

 1

Principles of OOD/OOP

Object Oriented Design

Object Oriented Programming

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

From the ground up…

Computers receive instructions that are encoded
in machine language:

• 00100010100100100110111010101001

Assembly is a (1-1) mapping between machine
language and “easy-to-use” mnemonics:

• MOV AX BX

• ADD R3, [R5], 3251

• JMPZ #3, [#5]+#2

 2

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Simple Imperative Languages

BASIC is by far the most common one:

10 print “Good morning”
20 print “What is your name?”
30 input A$
35 if (A$ == “”) goto 20
40 print “Hello “, A$
50 print “My name is COMPUTER”

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Hovering at 1000 feet…

Imperative languages make things easier:
– Mnemonics are more manageable.

– Memory & registers are abstracted away (variables).

– Commonly used routines are pre-packaged:
• Don’t need to rewrite the cosine routine every time.

• Prepackaged routines are written by “experts.”

– Source code can be used on different platforms.
• Recompilation is necessary, but no rewriting of code.

 3

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Procedural Languages

C is by the most common, but FORTRAN and
PASCAL are still around…

int factorial(int input) {
 if (input == 1) {
 return 1;
 } else {
 return factorial(input-1) * input;
 }
}

int main(int argc, char *argv[]) {
 printf(“30 factorial is: %i“, factorial(30);
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

We have liftoff…

With procedural languages came real power.

Almost all UNIX based software (including the
kernel itself) is written in a procedural language.

C, FORTRAN, PASCAL are all procedural.

They offer the ability to create “functions” or
“procedures” where commonly used code could
be aggregated by the user.

 4

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

What’s wrong with GOTO?

What do we gain by using a procedural language
as opposed to using GOTO?
– Software can be broken down into modules.

– Modules can be written by different people.

– Modules can be verified/validated independently.

– Modules can be “downloaded,” shared between
projects or even purchased from a vendor.

This means larger, more complex, software
projects are within our grasp!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Are procedures all we need?

Procedures require you to “think” (and hence
program) in the way the designer operates.

Procedures tend to be heavily type dependent.

Procedures have no inherent state.

Testing procedures requires other procedures.

Groups of procedures cannot be “linked.”

 5

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Typical procedural madness…

public int main(int argc, char *argv[]) {
 struct MySDKStateVariables statevars = null;
 MySDKInitStateVars(statevars);
 MySDKSetInParams(123, “/dev/null”, statevars);
 MySDKDoSomeAction(statevars);
 MySDKSetOutParams(5, “/tmp/stuff”, statevars);
 MySDKSendOutput(statevars);
 MySDKCleanUp(statevars);
 memcpy(statevars, 0, sizeof(statevars));
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Procedures are contrived!

Think of a procedure as a commonly used list or set of
instructions:
 public do_the_laundry(void * dirty_clothes) {
 /* gather dirty clothes */
 /* put clothes in laundry machine */
 /* put detergent in laundry machine */
 /* turn on machine */
 … you get the idea
 }

Is that really the way you think about everyday tasks?

 6

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Procedures are for Math!

Computers and computer science was
developed as a branch of mathematics.

Procedural languages were invented by
mathematicians to solve mathematical problems.

Today, we use computers for many things other
than solving math problems.

We need a paradigm shift!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Introducing the object…

The world is made of objects

Objects have two aspects to them
– State variables

– Actions that modify the state variables

Goal: “model” real (or abstract) objects
– Representation is everything!

