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Abstract

We introduce a new technique to solve exactly a discrete opti-
mization problem, based on the paradigm of “negative” thinking.
The motivation is that when searching the space of solutions, often
a good solution is reached quickly and then improved only a few
times beforethe optimum isfound: hencemost of the solution space
is explored to certify optimality, but it does not yield any improve-
ment of the cost function. So it is quite natural for an algorithm to
be" skeptical” about the chanceto improve the current best solution.

For illustration we have applied our approach to the unate cov-
ering problem. We designed a procedure, razser, implementing
a negative thinking search, which is incorporated into a common
branch-and-bound procedure. Raiser isinvoked at a node of the
search tree which is deep enough to justify negative thinking.

Raiser tries to detect a hard core of the matrix corresponding
to the node by augmenting an independent set of rows in order to
increase incrementally the cost of the minimum solutions covering
the matrix. Eventually either razser prunes the subtree rooted at
the node (having found a lower bound equal or greater than the
current best solution) or returns a new solution that becomes the
current best one.

Experiments show that our program, AURA, outperforms both
ESPRESSO and our enhancement of ESPRESSO using Coudert’s limit
lower bound [3]. It is aways faster and in the most difficult ex-
amples either has a running time better by up to two orders of
magnitude, or the other programs fail to finish due to timeout or
spaceout. The package SCHERZO is faster on some examples and
loseson others, dueto aless powerful pruning strategy of the search
space, partially mitigated by a more effective computation of the
maximal independent set.

1 Introduction

A common approachto find an exact solution to problemsin combi-
natorial optimization is branch-and-bound (BAB), which improves
over exhaustive enumeration, because it avoids the exploration of
some regions of the solution space, when it can certify by means
of lower bounds that they do not contain a solution better than the
current best one.

To ground the exposition in a concrete domain, in this paper we
consider BAB applied to thesolution of the Unate Covering Problem
(UCP), that is of great interest in logic synthesis and operations
research [4]. For the sake of simplicity we consider the case of
UCP where all columns have the same cost. Such version of UCP
is defined as follows. Given a Boolean matrix A (all entriesare 0
or 1), find a minimum size subset of columns of A such that every
row of A iscoveredby at least one column of the subset. A row : is
covered by a column j if A;; = 1. We will denote an instance of
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UCP with matrix A asUCP(A).

An exact solution of UCPistypically obtained by abranch-and-
bound recursive agorithm, which has been implemented in suc-
cessful computer programs [7, 6]. Branching is done by columns,
i.e., subproblems are generated by considering whether a chosen
branching column s or is not in the solution.

A run of the algorithm, call it mincov, can be described by its
computation tree. The root of the computation tree is the input of
the problem, an edge represents a call to mincov, an internal node
isareduced input. A leaf is reached when a complete solution is
found or the search is bounded away. From the root to any internal
node there is aunique path, which is the current path for that node.
The path leading to the node gives a partial solution and asubmatrix
Ay obtained from A by removing somerows and columns. On the
path some columns are included in the partial solution; we denote
by path( An) the set of columnsincluded in the partial solution.

Supposethat we know that any minimal cover of A isgreater
or equal to avalue L( A ). Thevalueis called alower bound of the
solutions of UC P(An). Sothesize of any solution of UCP(A)
including the columnsin path( A x) isgreater or equal to L(Axn) +
|path(An)|. Soif wefound beforeasolution be st with the sameor
asmaller number of columns, i.e,, |best| < L(An) + path(An)
we can stop the recursion and backtrack to the parent node of A .

Denote by K (An) thevalue |best| — L(An) — |path(An)|.
Thecondition to stoptherecursionisgivenby (A x) < 0. Onthe
other hand, if K (Ax~) hasalarge positive value, usually it means
that L( A~ ) isfar fromthesize of aminimal solutionto UC P( A )
and so alot of branchingis expected from A 5 before aleaf can be
reached.

Suppose that there is no way of improving the solution best in
the search tree rooted at A, yet K (Ax) is positive. Usually a
branch-and-bound algorithm must continue branching. However,
there is another way of making K (Ax) negative or zero: it isto
improve the lower bound L(Ax).

Thefirst way is “positive”, in the sense that the algorithm tries
to construct a better solution, and branching columns are chosenin
the hope of improving the current best solution. The second way
is “negative”, in the sense that the algorithm tries to disprove that
there is a better solution in the tree rooted at A .

To comparetherole of “ negative” and “ positive” waysof search,
notice that at the n-th level of the computation tree we can have up
to 2" nodes, i.e., subproblems. It isan experimental fact that usually
in the first leaf a solution very close to the minimum one is found,
so only few improvements are required to get a minimum solution.
Therefore “positive” search will succeed and yield a new better
solution only in afew of the 2" subproblems. In the overwhelming
majority of the subproblems “negative” search is more natural.
The less frequently the best current solution is improved during
the search, the more “negative” search is justified. In turn thisis



related to how muchthe solution spaceis* diversified”, i.e., different
solutions have different costs. Notice that BAB uses “negative
thinking” in optimization problems by finding lower bounds, and
in decision problems by checking the consistency of the partial
solution with the current subproblem.

To exploit both “ positive” and “ negative” search, BAB is mod-
ified as follows. We start solving the initial problem with “posi-
tive thinking” in the ordinary column branching mode, called PT-
mode. Then, when the number of subproblems generated in the
column branching mode becomes large “enough”, each subprob-
lem is solved in the “ negative thinking” mode, called NT-mode. In
optimization problems modes are switched depending on the ratio
of the expected number of improvementsto the number of subprob-
lems generated at thislevel of the searchtree. The smaller theratio,
the more appropriate is to switch to the NT-mode.

