
1

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Multi-Threaded
Programming

in JAVA

P0

P1

t0

t1

t2

t0

t1

t2

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

In the Beginning…

• Computers ran a single task at a time…

• Punch cards were placed into a feeder.

• The cards were then read, compiled and run.

• Batch processing extended this…

• Groups of punch cards could be run one after the next.

• This increases return of investment in the hardware.

2

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Then Came the Operating System

• The OS sits between programs and the hardware.

• Contributions include:

• Uniform interaction between hardware

• I/O abstractions (e.g., filesystems)

• Standardized interaction libraries (e.g., libc)

• Multi-user Capabilities

• Memory management and protection (virtual address space)

• Scheduling and time sharing

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Multiple Users ~ Multiple Tasks

• Hardware is shared between many users

• Each user can run multiple tasks
• Better return on investment… just like batch systems

• Processor is idle less often

• Some time is “wasted” switching tasks

Task A

Task B

Task C

Context Switches

3

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Multi-Tasking

• K users share the hardware running N tasks

• Tasks are time-sliced quickly to give the illusion
that all tasks are running in parallel

• Each task thinks it’s the only one on the machine

• Cooperative Multi-Tasking: (Win3.1, MacOS)

• Each process yield the processor when it feels fit

• Pre-Emptive Multi-Tasking: (UNIX)

• The OS scheduler decides who should run when

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Multi-Threading

• If each user can run many tasks…

• Why can’t each task have many “sub-tasks”?

• This is usually called multi-threading.

• Threads are like “lightweight” tasks…

• Scheduling for execution is pretty much the same

• Differences include:

• They share the same memory space.

• They may not have as much OS overhead.

4

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Why do we want threads?

• Why multi-user / multi-tasking?

• Processor is idle less, people can share a computer.

• Better return on hardware investment

• We use threads for somewhat similar reasons:

• Make sure processors are fully utilized

• Don’t block on I/O

• True parallel execution on multiprocessor hardware

• Other cool things

• Games: intelligent user agents, animation

• Automatic garbage collection, hidden from the user

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

How does the JVM affect this?

• Each JVM is a separate task on the native OS

• Most JVMs run a single JAVA program

• Each JVM (JAVA program) has many threads

• In the simplest case, the GC and your main thread

• JVM threads to OS interaction depends on JVM

• The newest JVMs (e.g., Sun HotSpot) will take
advantage of physical multiprocessor hardware

5

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Programming Threads in JAVA

• Two ways it can be done

• Create a class, extend Thread

• Override the run() method

• Instantiate the class

• Call start()

• Create a class, implement Runnable

• Implement the run() method

• Instantiate your class

• Instantiate a Thread class, pass your class in constructor

• Call start()

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

A Simple Thread Example

public class TwoThreadsExample {
 public TwoThreadsExample() {
 (new SimpleThread("First Thread")).start();
 (new SimpleThread("Second Thread")).start();
 }
 private class SimpleThread extends Thread {
 public SimpleThread(String str) { super(str); }
 public void run() {
 for (int i = 0; i < 10; i++) {
 System.out.println(getName() + " says " + i);
 try{ sleep((long)(Math.random() * 1000)); }
 catch (InterruptedException e) {}
 }
 System.out.println(getName() + " is done.");
 }
 }
 public static void main (String[] args) {
 new TwoThreadsExample();
 }
}

6

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

TwoThreadsTest Output

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

I/O Blocking Example

• We want to serve many clients using sockets

• Each client that connects is serviced by a thread

• This provides “parallel” service to may clients

• Two components, Listener and Handler

• The Handler implements Runnable

• The client servicing is done in the Handler

• The Listener spawns Handlers using the new
keyword and wrapping Handlers inside Threads

• Try/catch blocks are missing from this code

7

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Listener

public class Listener {

public static void main(String[] args) {

 ServerSocket srvSock = new ServerSocket(4567);

 while (keepRunning) {

 // when we get a connection, spawn off a
 // thread to handle it… this means we can
 // keep listening for other connections
 // while the first client is serviced

 Socket conn = srvSock.accept();

 (new Thread(new sockHandler(conn))).start();

 }

}

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Handler

public class sockHandler implements Runnable {
private Socket conn = null;
public sockHandler(Socket conn) {
 this.conn = conn;
}
public void run() {
 InputStreamReader ISR = new
 InputStreamReader(conn.getInputStream());
 BufferedReader fromClient = new
 BufferedReader(ISR);
 OutputStreamReader OSR = new
 OutputStreamReader(conn.getOutputStream());
 PrintWriter toClient = new
 PrintWriter(OSR);
 // DO CLIENT SERVICING HERE
}

