

 1

Remote Method Invocation

The JAVA Distributed
Object Environment

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

RMI – What’s the Deal?

l In the world of JAVA…
– All JAVA programs are collections of objects

– There exists a hierarchy of authority

– They must live inside a “JVM” (simulated computer)

l In the real world…
– We have networks of computers

– We have collaborative computing

l Why not have collaborative virtual computing?

 2

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

OOP is Inherently Distributable

l JAVA Object Lifecycles
– Objects are defined by the programmer

– Object “templates” are created at compile time

– Instances of objects are brought into existence by
code imperatives at run time

– The instances are then used for doing “work”

l At any point in time, does a program have any
knowledge of “where” an object template or
instance lives?

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

How does it work?

l Start with sockets

l Build a listener (server)
– Serves up object templates

– Allows for client to create instances on server

– Needs a “name space” mechanism

– Needs a security mechanism

l Build a client
– Create a library for users to interact with the server

 3

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Key Issues that come up…

l Traditional programming methods require that
the program has full knowledge of all objects

l Even if we are sharing a single object…
– What fields does it have that we can access?

– What methods does it have that we can invoke?

– Who (which clients) are allowed to see this object?

l If we are sharing many objects…
– How do we prevent name space collisions?

– How can we export an object by collection?

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

How RMI handles the issues…

l How do we prevent unauthorized access
– We have to have a security policy

l How do we present object collections
– Use an object manager with name binding services

– The program is called rmiregistry
l What does an object offer (fields/methods)

– The interface for the object must be publicly shared
between the client and server

 4

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

JAVA Security Policies

l The JDK/JRE comes with a policytool
l This is used to create/edit .java.policy

– In UNIX, it belongs in your home directory

– In Win9X, it belongs in C:\WINDOWS

– In WinNT/2K/XP, it belongs in your profile directory

grant {
 permission java.net.SocketPermission “*:1024-65535”, “accept, connect, listen, resolve”;
 permission java.io.FilePermission “<<ALL FILES>>”, “read”;

};

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

“policytool” under Windows

 5

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The RMI Registry

l This keeps a mapping between “collections”
names (projects) and actual server classes

l Set your CLASSPATH to your code base
– UNIX: export CLASSPATH=/home/me/myfiles

– Windows: set CLASSPATH=C:\mystuff

l Startup the registry
– UNIX: nohup rmiregistry &

– Windows: start rmiregistry (keep window open)

l Automatically handled by Forte/Netbeans

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Remote Object Interfaces

l RMI objects must list exported methods into an
interface that extends java.rmi.Remote

l The RMI object the must:
– extend java.rmi.server.UnicastRemoteObject

– implement TheInterfaceThatExtendsRemote

l All methods that can be called remotely must:
– Be present in the interface

– Declared as “throws java.rmi.RemoteException”

 6

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Steps to RMI Outlined:

l Make sure you have a proper .java.policy

l Write your code

l Compile your code
– javac for your regular code

– rmic to generate stubs and skeletons

l Start your rmiregistry

l Run your server

l Run your client

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Basic RMI Picture

Server
Implementation

Server
Interface

RMI
Registry

RMI
Client

(1) Naming.rebind(rmiURL)

(2) Naming.lookup(rmiURL)
[returns a reference to server interface]

(3) RMI call to the server to run a method

(4) Method executes
(5) Method returns

 7

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

RMI – Defining the interfaces

import java.rmi.*

public interface Server
extends java.rmi.Remote {

 public void doSomething()
throws RemoteException;

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Implementing the RMI Objects

import java.rmi.*;
import java.rmi.server.UnicastRemoteObject;

public class ServerImpl
extends UnicastRemoteObject
implements Server { // Server is the interface

 public void doSomething() throws RemoteException {
 // PUT YOUR CODE HERE
 }

 // NEED TO PUT SPECIAL CODE FOR MAIN HERE

}

 8

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Implementing a Server’s main
public static void main(String [] args) {

 String rmiName = ”myProjectName";

 try {
 Server theServer = new ServerImpl(); // POLYMORPHISM

 Naming.rebind(rmiName, theServer);
 System.out.println(“bound as " + rmiName);
 } catch (Exception e) {
 System.out.println("Error binding as " + rmiName);
 System.out.println(e);
 }

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Implementing a Client’s main

public static void main(String [] args) {

 String rmiURL = "rmi://server.com/myProjectName";
 Server theServer = null;

 try { // NOTICE THE CAST BELOW
 theServer = (Server)Naming.lookup(rmiURL);
 theServer.doSomething();
 } catch (Exception e) {
 System.out.println("Couldn’t find " + rmiURL);
 System.out.println(e);
 }