Let P beasubproblemto besolvedin NT-modeand supposethat
if thecost of P isgreater than agiven ubound then solving P cannot
give a better solution (w.l.0.g., assume to solve a minimization
problem). Theaim of the algorithm in the NT-modeisto prove that
there is no solution of P with cost lessthan ubound.

e propose a new way to implement “ negative thinking” : in-
cremental problem solving (IPS). When solving a problem A in-
crementally, we start with a subproblem A’ of A, such that the
solutions of A’ can be represented compactly. Then we modify
gradually A’ by making it more complex to come closer to the full
problem A and we recompute the set of solutions of the modified
problem. When applying “negative thinking”, we try to find first
the most difficult “ obstacles” in the sequencefrom A’ to A with the
goal to prove that no solution of A’ can overcomethe obstaclesand
be extended to a solution of A.

More precisely, let P’ be a subproblem of P such that its set
of solutions Sol( P') can be represented in a compact form. Each
solutionof P’ from Sol( P') canbeconsidered asaseed fromwhich
one may grow some solutions of P. In the NT-mode, the algorithm
tries to show that no solution of P with cost(P) < ubound can
grow from any solution S € Sol(P’). A naive approach is to
form a sequence of problems P4, - - -, P,, where P, = P’ and
P, = P. At each step one recomputes Sol(P;) starting from
Sol(P;_1) and discardsall solutionsin Sol( P;) with acost greater
than ubound. If, after removing the solutions costing more or as
ubound, Sol(P1) = 0, for some P;, 1 < n, thenthereisno solution
of P with cost lessthan ubound. A direct implementation of this
approach has two drawbacks:

1. The size of the representation of Sol(P;) may grow expo-
nentially.

2. There are different ways of approaching P from P’. Each
specificseed solution S € Sol( P') is extended more quickly
to a solution costing more or as ubound by a specific se-
quence of augmentations, different from those appropriate
for another solution S € Sol(P').

Asaremedy we proposethe paradigmof clusterization of solutions.
We group in a cluster the solutions that are similar, in the sense
of having the same witnesses of the fact that they cannot produce
solutions of P costing less than ubound.

Inthispaper we present anincremental UCP solver calledraiser.
Although we demonstrate our techniqueon UCP it can be applied to
any discrete optimization problems with a monotone cost function,
i.e., for which a minimum solution of a subproblem has a smaller
cost than that of theinitial problem.

The paper is organized as follows. Section 2 shows how an
incremental solver is incorporated into the standard branch-and-
bound procedure for UCP. Theidea of incremental improvement of
the lower bound is sketched in Section 3, while Section 4 describes
how the solutions of UCP are represented and recomputed. The

raising procedure is explained in detail in Section 5 and experi-
mental results are discussed in Section 6. Conclusionsare given in
Section 7.

2 Incorporatingan I ncremental Solver into Branch-
and-Bound

The flow of a UCP solver based on branch-and-bound is shown in
Fig. 1. The parts of text in bold font refer to the incremental solver
and will be explained below. For detailsthe reader isreferred to [4].
Givenamatrix A, existing U C' P solvers employ column branching
to decompose the problem and use a maximal set of independent
(non-intersecting) rows (M .SIR) to compute a lower bound of
UC P(A) (since no column covers two rows from MSTR) *.

branch_and_bound(A, Sol, n) {

/* A =matrix of UCP, Sol = current (partial) solution */

/* n ="range” of raiser, best = best current solution */

if (A =0)
return(Sol) /* new best solution */

/* Column and row dominance*/

simplify(A)

/* Lower bound evaluation */

MSIR = find_msir(A)

if (lower_bound(A) + cost(Sol)) > cost(best))
return(®)

/* Isthe current nodewithin the range of raiser ? */

if (|MSIR|+ cost(Sol)+ n) > cost(best)) {

/* n' exact amount to raise*/
n' = cost(best) — (|MSIR| + cost(Sol))
return(raiser (A, MSIR, n'))

/* select abranching column */
J = select_column(A)
* Decomposition: A1(Az) for including (not including) 5

in solution */
Sol1 = Sol U {5}
Sol, = Sol

forG=1:<2;1++4)
{New = branch_and_bound(A;, Sol;, n)
if (cost(New) < cost(best)){
best = New
if (cost(best) < (cost(Sol)+ |MSIR|)
return(best)

}

return(best)

Figure 1: Branch-and-Bound enhanced by incremental solver

A procedure n-raiser, performing “negative thinking”, is in-
voked when M STR is alower bound not sufficient to prune the
subtree rooted at the current node, but increasing the lower bound
by n would allow such pruning. The n-raiser starts from the sub-
problem U C' P(M SIR) whose solution space is very regular and
then tries to extend it gradually to A. The n-raiser either returns a
minimum cost solution of U C' P(A), if the lower bound cannot be
raised by n, or returns the empty solution.

A lower bounding technique based on linear programming relaxation, as com-
monly done in ILP, has been tested successfully for solving covering problems and
reportedin [5].



The parameter n is specified a-priori and is the same for all
invocations of raiser in the column branching mode. The value of
n isusually asmall number in the range from 2 to 4 for two reasons:

1. if n is small then the node is deep enough to warrant the
application of negative thinking,

2. if nissmall then one can make use of the fact that
UCP(M SIR) hasaregular solution space.

Note that improving the lower bound even by a small amount may
lead to considerable runtime reductions. For example, in [1] it was
reported a new technique for pruning the search tree called limit
lower bound. Sometimes the technique allows to reduce the search
tree size by ten times. It can be shown that the limit lower bound
technique prunes no more branches of the searchtree than 1-raiser.

The detailed description of the raiser is given in Sections 3, 4
and 5.

