Multi-Threaded
Programming
in JAVA

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

In the Beginning...

- Computers ran a single task at a time...

« Punch cards were placed into a feeder.

« The cards were then read, compiled and run.
- Batch processing extended this...

« Groups of punch cards could be run one after the next.

- This increases return of investment in the hardware.

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Then Came the Operating System

- The OS sits between programs and the hardware.

- Contributions include:

+ Uniform interaction between hardware
I/O abstractions (e.g., filesystems)

Standardized interaction libraries (e.g., libc)
« Multi-user Capabilities

Memory management and protection (virtual address space)

Scheduling and time sharing

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Multiple Users ~ Multiple Tasks

- Hardware is shared between many users

- Each user can run multiple tasks

- Better return on investment... just like batch systems
« Processor is idle less often
« Some time is “wasted” switching tasks

Task A - -
Task B I_I
Task C]]

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Context SW1tches

Multi-Tasking

K users share the hardware running N tasks

Tasks are time-sliced quickly to give the illusion
that all tasks are running in parallel

Each task thinks it’s the only one on the machine
Cooperative Multi-Tasking: (Win3.1, MacOS)

Each process yield the processor when it feels fit
Pre-Emptive Multi-Tasking: (UNIX)

The OS scheduler decides who should run when

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Multi-Threading

If each user can run many tasks...

Why can’t each task have many “sub-tasks™?

This is usually called multi-threading.

Threads are like “lightweight” tasks...

Scheduling for execution is pretty much the same

Differences include:
They share the same memory space.

They may not have as much OS overhead.

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Why do we want threads?

- Why multi-user / multi-tasking?

« Processor is idle less, people can share a computer.

- Better return on hardware investment
. We use threads for somewhat similar reasons:

- Make sure processors are fully utilized
Don’t block on I/O

True parallel execution on multiprocessor hardware
+ Other cool things

Games: intelligent user agents, animation

Automatic garbage collection, hidden from the user

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

How does the JVM affect this?

- Each JVM is a separate task on the native OS
- Most JVMs run a single JAVA program
- Each JVM (JAVA program) has many threads

« In the simplest case, the GC and your main thread
« JVM threads to OS interaction depends on JVM

« The newest JVMs (e.g., Sun HotSpot) will take
advantage of physical multiprocessor hardware

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Programming Threads in JAVA

- Two ways it can be done

« Create a class, extend Thread
« Override the run() method
- Instantiate the class
- Call start()
+ Create a class, implement Runnable
- Implement the run() method
- Instantiate your class

- Instantiate a Thread class, pass your class in constructor
- Call start()

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

A Simple Thread Example

public class TwoThreadsExample {
public TwoThreadsExample () {
(new SimpleThread("First Thread")) .start();
(new SimpleThread("Second Thread")) .start();
}
private class SimpleThread extends Thread {
public SimpleThread (String str) { super(str); }
public void run() {
for (int i = 0; i1 < 10; i++) {
System.out.println(getName() + " says " + 1i);
try{ sleep((long) (Math.random() * 1000)); }
catch (InterruptedException e) {}
}
System.out.println(getName() + " is done.");
}
}
public static void main (String[] args) {
new TwoThreadsExample () ;

}

Copyright}1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

TwoThreadsTest Output

St simonsiiptZ0: fmisciudiclassesfjavalcodelib/threads

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

I/0 Blocking Example

We want to serve many clients using sockets

- Each client that connects is serviced by a thread
« This provides “parallel” service to may clients
- Two components, Listener and Handler
The Handler implements Runnable
The client servicing is done in the Handler

The Listener spawns Handlers using the new
keyword and wrapping Handlers inside Threads

Try/catch blocks are missing from this code

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Listener

public class Listener {
public static void main(String[] args) {

ServerSocket srvSock = new ServerSocket (4567) ;

while (keepRunning) ({

// when we get a connection, spawn off a
// thread to handle it.. this means we can
// keep listening for other connections
// while the first client is serviced

Socket conn = srvSock.accept() ;

(new Thread (new sockHandler (conn))) .start();

}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Handler

public class sockHandler implements Runnable ({
private Socket conn = null;
public sockHandler (Socket conn) ({
this.conn = conn;
}
public void run() {
InputStreamReader ISR = new
InputStreamReader (conn.getInputStream()) ;
BufferedReader fromClient = new
BufferedReader (ISR) ;
OutputStreamReader OSR = new
OutputStreamReader (conn.getOutputStream()) ;
PrintWriter toClient = new
PrintWriter (OSR) ;
// DO CLIENT SERVICING HERE