– If we can represent the objects and their behavior,
we’ve essentially solved our problem

 7

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

A balloon for starters…

The state of a balloon can be described by:
• Position (numerical data - x,y,z)

• Inflation characteristics (number - diameter)

• Structural integrity (boolean - hasHole)

Actions that can be performed include:
• Move(newX, newY, newZ)

• Inflate(appliedPressure, numberOfSeconds)

• Pop()

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Details about the actions…

Move(newX, newY, newZ)
• Set the x,y,z state coordinates to the new values

Inflate(appliedPressure, seconds)
• Calculate the new diameter based on the amount of

pressure and how long it was applied

• If the new diameter is “unfeasible,” run the Pop() action

Pop()
• Set the hasHole state variable to true, diameter to zero

 8

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Declaring the class and fields…

public class Balloon {
 int x = 0; // position
 int y = 0; // position
 int z = 0; // position
 float diameter = 0.0F; // size
 boolean hasHole = false; // integrity
 final double MAX_DIAMETER = 100.0;
 final double INFLATE_CONSTANT = 5.0;
 /* put all of the methods here */
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Move and Pop Methods

public void move (int x, int y, int z) {
 this.x = x;
 this.y = y;
 this.z = z;
 // what does the keyword “this” mean?
}
public void pop () {
 this.diameter = 0.0F;
 this.hasHole = true;
}

 9

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Inflate Method

public void inflate (double p, double t) {
 if (this.hasHole != true) {
 this.diameter += (float)(t*p/INFLATE_CONSTANT);
 if (this.diameter > MAX_DIAMETER) {
 this.pop();
 }
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Using Our Balloon

To use our objects, we need to “instantiate” them
– Class definitions are like blue prints

– Instances are like the results of manufacturing

Instances are created with the keyword “new”
– Class myClass = new Class();

– myClass is the reference to the object

– references point to memory locations, kind of like the
serial number of manufactured products

 10

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

An Example of Balloon Use

public class RunMe {
 public static void main(String [] args) {
 // the following is called the creation
 // of an instance of Balloon
 Balloon myBalloon = new Balloon();
 // now we call methods & access data
 myBalloon.move(1, -3, 5);
 myBalloon.inflate(15.0, 0.75);
 System.out.println(myBalloon.diameter);
 myBalloon.pop();
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Instances Aren’t Linked

public class RunMe {
 public static void main(String [] args) {
 Balloon A = new Balloon();
 Balloon B = new Balloon();
 A.move(0, 1, 0);
 A.move(1, -3, 5);
 B.move(2, 3, 7);

 // what will this code print out?
 System.out.println(A.x+“ “+A.y+“ “+A.z);
 System.out.println(B.x+“ “+B.y+“ “+B.z);
 }
}

 11

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Who is “this”?

Represents the “current” instance

Let’s say you have two instances A and B
– When A.move() is run, this means A

– When B.move() is run, this means B

Extremely important for scoping!
– Distinguish between local and class scope variables

– Can also be used when executing methods

public void move
 (int x, int y, int z) {
 this.x = x;
 this.y = y;
 this.z = z;
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

What about initial parameters

Wouldn’t it be nice to create an instance of the
balloon that begins it’s a life in a specific place?

To do this, we declare additional constructors:
public Balloon(int x, int y, int z) {
 this.x = z;
 this.y = y;
 this.z = z;
}
We could also do the same with initial size

 12

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Using A Non-Default Constructor

public class RunMe {
 public static void main(String [] args) {
 Balloon myBalloon = new Balloon(1, 2, 3);
 Balloon otherBalloon = new Balloon();
 otherBalloon.move(1, 2, 3);

 // otherBalloon and myBalloon are now
 // at “equivalent” positions

 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Object Equivalence

If we were to just say ask == for two references,
we would almost never get what we mean

Example:
 Balloon A = new Balloon(1,-1,5);
 Balloon B = new Balloon(1,-1,5);
 if (A == B) {
 System.out.println(“Same place!”);
 }

 13

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Override .equals()

java.lang.Object provides a method “equals”
– Used by the system in many places

Override this and put in a use definition
Be careful to preserve the properties specified in
the JAVA API documentation!
– reflexive: x.equals(x) is always true
– symmetric: x.equals(y) <-> y.equals(x)
– transitive: x.equals(y), y.equals(z) -> z.equals(x)
– x.equals(null) should return false