3 Incremental Improvement of the Lower Bound

Given an optimization problem such that for any subproblem the
cost of aminimum solution of the problem is greater than or equal
to that of the subproblem, the size of a minimum solution of the
subproblem gives a lower bound on the the size of a minimum
solution of the problem (called cost monotonicity assumption).
Thisfactisof practical interest if it isnot difficult to find aminimum
solution of the subproblem.

Denote by min(UC P(A)) the size of a minimum solution of
UCP(A)andlet A’ beasubmatrix of matrix A, consistingof some
rows of A, i.e, Col(A) = Col(A') and Row(A') C Row(A).
AnyUCP(A")where A'isasubmatrix of A satisfiesthecost mono-
tonicity assumption, since min(UCP(A')) < min(UCP(A)).
We call lower bound submatrix a submatrix A’ whose minimum
solution is used for evaluating a lower bound for UCP(A). If A’
isa MSIR then min(UCP(A')) = |Row(A’)|. We are now
going to describethe idea underlying the method for an incremental
improvement of the lower bound.

Denote by A’ + A, the submatrix of A obtained by adding
to A’ arow A, € Row(A)\ Row(A'). Let S bea solution of
UCP(A). A column j € S is caled redundant if S\ {;} is
also a solution of UC P(A). If asolution of UC P(A) does not
contain redundant columnsthenitissaid tobeir redundant. Denote
by Sol(A’, m) the set of solutions of UC P(A") which includes
all the irredundant solutions consisting of m or fewer columns.
So Sol(A’, m) contains all the irredundant solutions of size from
min(UCP(A’)) to m columns. So if m = min(UCP(A"))
then Sol(A’, m) gives exactly the set of all minimum solutions of
UCP(A").

Supposethat for alower bound submatrix A’ of A weknow aset
of solutions Sol( A’, m). Thelower bound given by A’ is equal to
m = min(UCP(A")). Letusaddarow A, of Ato A’. Obviously
Sol(A' + Ap,m) C Sol(A’, m), since in general some solutions
from Sol(A’, m) do not cover A, and so are not contained in
Sol(A'+ Ap, m). Soafter havingadded asetof rows 4, .., A;, of
Ato A',wecanreachastagewhen Sol(A'+ A +..+ Ai,, m) = 0,
meaning that we improved the lower bound for UCP(A) by 1
taking as a lower bound the submatrix A’ + A;; + .. + Ai,. If
Sol(A"+ Ay + .. + Ai,,r) = 0,r > m weimproved the lower
bound by r — m + 1.

So an attractive idea is to start from a submatrix A’ which is
an M SIR (since the solutions of an M .STR can be represented
compactly) and then to add rows to the M STR with the goal to
improve the initial lower bound given by |M STR|. The proposal
relies on the intuition that, knowing Sol( A’, m), it is not difficult
to recalculate Sol(A’ + Ap, m) and, adding one row at a time,
eventually we may reach the desired lower bound improvement. In

Section 4.1 we discuss how to recalculate solutions. This “naive’
way of raising the lower bound may require too much memory. In
Sections 4.2 and 5 we introduce a technique to avoid the problem:
clustering solutionsin cubes and branching by clusters.

To motivate the theory that will be developed, we show by an
example how to raise the lower bound incrementally. Consider the
following matrix A x that cannot be reduced by dominance.

0123456 789
11

OCoO~NOUIDWNEFO
[N
[N

Supposethat A x isthe submatrix corresponding to the node N
of a column branching search tree, such that the cost of the best
solution found is 7 and the partial solution Sol contains 1 column.

An M STR is made by the 4 rows Ao, A1, A and As. Since
cost(best) — cost(Sol) — |[MSIR| = 2, potentially the lower
bound could be raised by 2. The set of irredundant solutions of
UCP(MSIR)isequal to Co = {0, 1} x {2, 3} x {4,5} x {6, 7}.
Select row A4 fromtherest of the matrix. The solutions of the matrix
made by the rows Ao, A1, Az, Az and A, are represented by the
union of thefollowingtwo sets: C1 = {0} x{2, 3} x{4,5} x {6, 7}
and C> = {1} x {2,3} x {4,5} x {6,7} x {8}.

Consider independently the sets C1 and C> starting with the
solutionsfrom C1. Select row As that isnot covered by any solution
in C1. So each solution from €1 must be augmented by a column
covering As, which transforms C1 into C, = {0} x {2,3} x
{4,5} x {6, 7} x {1, 8}. Notethat all solutionsin C; consistof 5
columns. Now select row Ag. The solutions that have 5 columns,
cover Ag, and can be obtained from the solutionsin C’i form the set
C; = {0} x {2} x {4,5} x {6,7} x {1,8}. But no solutionin
Ci’ coversrow Ay and therefore each solution from the set must be
augmented by a column to cover also A7. It meansthat no solution
from C1 can be “extended” to a set of < 5 columns covering all
rows from Axy.

Consider solutions from C>. If we select row Ag, then all the
solutionsthat have 5 columns, cover Ag and can beobtained fromthe
solutionsin C, formtheset C;, = {1} x {2} x{4,5} x {6, 7} x{8}.
But no solution in C’é covers row Az and therefore each solution
from the set must be augmented by a column to cover also As7. It
means that no solution from C> can be “extended” to aset of < 5
columns covering all rows from A . So the lower bound is raised
to 6 and the branch correspondingto A » can be pruned.

4 Representation and Recomputation of the Solu-
tions

In order to present the algorithm for raising the lower bound we
must describe how the set of solutions of a matrix is represented
and updated.