}

8

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Data Parallel Programming

• We spawn off many threads to estimate PI

• As each thread completes, we update our estimate

• If we were running on MP hardware with a
Hotspot JVM, these threads would run on
separate processors and harness true parallelism

• Notice that the threads share a single memory
space… that’s why we can communicate between
the sub-tasks and controller without RMI

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

PI Estimation Task Thread

public class PiEstimatorTask extends Thread {
 private EstimatePi Parent = null;
 private static final int iterations = 100000;
 public PiEstimatorTask(EstimatePi Parent) {
 this.Parent = Parent;
 }
 public void run() {
 int in = 0, out = 0;
 for (int i = 0; i < iterations; i++) {
 double x=2.0*Math.random()-1.0, y=2.0*Math.random()-1.0;
 if ((Math.sqrt(x*x+y*y) < 1.0)) { in++; } else { out++; }
 }
 double estimate = 4.0 * (double)in / (double)iterations;
 Parent.updateEstimate(estimate);
 }
}

9

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

PI Estimation Control Program

public class EstimatePi {
 private double pi = 0.0;
 private final int numTasks = 12; // one for each processor
 private int allFinished = 0;
 private long starttime = 0;

 public synchronized void updateEstimate(double est) {
 long rt = System.currentTimeMillis() - starttime;
 System.out.println("Terminated at " + rt + " ms, est " + est);
 pi = (allFinished == 0) ? est : (pi + est) / 2;
 allFinished++;
 }

 public double getPi() { return pi; }

 // . . . continued on next slide . . .

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

PI Estimation Control Program

 public void go() {
 PiEstimatorTask[] PiTasks = new PiEstimatorTask[numTasks];
 System.out.println("Instantiating " + numTasks + " threads");
 for (int i = 0; i < numTasks; i++) {
 PiTasks[i] = new PiEstimatorTask(this);
 }
 starttime = System.currentTimeMillis();
 System.out.println("Starting threads, time = 0 ms");
 for (int i = 0; i < numTasks; i++)
 (PiTasks[i]).start();
 } // FIXME: try/catch InterruptedExeception below
 while(allFinished < numTasks) { Thread.sleep(1000); }
 }
 public static void main(String[] args) {
 EstimatePi MCP = new EstimatePi();
 MCP.go();
 System.out.println("Final estimate is: " + MCP.getPi());
 }
}

10

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

PI Estimation Output
(Uniproessor Hardware)

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Implementing Runnable

• Change the PiEstimationTask Thread from
extends Thread to implements Runnable

• Change the instantiation code in MCP to be:
 Thread PiTasks[] = new Thread[numTasks];

 for (int i = 0; i < numTasks; i++) {
 PiTasks[i] = new Thread(new (PiEstimatorTask(this));
 }

• Using this approach is superior because the
task child can extend a class that does useful
abstraction rather than java.lang.Thread

11

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Did you notice?

• The method updateEstimate in the control
program is declared synchronized?

• This is JAVA’s way of providing MutEx

• MutEx is short for Mutual Exclusion

• Only one person can go at a time

• When you have parallel processing, you will
almost always run into MuTex problems

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Synchronized Methods

• public void synchronized doSomething() {
 // guaranteed that only one Thread
 // will be running this method
 // at any time
}

• If one thread is running this method, any other
thread calling it will wait until the first thread
has returned from the method.

• Note that this can slow things down
tremendously! Use with caution.

12

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Synchronized Blocks

• public void someMethod() {
 synchronized(someObject) {
 // do some stuff
 }
}

• Only one thread can be running the block at any time

• The someObject is the data that is critical

• Fine grain atomicity

• Generally results in better performance

• Harder to create code

• Harder to read code later on

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Dead Locks

• If you have multiple piece of critical data:
 synchronized(someObject) {
 synchronized(otherObject) {
 // critical section
 }
 }

• Always gather the locks in the same order!

• If someplace else you get otherObject before
someObject, you might end up with deadlock.

13

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

In Summary

• Multi-Threading enables use make better use of
contemporary computers:

• Prevents idle/busy waiting CPU

• Non-blocking I/O

• Parallel execution (on MP hardware)

• Automatic garbage collection

• Fun uses for games (animation / bad guys with AI)