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Example of Overriding .equals()

public boolean equals(Object obj) {
 Balloon other = (Balloon)obj;
 boolean output = false;
 if (other != null) {
 if(this.x == other.x &&
 this.y == other.y &&
 this.z == other.z) {
 output = true;
 }
 }
 return output;
}

 14

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Using .equals() in Your Code

Replace the == from before and now everything
should work the way you think it should

Example:
 Balloon A = new Balloon(1,-1,5);
 Balloon B = new Balloon(1,-1,5);
 if (A.equals(B)) {
 System.out.println(“Same place!”);
 }

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Printing Out and Object

Primitives can be printed easily:
int x = 42;
System.out.println(x);

But what happens when I print an object?
Balloon myBalloon =

 new Balloon(4,2,1);
System.out.println(myBalloon);

I will get the memory location of myBalloon, not
exactly the most useful thing in the world

 15

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Overriding the .toString() Method

java.lang.Object defines a “.toString()” method
that is automatically called by things like
System.out.println() and other methods

Override this method and you will get useful
output from System.out.println()

Of course, you can also invoke this manually
when you need it

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Example of .toString()
public String toString() {
 String output = new String(“Position - ”);
 output += “ X:” + this.x;
 output += “ Y:” + this.y;
 output += “ Z:” + this.z;
 return output;
}

Now if I run:
System.out.println(new Balloon(3,4,5));
I will get the output:
Position - X:3 Y:4 Z:5

 16

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Bulletproofing

Never assume data is correct
• Check all data before you operate on it
• Especially if the data is coming from a user

Not checking inputs results in severe problems
• Divide-by-zero
• Buffer overruns
• Severe security vulnerabilities

Data hiding addresses these some of these issues
by enforcing when state variables can change

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Data Hiding

Never allow direct access to state variables
 public class MyObject extends Object {
 private int someData = 0;
 protected double otherData = 0.0;
 package boolean moreData = true;
 }
Protected variables can be accessed directly by
subclasses that extend “this” class
Package variables are accessible to members of
the same package as “this” class

 17

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Why Hide Data?

Allowing users to directly modify state variables
can result in an inconsistent state

Consider an object with two state variables
– y depends on x… if x changes, y needs to change

– if x is changed directly, y may be inconsistent

Sometimes, proper notification of other objects is
necessary to keep the global state consistent

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Data Hiding Example
public class Balloon {
 private int x = 0; // position
 private int y = 0; // position
 private int z = 0; // position
 public int getX() {
 return x;
 }
 public void move(int x, int y, intz) {
 notifyOwnerBalloonMoved();
 this.x = x;
 this.y = y;
 this.z = z;
 }

 18

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Data Hiding Prevents Disaster

Before, would could do something like this:
 Balloon A = new Balloon();
 A.x = 5;
Setting A.x = 5 is like “stealing” the balloon

Using our new Balloon, we can only change x by
invoking the “.move()” method

In our new Balloon, the A.x = 5 line would not
compile

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Static Modifier

If you want all instances of a class to “share” the
same field, use the static keyword:
 public class MyObject extends Object {
 static final int SOME_CONST = 25;
 static double myData = 3.14159265;
 static FileReader FR = null;
}

This is often used in conjunction with the final
keyword to create “global constants”

 19

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Using Static Fields

Unlike regular fields, static fields can be accessed
without creating an instance of the class
Example:

public class Test {
 public static double PI = 3.1415926;

}
public class RunMe {

 public static void main(String[] args) {
 System.out.println(Test.PI);
 }

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Static Fields are “Shared”

public class Test {
 public static int sharedVariable = 5;

}
public class RunMe {

 public static void main(String[] args) {
 Test A = new Test();
 Test B = new Test();
 Test.sharedVariable++;
 A.sharedVariable++;
 // what will this print out?
 System.out.println(B.sharedVariable);
 }

}

 20

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Static Initialization Blcoks

In order to initialize a static reference variable you
must use a static initialization block:

public class MyObject extends Object {
 static FileReader FR = null;
 static {
 try {
 FR = new FileReader(“Some File Name”);
 } catch (Exception e) {
 /* do some error handling */
 }
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Static Methods