}

 9

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Compiling/Running a RMI program

l Clients need to have an idea of what’s
available in order to compile properly
– JAVAC checks to see if the method names are valid

l Stubs and skeletons for this purpose can be
generated with the “rmic” compiler
– rmic on classes that extend UnicastRemoteObject

l Forte/NetBeans handles this automatically

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

IDE To The Rescue

l There are Forte/NetBeans modules for just
about every extension of JAVA, including RMI
– These modules are now part of the standard install

– They used to be “pay extra for these modules”

l Use the “UnicastRemoteObject” template for
the RMI server
– This actually creates two files (interface and class)

l Use the “RMIClient” template for the client

 10

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Forte/NetBeans will automatically…

l Synchronize your interface with your
implementation on the server side

l Startup an RMI registry on the server

l Provide easy to edit static protected variables
for per-project settings (like the RMI name)

l Automatically run rmic to build the stubs and
skeletons

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Using the RMI template

 11

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

RMI Template - The Result

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Call by what?

l In JAVA, everything is call by value
– This is even true of objects!

– The reference variables are copied when passed

l This is no different with RMI
– Parameters and return values are duplicated before

they are passed across the network

– The objects that reference variables point to are
serialized and transferred

– A clone (that no longer references the original) is
then created on the JVM with the implementation

 12

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Normal Method Invocation

JVM

The actual
memory

contents of
myObject

public class whatever {
 public void callMe(Object A) {
 A.doSomeOtherStuff();
 }
 public static void main(…) {
 Object myObject = new Object();
 myObject.doStuff();
 callMe(myObject);
 }
}

myObjectA

Reference variables are cloned but point
to the same memory location.

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

RMI Parameter Passing

Client Server
(1) Client calls

 theServer.doSomething(myObject)

myObject
myObject

clone(2) Serialized myObject data is transferred

(3) Serialized
myObject data
is then used to
construct a clone
of myObject

myObject and myObject clone are **NOT**
referencing the same object anymore!

 13

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Passing References in RMI

l Classes must implement java.io.Serializable
– This interface doesn’t have any methods or fields

– It’s a marker for the JAVA to know to serialize

l Passing objects by reference is also possible
– Basically the object must be a RMI “Server”

– It must extend java.rmi.server.UnicastRemoteObject

– It must implement an interface that extends Remote

– Methods that are called in a JVM other than the one
the object was created in must be in the interface

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Asynchronous Communication

l The client can call the server at any time.

l The server “responds” by executing the
implemented method that the client called.

l Let’s say the method takes a long time, why
can’t the server call the client asynchronously?

l Because it doesn’t have the a reference to the
client to call methods on!

l Setup RMI callbacks to do this.

 14

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The RMI Callback Picture

Server
Implementation

Server
Interface

RMI
Registry

RMI
Client

(5) Server saves copy of
client callback references
so that asynchronous
communication can
occur at any time

(2) Naming.lookup(rmiURL)
[returns a reference to server interface]

(4) RMI call to register
the callback agent

Callback
Agent

Callback
Interface

(3) Client
instantiates

callback
agent

Remote Reference
to Callback Agent

(1) Naming.rebind(rmiURL)

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

RMI Callback Framework: Server

public interface Server {
 public registerClient(Callback theClient) throws RemoteException;
}

public class ServerImpl extends UnicastRemoteObject
 implements Server {

 Vector theClients = new Vector();
 public registerClient(Callback theClient) throws RemoteException {

 theClients.addElement(theClient);
 }
 public broadcastMessage() throws RemoteException {
 for(int j = 0; j < theClients.length(); j++) {

 ((Callback)theClients.get(j)).recvMessage(“whatever”);
 }

 }
 public static void main(String[] args) {
 // DO RMI INITIALIZATION AND BINDING HERE
 }
}

 15

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

RMI Callback Framework: Client

public interface Callback {
 public recvMessage(String theMessage) throws RemoteException;
}

public class CallbackImpl extends UnicastRemoteObject
 implements Callback {

 Client myClient = null; // MUST INIT THIS GUY USING CONSTRUCTOR
 public recvMessage(String theMessage) throws RemoteException {

 myClient.recvMessage(theMessage);
 }
}

public class Client {
 public Client() {
 Server theServer = (Server)Naming.lookup(myURL);
 theServer.registerClient(new CallbackImpl(this));
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

In Summary

l RMI is …
– an extension of sockets that is easier to use
– a way to make JAVA objects network accessible
– based on client/server networking principles

l RMI overhead includes …
– security policy setup
– setting up the RMI registry
– creating interfaces, compiling stubs and skeletons
– special framework if asynchronous communication

between server and client is desired

