those of
the cube branching computation tree (called-nodes in
the tables). As explained in Section II, these search en-
gines apply the negative thinking approach by following
a dual strategy: they start building the column branching
computation tree, but when at a given node the difference
between the upper bound and the lower bound is less or
equal to the raising parametermaxRaiser they call the
raiser procedure, which builds a cube branching compu-
tation tree, appended at the node whereraiserwas called.
Thus, to measure correctly a run ofAURA or AURA II , both
numbers of nodes need to be reported.

2) Nodes for cube branching usually take much less com-
puting time than those for column branching, even though
it is not knowna priori a time ratio between the two
types of nodes. The reason is that expensive procedures
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TABLE III
RESULTS ONRANDOM BENCHMARKS (SCHERZO VERSUSAURA II)

for finding dominance relations and the MSIR are applied
in column branching.

3) The raising parametermaxRaiser (label in the tables) is
an input to bothAURA andAURA II . The higher the raising
parameter, the fewer column branching nodes compared
to cube branching nodes there will be. With a value that is
high enough, there will be a single column node and the
rest will be all row nodes.

Table I reports the experimental results forESPRESSOversus
AURA with the raising parameter set always to three:ESPRESSO

is not able to compute the solutions of benchmarks ,
, and in the allotted time, while for the

benchmarksaucier the computation does not complete with
the available memory. These benchmarks represent the most
difficult problems in our benchmark suite and for all of them
AURA completes. Considering the random benchmarks, the
comparison betweenAURA andESPRESSOillustrates the strong
superiority of the former.

For each of the difficult cases reported in Table II, we have
run AURA II with . There is always a value of
which allowsAURA II to solve the problem faster thanSCHEZRO

and in general this value is either two or three. However, for

the problemprom2,the higher is the value of the lower is the
performance ofAURA II : in fact, since this problem presents
a highly diversified solution space, the raising procedure
often terminates only after it has found a better solution
(and, therefore, without having been able to prune rapidly the
current branch). On the other hand, in the case of the problem
saucier, whose solution space is poorly diversified,AURA II

finds the solution in 24 s with any possible value ofwhile
SCHERZOtakes 11 876 s. These results are in concord with the
philosophy of “negative thinking” as discussed in Section I:
the less frequently the best current solution is improved during
the search, the more the “negative” search is justified. Now,
when we are running a very time-consuming problem, the
overwhelming majority of the subproblems do not lead to a
solution improvement and, therefore, “negative” search is more
natural and, if applied, leads to spectacular savings in total
time. This is confirmed by the experiments with the random
generated matrices of Table III, for which we set the raising
parameter always to three. In the most time-consuming of
these examplesAURA II takes between 36% and 75% of the
time of SCHERZO.
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A. Other Comparisons

We do not have a systematic comparison with the results
by BCU, a very efficient recently-developed ILP-based covering
solver [6]. However, the intuition is that an algorithm based on
linear programming is better suited for problems with a solu-
tion space diversified in the costs, i.e., for problems which are
“closer” to numerical ones. To test the conjecture we asked the
authors of [6] to runBCU on saucier,whose solution space is
poorly diversified (a minimum solution has six columns, while
most of the irredundant solutions have costs in the range from
six to eight).BCU ran out of memory after 20 000 s of compu-
tations (the information was kindly provided by S. Liao), while
AURA II completes the example in 24 s. It would be of interest to
study if the virtues of an ILP-based solver and ofraiser could
be combined in a single algorithm.

VI. CONCLUSION

We introduced a new technique to solve exactly a discrete op-
timization problem. The motivation is that often a good solution
is reached quickly and then it is improved only a few times be-
fore the optimum is found; hence, most of the solution space
is explored to certify optimality, with no improvement of the
cost function. This suggests that more powerful lower bounding
would speed up the search dramatically. Therefore, the search
strategy was modified with the goal of proving that the given
subproblem cannot yield a solution better than the current best
one (negative-thinking), instead of branching further in search
for a better solution (positive thinking).

For illustration we have applied our technique to UCP, usu-
ally solved exactly by a B&B procedure, with an independent
set of columns as a lower bound, and branches on columns.
We designed a dual search technique, calledraiser,which is in-
voked when the difference between the upper bound and the
lower bound is within a parametermaxRaiser , set by the user.
The procedureraiser tries to detect a hard core of the matrix to
be solved (lower bound submatrix), augmenting an independent
set of rows in order to increase incrementally the cardinality of
the minimum solutions that cover it. Eventually either this in-
cremental raise yields a lower bound that matches the current
upper bound, and so we are done with this matrix, or we produce
at least one better solution. The selection of a next row induces
the recomputation of all the solutions of the lower bound subma-
trix augmented by the next row, as disjoint cubes of solutions.
Each such cube together with the augmented matrix defines a
new node of the computation tree explored byraiser.

