JAVA.IO

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

What is java.io?

- JAVA represents everything as Objects

- java.io is set of Objects that are an
abstraction for streaming system resources
such as files

- java.io also defines input and output
mechanisms for things other than files

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Streams

. Streams are the "fundamental element" of
the java.io package

- The simplest streams are the abstract
classes InputStream and OutputStream

You cannot use them directly
They define i/o in terms of bytes

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

File Streams

FilelnputStream
FileInputStream Fptr =
new FilelnputStream("/etc/passed");
int x = Fptr.read();
Fptr.close;

FileOutputStream
FileOutputStream Fptr =
new FileOutputStream("/tmp/blah");
Fptr.write(64);
Fptr.close;

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Filtered Streams

- These take a stream as input during the

constructor and add functionality:
FilelnputStream Fptr = new FilelnputStream("/etc/passwd");
FilteredInputStream FIS = new FilteredInputStream(Fptr);
int x = FIS.read();

FIS.close();

Fptr.close();

- You would never actually use
Filtered[In|Out]putStream directly... you
would use classes that extend it

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Buffered[In|Out]putStream

- Buffered Streams cache operations...

Devices perform better when working with blocks
Use memory as a "buffer" for the i/o
Input:

A large block of the input is read ahead of time and
stored until needed in the buffer memory

The stream can be reversed to a previous state
provided that the desired state is still in the buffer

Output:

Writes are not committed immediately
Use flush if things need to be committed right away

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Checksums

A checksum is a first order approximation to
to the problem of verifying data integrity

Parity count:
0100 0100 1101 0100 :: 1
0111 1111 0000 0101 :: O

If the receiver gets the new message with a
single bit "wrong" we know there was a
problem in transit

If two bits are wrong, we may not detect it

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Checked[In|Out]putStream

Checksum CK = new CheckSum();
CheckedOutputStream COS =

new CheckedOutputStream(CK, Fptr);
COS.write(x);

CheckSum CK = new CheckSum
CheckedlnputStream CIS =
new ChecklnputStream(CK, Fptr);
x = ClS.read();
if (CK !=0oldCK) {
/[throw some error

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Message Digests

Message digests (one way hash functions)
are a much better data verification methods

Message digests are strong
Used for "Digital Signatures" (and passwords)
SHA1 and MD5 are the most common algorithms

The idea is that you have some data x, put
that through a function fto get y [y = f(x)]

You cannot recompute x from y

Any change (small or large) in x creates a wildly
different (and probabilistically unique) y

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Digest[In|Out]putStream

These work as you would expect...

MessageDigest md =
MessageDigest.getinstance("SHA");
DigestOutputStream DOS = new
DigestOutputStream(Fptr, md);
DOS.write(x);

Reading is symmetric

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Compressed Streams

Deflator[In|Out]putStream
GZIP[In|Out]putStream
Zip[In|Out]putStream

Realtime on-the-fly compression and
decompression of all data in the stream

- GZIPOutputStream GOS =

new GZIPOutputStream(Fptr);
GOS.write(x);

Progress Monitoring

Puts a GUI object up with a progress bar

- You must specify where you want the GUI

object to show up as well as a message

InputStream in =
new BufferedInputStream(
new ProgressMonitorinputStream(
parentComponent,
"Reading " + fileName,
new FilelnputStream(fileName)));

02 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Lists of Streams

- SequencelnputStream allows you to
concatenate streams

- After one stream is completely read, the next
one in the list will be read

- You can construct a SequencelnputStream
using an Enumeration or a pair of
InputStream objects

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Bytes, why bytes?

- Streams use bytes as the unit which can be
read and written

- Bytes are good for hardware, but not good
for software

- We need some abstractions...

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Readers and Writers

These provide the ability to perform input
and output using characters (Strings)

Readers work with InputStreams
Writers work with OutputStreams

Reader and Writer are abstract classes

You will once again need to use extensions
of these classes to do useful work

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Streams to Readers/Writers

InputStreamReader convers an
InputStream into a Reader

InputStreamReader ISR = new
InputStreamReader(new FilelnputStream("..."));

OutputStreamWriter converts an
OutputStream into a Writer

OutputStreamWriter OSW = new
OutputStreamWriter(new
FileOutputStream("..."));

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Buffered |I/O

BufferedReader and BufferedWriter are
equivalent to BufferedlnputStream and
BufferedOutputStream

In addition, BufferedReader has the ability
to read a whole line of text (stripping the
newline character(s)) with readLine()

BufferedWriter has a platform independent
newLine() method for outputting a newline
character into the destination stream

Using Strings as Devices

- Sometimes you want to use a String rather
than a physical device for input and output

- This is particularly useful for debugging

- StringReader and StringWriter let you read
and write to a String in the same way that
you would to a device

- The String can them be examined/modified
by hand or by the computer

First Bytes, Then Strings...

- The next step is to be able to work with
JAVA Objects as the data for I/O

- The ObjectOutputStream and
ObjectinputStream classes are designed to
allow us to do this

- Setup your I/O session as usual
Use readObject / writeObject to do I/O
Be careful of casting!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

ObjectOutputStream

MySpecialObject me = // construct the object

FileOutputStream Fptr = new
FileOutputStream("/tmp/blah");

ObjectOutputStream OOS = new
ObjectOutputStream(Fptr);

OO0S.writeObject(me);
OOS.close();
Fptr.close();

10

ObjectinputStream

MySpecialObject me = null;

FilelnputStream Fptr = new
FileInputStream("/tmp/blah");

ObjectinputStream OOS = new
ObjectinputStream(Fptr);

me = (MySpecialObject)O0OS.readObject();
OO0S.close();
Fptr.close();

Serialization

If you want to read/write an object, it needs
to implement the java.io.Serializable
interface

- This interface declares no abstract methods
- So why have it at all?

Example: RMI... Serializable objects are
passed by value whereas Remote objects
are passed by reference

11

One Final Note

Don't forget to try and catch!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution

in whole or part without written authorization is expressively prohibited

12

