
1

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

JAVA.IO

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

What is java.io?

• JAVA represents everything as Objects

• java.io is set of Objects that are an
abstraction for streaming system resources
such as files

• java.io also defines input and output
mechanisms for things other than files

2

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Streams

• Streams are the "fundamental element" of
the java.io package

• The simplest streams are the abstract
classes InputStream and OutputStream

• You cannot use them directly

• They define i/o in terms of bytes

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

File Streams

• FileInputStream
FileInputStream Fptr =

new FileInputStream("/etc/passed");
int x = Fptr.read();
Fptr.close;

• FileOutputStream
FileOutputStream Fptr =

new FileOutputStream("/tmp/blah");
Fptr.write(64);
Fptr.close;

3

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Filtered Streams

• These take a stream as input during the
constructor and add functionality:
FileInputStream Fptr = new FileInputStream("/etc/passwd");
FilteredInputStream FIS = new FilteredInputStream(Fptr);
int x = FIS.read();
FIS.close();
Fptr.close();

• You would never actually use
Filtered[In|Out]putStream directly... you
would use classes that extend it

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Buffered[In|Out]putStream

• Buffered Streams cache operations...
• Devices perform better when working with blocks

• Use memory as a "buffer" for the i/o

• Input:
• A large block of the input is read ahead of time and

stored until needed in the buffer memory

• The stream can be reversed to a previous state
provided that the desired state is still in the buffer

• Output:
• Writes are not committed immediately

• Use flush if things need to be committed right away

4

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Checksums

• A checksum is a first order approximation to
to the problem of verifying data integrity

• Parity count:
 0100 0100 1101 0100 :: 1
 0111 1111 0000 0101 :: 0

• If the receiver gets the new message with a
single bit "wrong" we know there was a
problem in transit

• If two bits are wrong, we may not detect it

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Checked[In|Out]putStream

• Checksum CK = new CheckSum();
CheckedOutputStream COS =
 new CheckedOutputStream(CK, Fptr);
COS.write(x);

• CheckSum CK = new CheckSum
CheckedInputStream CIS =
 new CheckInputStream(CK, Fptr);
x = CIS.read();
if (CK != oldCK) {
 // throw some error
}

5

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Message Digests

• Message digests (one way hash functions)
are a much better data verification methods

• Message digests are strong
• Used for "Digital Signatures" (and passwords)

• SHA1 and MD5 are the most common algorithms

• The idea is that you have some data x, put
that through a function f to get y [y = f(x)]

• You cannot recompute x from y

• Any change (small or large) in x creates a wildly
different (and probabilistically unique) y

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Digest[In|Out]putStream

• These work as you would expect...

• MessageDigest md =
 MessageDigest.getInstance("SHA");
DigestOutputStream DOS = new
 DigestOutputStream(Fptr, md);
DOS.write(x);

• Reading is symmetric

6

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Compressed Streams

• Deflator[In|Out]putStream
GZIP[In|Out]putStream
Zip[In|Out]putStream

• Realtime on-the-fly compression and
decompression of all data in the stream

• GZIPOutputStream GOS =
 new GZIPOutputStream(Fptr);
GOS.write(x);

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Progress Monitoring

• Puts a GUI object up with a progress bar

• You must specify where you want the GUI
object to show up as well as a message

• InputStream in =
 new BufferedInputStream(
 new ProgressMonitorInputStream(
parentComponent,
 "Reading " + fileName,
new FileInputStream(fileName)));

7

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Lists of Streams

• SequenceInputStream allows you to
concatenate streams

• After one stream is completely read, the next
one in the list will be read

• You can construct a SequenceInputStream
using an Enumeration or a pair of
InputStream objects

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Bytes, why bytes?

• Streams use bytes as the unit which can be
read and written

• Bytes are good for hardware, but not good
for software

• We need some abstractions...

8

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Readers and Writers

• These provide the ability to perform input
and output using characters (Strings)

• Readers work with InputStreams

• Writers work with OutputStreams

• Reader and Writer are abstract classes

• You will once again need to use extensions
of these classes to do useful work

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Streams to Readers/Writers

• InputStreamReader convers an
InputStream into a Reader

• InputStreamReader ISR = new
InputStreamReader(new FileInputStream("..."));

• OutputStreamWriter converts an
OutputStream into a Writer

• OutputStreamWriter OSW = new
OutputStreamWriter(new
FileOutputStream("..."));

9

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Buffered I/O

• BufferedReader and BufferedWriter are
equivalent to BufferedInputStream and
BufferedOutputStream

• In addition, BufferedReader has the ability
to read a whole line of text (stripping the
newline character(s)) with readLine()

• BufferedWriter has a platform independent
newLine() method for outputting a newline
character into the destination stream

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Using Strings as Devices

• Sometimes you want to use a String rather
than a physical device for input and output

• This is particularly useful for debugging

• StringReader and StringWriter let you read
and write to a String in the same way that
you would to a device

• The String can them be examined/modified
by hand or by the computer

10

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

First Bytes, Then Strings...

• The next step is to be able to work with
JAVA Objects as the data for I/O

• The ObjectOutputStream and
ObjectInputStream classes are designed to
allow us to do this

• Setup your I/O session as usual

• Use readObject / writeObject to do I/O

• Be careful of casting!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

ObjectOutputStream

MySpecialObject me = // construct the object

FileOutputStream Fptr = new
FileOutputStream("/tmp/blah");

ObjectOutputStream OOS = new
ObjectOutputStream(Fptr);

OOS.writeObject(me);

OOS.close();

Fptr.close();

11

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

ObjectInputStream

MySpecialObject me = null;

FileInputStream Fptr = new
FileInputStream("/tmp/blah");

ObjectInputStream OOS = new
ObjectInputStream(Fptr);

me = (MySpecialObject)OOS.readObject();

OOS.close();

Fptr.close();

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Serialization

• If you want to read/write an object, it needs
to implement the java.io.Serializable
interface

• This interface declares no abstract methods

• So why have it at all?

• Example: RMI... Serializable objects are
passed by value whereas Remote objects
are passed by reference

12

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

One Final Note

Don't forget to try and catch!