A key technical contribution to implement negative thinking
for UCP is the introduction of the data structure ofcubes of so-
lutions, inspired by multivalued cubes. Applying the operator

to a cube of solutions one obtains a collection of cubes of
solutions, thereby providing a natural clustering of the recom-
puted solutions. Clustering allows us to design a recursive al-
gorithm based on branching in subsets of solutions and to raise
independently the lower bound starting from different subsets
of solutions.

The procedureraiser can be implemented on top of any ex-
isting B&B procedure. We did this forESPRESSOandSCHERZO

obtaining in both cases new search engines (respectively,AURA

andAURA II ) that are much more efficient.
Future work includes application to the binate covering

problem. A more basic line of research is the exploration
of data structures different from cubes of solutions, but still
enjoying their properties of offering representations that are
compact and easy to update.

APPENDIX I
REPRESENTATION ANDRECOMPUTATION OF THESOLUTIONS

A. Recomputation of the Solutions

Theorem A.1:For any irredundant solution of UCP
there is an irredundant solutionof UCP such that

is an element of .
Proof: Let be an irredundant solution of UCP

. Clearly is a solution of UCP . There are two cases.

1) is irredundant for UCP too. In this case we are
done, noticing that , given that

.
2) is redundant for UCP . We show first that in this

case there is only one redundant column and this is a
column covering .

a) We prove that all redundant columns must cover.
Indeed a column of is irredundant if and only
if it covers a row not covered by others columns.
Any column in not covering cannot be
redundant for UCP , since is irredundant
for UCP . Indeed, if is redundant for
UCP and does not cover , then it remains
redundant for UCP .

b) So far we know that there is at least one redundant
column and that it must cover , as all redundant
columns do. We prove that it cannot be the case
that two (or more) columns cover . Indeed, if
two columns cover and one of them is redun-
dant for UCP , then it remains redundant for
UCP (the column cannot become irre-
dundant because there is no row in covered
only by it), which contradicts the condition that
is irredundant for UCP .

So can be represented as , where is redundant
for UCP and it is the only column from covering ,
and is an irredundant solution of UCP not covering .
Moreover, by definition of the operation any solution of
UCP represented as , where is an irredundant
solution to UCP not covering and , is also in

. So we conclude that for any irredundant so-
lution of UCP there is an irredundant solutionof
UCP such that is an element of .

Theorem A.2:If the computation of the operator is mod-
ified as follows:

no irredundant solution of is discarded.
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Proof: Let be the cube of solutions
and the row to be added. Without loss of generality assume
that intersects the first domains of , .

By construction , where
, ,

, , and , .
Moreover, ,
where , .

If we prove that any solution from the cube
is redundant, where , we are

allowed to replace the computation of with
the computation of .

By distributivity of the Boolean operators and , and the
fact that intersects only the first domains of , it is

, and so cube can be rewritten as
follows:

and, therefore, can be represented as the union
where , .

Now define the cubes , , obtained from
by replacing in turn with . Cubes and

—which have the same number of domains—by con-
struction are such that cube [obtained from ]
contains cube [obtained from ], as shown
by a component-wise comparison, using the fact that

Consider the th component, for , of the represen-
tation of cube as

and permute the domains [from ] and

Therefore, any solution from consists of a set of columns
and a column . Since contains (as shown

earlier) and by construction is made of solutions of which
cover also , then covers both and and so column
is redundant in the solution . So any solution from

is redundant for .

B. Avoiding Generation of Repeated Solutions

Given UCP , suppose that is
the cube of solutions of UCP , where is a subset of rows
of . Then add row , which, say, intersects only the domain

. As argued in Section III, the solutions of are found
by

where

Now let be a solution from and
be a solution from , which

differs from only by replacing with and by adding
from . Suppose that there is a solution of UCP
containing the partial solution . Then the same solution

may be constructed both from the branch of cubeand
the branch of cube . In general this means that a
solution may be generated more than once.

The reason is that, even though when formingwe remove
from the columns covering , still it is possible to extend
solutions from by adding columns from and

and to extend solutions from by adding
columns from , so that we may obtain from both
branches the same partial solution from

.
To eliminate this possibility it is sufficient to avoid the con-

sideration of solutions containing columns from
in the branch of cube . Indeed, if we do so, a so-
lution containing the partial solution can be found only
in the branch of cube , because in the branch of solu-
tions containing columns from are not considered,
whereas contains such a column, i.e., column. In gen-
eral, if intersects the first domains of , in the branch of
cube , where contains domains

, we should avoid the generation
of solutions containing columns from

.
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