Static methods can be invoked without
instantiating the class

This is similar to the way static fields can be
accessed without instantiating the class

Methods invoked / fields accessed by a static
method must also be static…

… all methods called by main must be static

 21

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Static Method Example

public class Test {
 public static int doStuff(int in) {
 return ((in*in)/in);

 }
}
public class RunMe {

 public static void main(String[] args) {
 System.out.println(Test.doStuff(5));
 Test A = new Test();
 System.out.println(A.doStuff(5));
 }

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Call by Reference vs. Value

All variables in JAVA are passed by value
– A copy of the variable is created

– The modifications to the copy are not saved

Reference variables are a way around this
– A copy of the reference variable is made

– The data that is being reference remains the same

– Modifications performed upon the referenced data
are preserved after the method returns

 22

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Primitives

public class Test {
 public static void tryMe(int x) {
 x = 5;
 }
 public static void main(String [] args) {
 int x = 3;
 System.out.println(x); // prints 3
 tryMe(x);
 System.out.println(x); // prints ???
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Passing Arrays (actually References)

public class Test {
 public static void tryMe(int[] x) {
 x[0] = 5;
 }
 public static void main(String [] args) {
 int[] x = { 3, 4, 2, 5, 7 };
 System.out.println(x[0]); // prints 3
 tryMe(x);
 System.out.println(x[0]); // prints ???
 }
}

 23

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Passing Class References

public class Test {
 public static void tryMe(Integer x) {
 x = new Integer(5);
 }
 public static void main(String [] args) {
 Integer x = new Integer(3);
 System.out.println(x); // prints 3
 tryMe(x);
 System.out.println(x); // prints ???
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Modifying References

public class Test {
 public static void tryMe(StringBuffer x) {
 x.append(" world!");
 }
 public static void main(String [] args) {
 StringBuffer x = new StringBuffer("Hello");
 System.out.println(x); // prints "Hello"
 tryMe(x);
 System.out.println(x); // prints ???
 }
}

 24

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Inheritance

Take generic objects and “extend” them into
more specific versions for particular problems
Imagine if you had a generic Vehicle class that
had only the position parameters
You should be able to make a Car or Tank by
extending vehicle and adding a parameter for
number of doors, or size of the gun, etc.
You could make a “Honda” or a “BMW” by
extending Car, etc.

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The syntax is easy…

public class ChildClass extends ParentClass

All members in ParentClass will be present in
ChildClass (constructors are not members!)

The super([optional args]) function must be run
in all constructors of ChildClass to invoke the
proper constructor of ParentClass

You can only extend from a single class

All JAVA classes are derived from “Object”

 25

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

An Example of Inheritance

public class ParentClass {
 private int x = 0;
 public void setX(int x) {
 this.x = x;
 }
}

public class ChildClass extends ParentClass {
 private int y = 0;
 public void setXY(int x, int y) {
 this.setX(x);
 this.y = y;
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Parent: The 2D Point
public class Point2D {
 private int x = 0;
 private int y = 0;
 public void setX(int x) { this.x = x; }
 public void setY(int y) { this.y = y; }
 public int getX() { return x; }
 public int getY() { return y; }
 public double distance() {
 return Math.sqrt(x*x + y*y);
 }
 public Point2D(int x,int y) {
 this.x=x; this.y=y;
 }
}

 26

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Child: The 3D Point
public class Point3D extends Point2D {
 private int z = 0;
 public void setZ(int z) { this.z = z; }
 public int getZ() { return z; }

 public double distance() {
 double a = super.distance();
 return Math.sqrt(a*a + z*z);
 }
 public Point3D(int x, int y, int z) {
 super(x,y); // what do you think super references?
 this.z = z;
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Abstract and Final Classes

There may be classes which you do not want to
be used unless they are extended with some
additional functionality…

This is accomplished by abstract classes:
 public abstract class SuperClass { … }