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Data Parallel Programming

- We spawn off many threads to estimate PI
- As each thread completes, we update our estimate

- If we were running on MP hardware with a
Hotspot JVM, these threads would run on
separate processors and harness true parallelism

- Notice that the threads share a single memory
space... that’s why we can communicate between
the sub-tasks and controller without RMI

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

PI Estimation Task Thread

public class PiEstimatorTask extends Thread {
private EstimatePi Parent = null;
private static final int iterations = 100000;
public PiEstimatorTask (EstimatePi Parent) {
this.Parent = Parent;
}
public void run() {
int in = 0, out = 0;
for (int i = 0; i < iterations; i++) {
double x=2.0*Math.random()-1.0, y=2.0*Math.random()-1.0;
if ((Math.sqgrt(x*x+y*y) < 1.0)) { in++; } else { out++; }
}
double estimate = 4.0 * (double)in / (double)iterations;
Parent.updateEstimate (estimate) ;

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

PI Estimation Control Program

public class EstimatePi {
private double pi = 0.0;
private final int numTasks = 12; // one for each processor
private int allFinished = 0;
private long starttime = 0;

public synchronized void updateEstimate (double est) {
long rt = System.currentTimeMillis () - starttime;
System.out.println ("Terminated at " + rt + " ms, est " + est);
pPi = (allFinished == 0) ? est : (pi + est) / 2;
allFinished++;

}

public double getPi() { return pi; }

// . . . continued on next slide

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

PI Estimation Control Program

public void go() {
PiEstimatorTask[] PiTasks = new PiEstimatorTask[numTasks];
System.out.println ("Instantiating " + numTasks + " threads");
for (int i = 0; i < numTasks; i++) {
PiTasks[i] = new PiEstimatorTask (this);
}
starttime = System.currentTimeMillis();
System.out.println ("Starting threads, time = 0 ms");
for (int i = 0; i < numTasks; i++)
(PiTasks[1i]) .start() ;
} // FIXME: try/catch InterruptedExeception below
while (allFinished < numTasks) { Thread.sleep(1000); }
}
public static void main(String[] args) {
EstimatePi MCP = new EstimatePi();
MCP.go() ;
System.out.println ("Final estimate is: " + MCP.getPi()):;
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

PI Estimation Output
(Uniproessor Hardware)

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Implementing Runnable

Change the PiEstimationTask Thread from
extends Thread to implements Runnable

Change the instantiation code in MCP to be:

Thread PiTasks[] = new Thread[numTasks];
for (int i = 0; i < numTasks; i++) {

PiTasks[i] = new Thread(new (PiEstimatorTask (this));

}

Using this approach is superior because the
task child can extend a class that does useful
abstraction rather than java.lang.Thread

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

10

Did you notice?

» The method updateEstimate in the control
program is declared synchronized?

- This is JAVA’s way of providing MutEx
« MutEx is short for Mutual Exclusion
« Only one person can go at a time

- When you have parallel processing, you will
almost always run into MuTex problems

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Synchronized Methods

public void synchronized doSomething () {
// guaranteed that only one Thread
// will be running this method
// at any time
}
- If one thread is running this method, any other
thread calling it will wait until the first thread

has returned from the method.

- Note that this can slow things down
tremendously! Use with caution.

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

11

Synchronized Blocks

- public void someMethod () ({
synchronized (someObject) ({
// do some stuff

}
}

+ Only one thread can be running the block at any time
- The someObject is the data that is critical
- Fine grain atomicity

Generally results in better performance

Harder to create code

Harder to read code later on

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Dead Locks

- If you have multiple piece of critical data:

synchronized (someObject) ({
synchronized (otherObject) ({
// critical section

}

- Always gather the locks in the same order!

- If someplace else you get otherObject before
someObject, you might end up with deadlock.

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

In Summary

 Multi-Threading enables use make better use of
contemporary computers:

« Prevents idle/busy waiting CPU

- Non-blocking I/O

- Parallel execution (on MP hardware)
« Automatic garbage collection

- Fun uses for games (animation / bad guys with Al)

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

13