41 Recomputation of the Solutions

Let A’ beasubmatrix of A and A, arow from Row(A)\ Row(A’).
Let S be a solution of UCP(A). Denote by O(A;) the set
{j | Ap; = 1}, i.e, the set of al columns covering A, and by



Rec(A' + Ay, S) theset of solutionsof UCP(A' + A,) obtained
according to the following rules:

1. if Sisasolutionof UCP(A’+ A,), then Rec(A'+ Ay, S) =
{5k

2. if Sisnotasolutionof UCP(A’ 4+ Ap),i.e., nocolumnof S
covers A, then Rec(A' + Ap, S) = {SU{s}|j € O(Ap)}.

So Rec(A’ + Ap, S) gives the solutions of UCP(A’ + Ap) that
can be obtained from the solution S of UC P(A’). Accordingto 2.,
if Sisnotasolution of UCP(A’ + A,), then we obtain |O(A,)]
solutionsof UCP(A’ 4+ A,) by addingto .S the columns covering
Ap.

Theorem 4.1 For anyirredundantsolution $* € UCP(A’ + A,)
thereis an irredundant solution S € UC P(A') suchthat S* isan
element of Rec(A’ + Ay, S).

The proof of the theorem is omitted for lack of space. There
are examples showing that Rec(A’ + Ap,S) may contain also
redundant solutions.

Corollary 4.1 Let.Sol beasetcontainingall irredundant solutions
of UCP(A"). Let Sol* = Usesd Rec(A' + Ap, S), then Sol*
contains every irredundant solution $* € UCP(A’ + Ap).

Proof. It isadirect consequenceof Theorem4.1. O

4.2 Cubes of Solutions

In line of principle, given the operator Rec, one could add one
row at atime to A’ and build the set of irredundant solutions of
UCP(A) from the set of irredundant solutionsof UC P(A’). This
“naive’ approach must be discarded because of two disadvantages:

1. Thesize of the set of irredundant solutions may grow expo-
nentially in the number of added rows.

2. Supposethat we want to raise the lower bound of M STR by
small n and that S is a solution of UCP(M SIR). It may
happen that in order to raise S by n we need to add only a
small set of rows from Row(A) \ Row(MSIR). Denote
the set R(S). Let S’ be another solution of UC P(M STR)
and suppose that to raise it by n we need to add a small
set of rows R(S’). The problem is that R(S) and R(S’)
are usualy different. In other words, when we add rows to
MSITR we want to add a minimal number of rows which
raise all solutions of M.STR by n. But, since these small
sets R(S) areusually different for different solutions .S from
UCP(MSIR), we actually need to add almost all rows.

To solve the previousissues we propose to clusterize solutions that
canberaised by thesamerowsfrom Row( A)\ Row(M SIR). This
isachieved by theintroduction of cubesof solutions, adatastructure
inspired by multi-valued cubes. Applying the operator Rec to acube
of solutions one obtains a collection of cubes of solutions, thereby
providing a clusterization of the recomputed solutions. This will
support later the design of araising algorithm based on branching
in clusters of solutions, each cluster being one of the recomputed
cubes of solutions.

Note however that cubes should not be considered as the only
convenient way to clusterize solutions. We believe that studying
clusterizations based on different data structures, e.g., binary deci-
sion diagrams, will yield interesting results.

As anticipated, we represent the solutions of UC P(A) by sets
withastructure of multi-valued cubes[8]. Wedefineacubeto bethe

setC=Dyx---xDgwhereD;ND; = 0,1 # jand D; C Col(A),
1 < 1,7 < d. The subsets D; are the domains of cube C. So
cube C denotesa set of sets consisting of d columns. In contrast to
standard cubesused for the representation of multi-valued functions
here cubes may have different numbers of domains. For example,
if |Col(A)| = 10, then sets C1 = {1,5} x {2,6,7} x {3,4} and
Cr = {1} x {2,4} x {3,7} x {5, 6,10} are both cubes.

Let A’ beaMSIR of A. Theset of all irredundant solutions
(which are at the sametime minimum) of C' P( A’ can be repre-
sented as the cube O(Ai;) x -+ x O(A;,), where A;,, -+, A;,
are the rows forming A’.

Let A’ be a submatrix of A and A, be arow from Row(A) \
Row(A'). Let C = D1 x --- x Dq be a cube of solutions of
UCP(A"). From the definition of the Rec operator it follows that

Rec(A' 4+ Ap, C) = partl(C) U part2(C) x O(4,) (1)

where part1(C') isthe set of solutions contained in C which cover
A, and part2(C) is the set of solutions contained in C' which do
not cover A,.

There are three cases:

1 If D; C O(A,) forsome, 1 < i < d, then any solution
from C coverstherow A, and so Rec(A’ + A,,C) = C.

2. If O(A,)N D; = P forany ¢,1 < 1 < d, then no solution
from C covers A, andso Rec(A'+ Ap, C) = C x O(Ay) =
Dy x - - x DgxO(Ap).

3. If 1. and 2. are not true, i.e,, no D; is a subset of O(A,)
and O(A,) intersects at least one domain (without loss of
generality, we assumethat A, intersectsthe first » domains,
i.e, Di,---,D,), then cube C can be partitioned into the
following r + 1 pairwise not intersecting cubes:

ClleﬂO(Ap)XD2><~~~><Dd
Cz:Dl\O(Ap)XDzﬂO(Ap)XD3><~~~><Dd

C3 = Dl\ O(Ap) X Dz\O(Ap) x D3N O(AP)X
XDax - x Dg

@
C, =D1\O(Ap) x -+ x Dr_1\ O(Ap) %
XD NO(Ap) x Dyrgp1 X -+« x Dg

Cry1=D1\O(Ap) x -+ x Dr_1\ O(Ay) x Dy
\O(Ap) X Dry1 X -+ X Dy

It isnot hard to check that the union C1 U - - - U Cr41 gives

the cube C' and that for any pair C;, C;,1 # 5,C; N C; = 0.