Final classes are the opposite, they cannot be
extended any more
 public final class LeafClass { … }

 27

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Interfaces

What does “interface” mean in English?
– “the place at which independent and often unrelated

systems meet and act on or communicate with each
other” – from the Merriam Webster Dictionary

– A remote control is the interface between a human
being and the TV

• The TV is the “server”

• The human is the “client”

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Interfaces in OOD/OOP

Two people are writing a program together
• One person is writing the GUI front end

• The other person is writing a data retrieval module

Clearly, the front end GUI code must call the
data retrieval module at some point

Things are much happier if they agree on an
interface ahead of time…

• All methods, parameters and return types are predefined

• The actual code is independent of the interface

 28

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Interfaces in JAVA

Suppose we need simple message exchanges:
 public interface MesgXfer {
 public String recvMessage();
 public sendMessage(String);
 }

A class would then implement the interface:
 public class MyObject extends Object
 implements MesgXfer {
 /* compiler requires definitions of the
 recvMessage and sendMessage methods
 in here */
 }

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Polymorphism

The type of an object can be that of the parent

Let’s say a method takes a “ParentClass”

If you have a ChildClass extends ParentClass
you can pass that ChildClass to the method

This works for interface implementation as well
as class extensions!

 29

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Polymorphic Example

public class ParentClass {
 public void modifyTheGuy(ParentClass myGuy) {

 . . .
}

}

public class ChildClass extends ParentClass {
 public void somethingElse(ChildClass

 otherGuy) {
 this.modifyTheGuy(otherGuy);
 }
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Polymorphism and Interfaces

Defined some interface:
public interface DatabaseIO
There can be many implementations:
public class ibm.db2.DatabaseIO
public class com.oracle.v8IO
User code always uses the interface type

Implementations can be swapped at will!

 30

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Polymorphic Interface Example

public interface DbIO { . . . }
public class DB2 implements DbIO {...}
public class Oracle implements DbIO {...}

public class UserCode {
public static void main(String [] args) {
 String LoadMe = “DB2”; // or Oracle
 dbconn = Class.forName(LoadMe);
 dbconn.doStuff();
}

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Packages

Packages are nothing more than groups of
classes put together for organizational purposes

Place the statement “package mypackage” at
the top of your JAVA file

Forte automatically does this for you

The naming convention is to invert your domain:
 package edu.columbia.cs.cgui.mars.client;

 31

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Event Driven Programming

We have classes, but we’re still instantiating the
classes in a linear (imperative/procedural) way
– This is okay for CLIs, but not for GUIs

– For GUIs, we need multiple POEs

GUI actions (like clicking a button) generate
events that each trigger their own POE

Multiple buttons results in multiple possible (and
unpredictable) paths execution

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

RAD tools are key!

Using Forte, you can startup a project using the
“Swing Forms” :: “JFrame” template and it will
popup a “toplevel” window
You can then drag and drop components (like
buttons, scroll bars, etc…) onto the window
Double clicking on a button brings you to the
POE where execution will begin when the button
is clicked

 32

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Without a RAD tool…
 private void initComponents () {
 jPanel1 = new javax.swing.JPanel ();
 jButton1 = new javax.swing.JButton ();
 addWindowListener (new
 java.awt.event.WindowAdapter () {
 public void windowClosing
 (java.awt.event.WindowEvent evt) {
 exitForm (evt); } });
 jButton1.setText ("jButton1");
 jButton1.addActionListener (new
 java.awt.event.ActionListener () {
 public void actionPerformed
 (java.awt.event.ActionEvent evt) {
 jButton1ActionPerformed (evt); } });
 jPanel1.add (jButton1);
 getContentPane ().add (jPanel1,
 java.awt.BorderLayout.CENTER);
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

In Summary

In the beginning there were linear, imperative
and procedural languages

We’ve moved on to objected oriented and event
driven programming models because
– They allow for GUI interactivity

– They increase code reusability

– They permit us to engineer more complex software