Moreover, the first r cubes give the solutions of UC P(A’)

from C which cover A, andthecubeC: 1 givesthesolutions

of UCP(A’) from C which do not cover A,,. Therefore

partl(C) =C1U---UC, part2(C)=Cry1.  (3)

Equations 1-3 realize the Rec operator asdefinedin Section 4.1
and characterized by Theorem 4.1. Notice that here we force the
Rec operator to generate non-intersecting cubes of solutions; this
is not a consequence of the definition of Rec, but is an additional
reguirement introduced now to avoid considering the same partial
solution in more than one branch.

We mentioned that in the computation of Rec some redundant
solutions may be introduced. The following revised definition of
Rec avoids the generation of obviously redundant solutions ob-
tained from the application of formula (1). Namely, any solution S’
of UCP(A'+ A;) frompart2(C) x O( Ap) that strictly containsa
solution S” of UCP(A' + A,) from part1(C') isredundant since
it contains more columnsthan .S”’.



Theorem 4.2 If the computation of the Rec operator is modified
asfollows:

Rec(A' 4+ Ap,C) = partl(C) U part2(C) x (4
x[O(Ap) \ (D1U -+ U Dy)]

no irredundant solution of A’ + A,, isdiscarded.

The proof of the theorem is omitted for lack of space.

5 TheRaising Procedure

5.1 Overview of the Raising Algorithm

As anticipated in Section 2, we propose an n-raiser procedure
which is called in the column branching mode as described in
Fig. 1. Let A be the covering matrix corresponding to the node
where n-raiser is invoked and A’ be an MSTR of A. We start
with the set of irredundant solutions of /C' P(A’), represented by
the cube C = O(A;,) x -+ x O(As,), inwhich A;, -+, A;,
are the rows in the M SIR. Then choose a “good” row of A
from those not in A’, say row A,. According to Equations (1-5),
Rec(MSIR(A)+ Ay, C) canberepresented by r + 1 cubeswhere
r is the number of rows of the M STR(A) intersecting A,. Then
perform recursively the process for each of the r + 1 cubes, i.e.,
choose a new row from those not yet selected for each of ther + 1
cubesof solutionsand split each cubeaccordingto Equations(1-5).

The process can be described by a search tree, called cube
branchingtree. Theinitial cube of solutions C' correspondsto the
root node, to which we associatealso apair of matrices M .STR(A)
and A— M SIR(A) (i.e, matrix A without therowsof M SIR(A)).
In each node a choice of an unselected row from the second matrix
of the node is made. The chosen row is removed from the second
matrix of the pair and added to the first matrix of the pair. So the
first matrix givesa*“lower bound submatrix” for the node.

The number of branchesleaving a nodeis equal to the number
of cubesin which the cube corresponding to the nodeis partitioned
by the Rec operation, and each child of a node gets one of the
cubes obtained after splitting. So the cube corresponding to a node
representsa set of solutions covering the first submatrix of the pair.

Theflow of n-raiser isshowninFig. 2. Therecursion terminates
if one of the two following conditions hold:

1. Thereisanode such that there are no rows left in the second
matrix of the pair and the corresponding cube has k domains,
wherek < |MSIR|+ n. This meansthat the lower bound
|MSIR| cannot be improved by n and any solution from
C'ube consists of fewer columns than the current best one,
since n-raiser is invoked if |[MSIR| + n + cost(Sol) =
cost(best) where Sol isthe partial solution foundin the col-
umn branching mode before invoking the raiser. Then a so-
lution from C'ube is selected asthe current best and therange
of raiser is reduced to n — (cost(old best) — cost(best))
since the gap between the current best solution and M STR
is reduced.

2. From all branches, nodes are reached corresponding to cubes
with anumber of domainsgreater than |M ST R| + n. Inthis
casethelower bound hasbeenraisedto | M ST R|+n,sinceno
solution S of UC P( A) existssuchthat |.S| < |MSIR|+n.

If neither pruning condition holds the procedure raise_or trim
is invoked to addressthe following two cases, which let us modify
the cube of solutions without branching:

1. If arow A, exists such that no solution from Cube covers
Ay, then there is no splitting of the cube, since Rec yields
only one cube C x O(A,). Row A, is removed from A"
and addedto A’.

2. If there exists a row A, intersecting only one domain D;
of Cube and the number of domains in Cube is equal to
|[MSIR| + n — 1 then only two cubes are generated after
splitting. Thefirst cubeisfrom partl(Cube) andis obtained
by reducing domain D; to D; N O(A;). The second cube
has one more domain and can be discarded since the total
number of domainsin the cubeis |M STR| + n. Row A, is
removed from A" and added to A’.

The previous conditions are checkedin raise_or _trim by iterating
through the rows of A" until both conditions are false for any row
from A”.

After all these special cases have been addressed, a new row
A, isselected by select_row. Therow A, isremoved from A and
drives the splitting of Cube. The strategy to select the best row in
order to split the current C'ube, before calling recursively raiser,
looks for the row of A which intersects the minimum number of
domainsof Cube. The reason is to reduce the number of branches
from the node, i.e., the number of domains intersecting the row to
be added plus 1. In case of ties between different rows, the row
having the highest weight is chosen. The weight of arow A, is

defined as:
m !
H |Di, |
P} |Dik|

where m is the number of domains of C'ube intersecting A,, D;,
is a domain intersected by A, and D;, = D;, \ O(A;). Sothe
weight of A, isjust the fraction of solutions from C'ube that do
not cover Ay, which we want to maximize when selecting a new
row. If ka = @, for some k, this meansthat A, is covered by any
solution from Cube. Such arow is simply removed from A” and
addedto A’.

5.2 Correctness of n-raiser

The correctness of the n-raiser procedure, applied to matrix A
with lower bound |AM.STR(A)|, can be argued using the notions
of subsolution or partial solution and of complete set of solutions,
introduced as follows.

A set S’ of columnsof A isasubsolution or partial solution of
UCP(A)ifitisasolution of asubproblem A’, butisnot asolution
of UCP(A).

Let C bethe cubeof subsolutionscorrespondingto M STR(A),
then C hasthe property that for any solution .S of U C P( A) thereisa
subsolution from C whichiscontainedin S. Indeed, since S covers
all therows of A, including those contained in M STR(A), then S
contains | M SIR(A)| columns covering the submatrix M ST R(A)
that form a subsolution from C'. A set of subsolutionsis complete
if for any solution S of UC P(A) thereis a subsolution from the
set which iscontainedin .S. So the set of subsolutionscontainedin
the cube C is complete.

Let S’ be a solution of subproblem UCP(A’). Denote by
Gen(S') the set of irredundant solutions of U C' P( A) that contain
S'. Similarly, if C isaset of partial solutions, denote by Gen(C)
the set of irredundant solutionsof U C' P( A), each of which contains
asolution from C'.

Lemmab5.1 LetS’ beasolutionof UC P(A’) and A, bearowfrom
Row(A) \ Row(A"). Then Gen(S') C Gen(Rec(A' + Ap, S'))
where Rec is the recalculation operation defined in Section 4.1.

Proof. Let S be a solution of UCP(A) containing S, i.e,
S € Gen(S'). If S’ coversrow A, then Rec(A' + Ap, S') is
equal to {S’} and so Gen(Rec(A’ + Ay, S')) contains S. If S’
does not cover Ay, then Rec(A’ + A,, S') contains every solu-
tion S’ U {5}, 7 € O(A,). Moreover, S contains S’ and, since it
covers Ay, it obviously contains a column 5 € O(A,). So again



/* n-raiser returns an empty solution if lower bound of
UCP(A) canberaisedto |MSIR| + n. If not, it returns
acurrent minimum solution of UC P(A) */

raiser(A’, A", Cube,n) {
[ A'= MSIR, A” = A— A’, Cube = solutions of
UCP(MSIR) */
/* Cost of solutionsfrom C'ube exceedslower bound by n */
if (number_of_domains(Cube) > |MSIR| + n)
return(®)
/* Norowstoadd ? */
if (A7 = 0) {
/* Extract new best solution */
best = extract(Cube)
/* Recalculaterange of raiser */
n' = n — (cost(Old best) — cost(best))
n = n/
return(best)

}

/* Processrows that do not split Cube */
raise_or_trim(A’, A", Cube)
[* Selectarow to add */
Aj = select_row(Cube, A")
A=A+ A;; A" = A — A
/* split Cube. Notethat C'ube 41 has one more domain */
Cube = Cuber U - -- U Cube, U Cube,41
/* Call raiser recursively */
forG=21:i<(r+1);i++){
New_sol = raiser(A’, A", Cube;, n)
if (cost(New_sol) < cost(best))
best = New_sol

return(best)

Figure 2: n-raiser algorithm

Gen(Rec(A' + Ap, S')) contains S. O

From Lemma5.1 it follows that the Rec operation preservesthe
completness of a set of subsolutions.

Theorem 5.1 Then-raiser procedurefindscorrectlyalarger lower
bound or a smaller upper bound.

Proof. n-raiser starts with the set of solutions of UCP(M SIR),
which is a complete set of partial solutions of UCP(A). Since
the Rec operation preserves completness, the set of all “boundary”
cubes, i.e., cubes corresponding to either leaf nodes of the search
treeor to thenodesnot yet split, isacompleteset of partial solutions.
When we apply an n-raiser to A we actually try to find acomplete
set of partial solutionscontainingat least | M STR(A)|+n columns.
If such a set is found then no solution of UC P( A) has less than
|[MSIR(A)| + n columns, and so the procedure ni-raiser succeeds
in increasing the lower bound by n.

Supposethat thereisno completeset of partial solutionsconsist-
ingof atleast| M SIR(A)|+n columns. It meansthat n-raiser finds
aleaf node with a cube containing solutions of |M STR(A)| + n'
columns where n’ < n. In that case we update the n-raiser into
an n’-raiser and continue the search. If the n’-raiser succeedswe
return a solution of |[M STR(A)| + n' columnswhich is minimal.

If the n’-raiser fails then there is a solution of UC' P(A) con-
sisting of |M STR(A)| + n" columns, wheren” < n’. Thenwe
update the n’-raiser into an " -raiser and continue the search. O

6 Experimental Results

We have implemented a program AURA to solve UCP and we
have compared it with the routine mincov available in ESPRESSO,
with MINCOV _LLB, that is our implementation of some features of
SCHERzO and with the results of the real SCHERzO implemented by
O. Coudert. The program SCHERZzO is the most effective solver of
UCP currently reported. Its main features have been described in
theliterature [3, 2, 1]; they include abetter heuristic selection of the
M ST R, logarithmic lower bound, left hand side lower bound, limit
lower bound, and partition-based pruning. Of these features we
have implemented in MINCOV _LLB, to the best of our understand-
ing of the original description, the following two: better heuristic
selection of the M.STR and limit lower bound. The limit lower
bound is a major novelty of ScCHERzO, which accounts for strong
savingsin the number of nodes of the computation tree compared
to the original mincov of ESPRESSO.

The benchmarks belong to three different classes: in Table 1
there are difficult cases from the collection of ESPRESSO (we start
from the matrix obtained by ESPRESSO after removing the essen-
tial primes), in Table 2 there are random generated matrices with
varying row/column ratios and densities, in Table 3 there are ma-
trices encoding constraints satisfaction problems from [9]. The
experiments have been performed with a 2GB 300Mhz Alpha with
timeout set to 3 days of cputime.

The tablesreport two types of datafor comparison: the number
of nodes of the column branching computation tree and the running
time. About the number of nodeswe clarify that

1. AURA hastwo types of nodes:. those of the column branching
computation tree and those of the cube branching computa-
tion tree (called A-nodesin the tables). Indeed AURA follows
adual strategy, i.e., it builds the column branching computa-
tion tree, but when at anode the difference between the upper
bound and the lower bound is less or equal to the raising pa-
rameter r (or maxz Raiser), AURA callsthe procedurerazser
which builds a cube branching computation tree, appended
at the node where raiser was called. So we need to report
both numbers of nodesto measurea run of AURA.

2. Nodes of the cube branching computation tree usually take
much less computing time than those of the column branch-
ing computation tree, even though it is not known a-priori
atime ratio between the two types of nodes. The reason is
that in each node of the column branching mode expensive
procedures for finding dominance relations and the M STR
are applied.

3. Theraising parameter isan input to AURA. Currently we have
experimented with some values and we report in the tables
the value used in a specific run. The higher is the raising
parameter, the fewer column branching nodes compared to
cube branching nodestherewill be. With avalue high enough,
therewill be a single column nodeand the rest will be all row
nodes.

We compared also with the real SCHERzO, whose author was
kind enoughto runfor ustheexamples. Thereisalargegap in many
cases between the results of SCHERzO and those of MINCOV _LLB,
whichisour implementation of asubset of SCHERzO, A major reason
may be that our reimplementation of the better heuristic selection
of the M STR, even though it follows the hint given by Coudert, in
practicedoesnot mimic well enoughthe onein SCHERZO; moreover,
as already said, SCHERZzO features additional improvementsthat we
did not implement. It isimportant to underline that:



1. both AuURA and MINCOV L LB exploit the same re-implementation
of Coudert’s better heuristic selection of the M STR;

2. AURA could be improved noticeably by reproducing more
successfully the better heuristic selection of the M.SIR or
any other feature of SCHERZO. In other words, AURA demon-
stratesadual search technique, which may benefit from other
improvements to standard branch and bound.

3. in overall SCHERZO has been implemented more efficiently,
asmagnified also by the circumstancethat it is comparatively
faster on a slower machine.

The experiments show that AURA outperforms ESPRESSO and
MINCOV _LLB. It isawaysfaster and in the most difficult examples
either it hasarunning time advantage up to two orders of magnitude
or the other programs fail due to timeout (3 days) or spaceout (2G).
Instead SCHERZO is a very tough competitor, which is faster on the
examples from Table 1, but has aless effective pruning strategy in
those of Tables 2 and 3, partially compensated by a better M STR.
The example saucier.tis an extreme casewhere the virtues of AURA
prevail. Recently O. Coudert kindly provided us with a copy of
SCHERZO, to let usanalyzein depth the comparative features of the
two programs. We will report on the study as soon as done. We
expect to transfer to AURA the better computation of the M STR
apparently implemented in SCHERZO.

We do not have a systematic comparison with the results by
BCU, arecent |LP-based covering solver [5]. However, theintuition
is that an algorithm based on linear programming is better suited
for problems with a solution space diversified in the costs, i.e.,
for problems which are “closer” to numerical ones. To test the
conjecture we asked the authors of [5] to run Bcu on saucier.t,
whose solution space is poorly diversified (a minimum solution
has 6 columns, while most of the irredundant solutions cost in the
range from 6 to 8). Bcu ran out of memory after 20000 seconds
of computations (the information was kindly provided by S.Liao),
while AURA completed the examplein lessthan 3 minutes.

7 Conclusions

We have introduced a new technique to solve exactly a discrete op-
timization problem, based on the paradigm of “negative” thinking.
The motivation isthat when searching the space of solutionsoften a
good solution isreached quickly and then it isimproved only afew
times before the optimum is found; so most of the solution space
is explored to certify optimality, but it does not yield any improve-
ment in the cost function. This suggests that more powerful lower
bounding would speed up the search dramatically, as shown by the
introduction of the limit lower bound [3]. Our approach is more
radical because when we are dealing with a subspace of solutions
unlikely to improve the upper bound, we switch the search strategy
to adifferent onegearedto raisethelower bound. Todesignasearch
strategy which realizes negative thinking we introduced cubesof so-
lutions, a data structure inspired by multi-valued cubes. Applying
the operator Rec to a cube of solutions one obtains a collection of
cubes of solution, thereby providing a natural clustering of the re-
computed solutions. As argued in the paper, clustering is required
to design a recursive algorithm based on branching in subsets of
solutions and allows the lower bound to be raised independently
starting from different subsets of solutions.

For illustration we applied our technique to the unate covering
problem, usually solved exactly by a branch-and-bound procedure,
where one lower bounds by means of an independent set of rows,
and branches on columns. We have designed a dual search tech-
nique, called raiser, which is invoked when the difference be-
tween the upper bound and the lower bound is within a parameter
maz Raiser, that we are free to set. The procedure razser triesto

detect a hard core of the matrix to be solved (lower bound subma-
trix), augmenting an independent set of rows in order to increase
incrementally the cardinality of the minimum solutionsthat cover it.
Eventually either this incremental raising yields alower bound that
matchesthe current upper bound and so we are done, or we produce
a better solution. Razser defines a computation tree whose nodes
have associated a lower bound submatrix and a cube of solutions.
The selection of a next row induces the recomputation of all the
solutions of the lower bound submatrix augmented by the next row,
as digjoint cubes of solutions. Each such cube together with the
augmented matrix defines a new node; operationally raiser calls
itself recursively passing as parameters each such digjoint cube of
solutions and the augmented lower bound submatrix. It would be
interesting to explore a mixed approach where one accumulates
some cubes of solutions at the same node and fewer recursive calls
are made, trading off time vs. memory.

The reported experiments show that our program AURA, out-
performs ESPRESSO and MINCOV_LLB, which is the algorithm in
ESPRESSO enhanced by our implementation of Coudert’slimit lower
bound. The package SCHERZO is faster than AURA on the examples
from Table 1, but it has aless effective pruning strategy in those of
Tables2 and 3, partially compensated by a better M STR.

Future work includes amore careful study of some algorithmic
design issues, like the selection of the next row, trading-off num-
ber of nodes vs. number of cubes stored in a node, and setting
automatically and adaptively the raiser parameter.

A more basic line of research is the exploration of data struc-
tures different from cubes since the latter are just the simplest way
of representing sets of partial solutions. We believe that studying
variouswaysof representingimplicitly setsof solutionsisapromis-
ing direction of investigation to rescue branch-and-bound from its
current limits. Another important direction of future researchis to
apply the negative thinking approach to other problems.
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matrix R x C (Sparsity) Sol. ESPRESSO SCHERZO MINCOV _LLB AURA
nodes | time nodes | time nodes | time | nodes/A-nodes | time | r
exps 680 X 696 (1.2%) 76 13 0.0 na na 13 0.0 13/0 00| 3
fout 177 x 431 (2.4%) 38 161 1.3 na na 49 0.7 18/44 02| 2
max512 559 x 515 (1.3%) 113 111 14 na na 25 0.4 19/25 04| 3
addm4 832 x 1073 (0.6%) 165 121 3.6 na na 29 11 17/11 06| 2
mip4 530 x 594 (0.99%) 109 | 2122 | 226 24 0.1 153 4.3 34/206 13| 3
pdc 6904 x 19021 (0.34%) 94 195 | 62.7 44 6.1 88 58 41/132 529 | 3
lin.rom 1030 x 1076 (0.9%) 120 370 | 29.1 238 4.7 106 10.1 61/240 77 | 3
ex5 831 x 2428 (2%) 37 - | time | 616091 | 2450.5 | 597644 | 214300 155/169245 13152 | 4
prom2 1924 x 2611 (0.31%) 278 - | time 25993 | 5149.2 - time 1478/1097624 | 240714 | 3
max1024 | 1090 x 1264 (0.52%) 245 - | time | 531618 | 9583.6 - time | 12402/3850628 36240 | 3
Table 1: Results from Espresso Benchmarks
matrix | R x C(Sparsity) | Sol. ESPRESSO SCHERZO MINCOV _LLB AURA
nodes | time | nodes | time nodes | time | nodes/A-nodes | time | r
tc90 | 50 x 100 (90%) 2 35| 26 2] 00 3 03 31| 01]3
tc.70 | 50 x 100 (70%) 2 135 | 35 2| 00 3 0.2 31| 013
tc50 | 50 x 100 (50%) 3| 2569 | 139 | 107 | 06 107 23 532 | 013
tc.30 50 x 100 (30%) 4 12047 37.8 65 0.3 1061 7.1 11/203 02| 3
tc.10 50 x 99 (10%) 8 843 3.3 90 0.1 131 0.7 17/166 013
tr.10 100 x 50 (20%) 8 12466 59.6 2077 4.1 2232 21.1 94/2529 29 | 3
tr.20 100 x 50 (40%) 5 16905 49 1823 39 2193 19.2 31/951 1.7 | 3
tr.30 100 x 50 (60%) 3 947 9.5 63 0.9 61 34 5/26 03] 3
tr.40 100 x 50 (80%) 2 73 4.3 2 0.0 3 0.6 3/1 03] 3
ts.90 100 x 100 (90%) 2 175 21.2 2 0.0 3 2.6 3/1 1|3
ts.70 100 x 100 (70%) 3 5083 47.0 167 53 163 15.8 5/112 073
ts.50 100 x 100 (50%) 4 66147 | 316.4 4011 20.2 3137 67.3 7/1030 16 | 3
1s.30 100 x 100 (30%) 5 | 116307 | 792.8 1752 85 8997 139.6 35/1108 25 (3
ts.10 100 x 100 (10%) 12 - time | 95573 | 187.3 | 175255 | 1255.1 5043/201091 | 129.3 | 3
Table 2: Resultsfrom Random Generated Matrices
matrix R x C (Sparsity) Sol. ESPRESSO SCHERZO MINCOV _LLB AURA
nodes | time nodes | time | nodes | time | nodes/A-nodes | time | r
bbara.t 45 x 26 (41%) 7 61 0.02 0 0.0 7 0 712 0]3
dk512x.t 91 x 59 (45%) 6 213 0.24 55 0.0 57 | 0.15 9/24 004 | 3
exdinp.t 91 x 240 (46%) 5 5279 | 16.81 17 0.3 19 | 0.66 9/14 027 | 3
ex5inp.t 36 x 34 (48%) 4 64 0.05 4 0.0 6 | 001 6/2 001 |3
ex6inp.t 28 x 96 (48%) 4 639 0.54 35 0.0 103 | 0.28 7/23 003 | 3
maincont.t 105 x 67 (35%) 7 504 0.69 68 0.0 101 0.4 11/12 0.06 | 3
opus.t 45 x 63 (45%) 5 121 0.1 7 0.0 5] 0.01 5/2 001 | 3
ricks.t 78 x 363 (47%) 5 20 0.37 10 0.2 12 | 0.36 8/43 033 | 3
saucier.t 171 x 6207 (47%) 6 - | mem | 186927 | 5441.0 - | mem 10/76 | 22247 | 3

Table 3: Resultsfrom Encoding Problem Matrices




