& <

Principles of OOD/OOP

Object Oriented Design
Object Oriented Programming

S
From the ground up...

4 Computers receive instructions that are encoded
in machine language:
+ 00100010100100100110111010101001
Assembly is a (1-1) mapping between machine
language and “easy-to-use” mnemonics:
» MOV AX BX

« ADD R3, [R5], 3251
« IMPZ #3, [#5]+#2

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Simple Imperative Languages

BASIC is by far the most common one:

10 print “Good morning”

20 print “What is your name?”

30 input A$

35 if (A$ == ") goto 20

40 print “Hello “, A$

50 print “My name is COMPUTER”

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Hovering at 1000 feet...

Imperative languages make things easier:
— Mnemonics are more manageable.
— Memory & registers are abstracted away (variables).

— Commonly used routines are pre-packaged:
+ Don't need to rewrite the cosine routine every time.
+ Prepackaged routines are written by “experts.”

— Source code can be used on different platforms.
+ Recompilation is necessary, but no rewriting of code.

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

e =

Procedural Languages

% C is by the most common, but FORTRAN and
PASCAL are still around...

int factorial(int input) {
if (input == 1) {
return 1;
}else {
return factorial(input-1) * input;
}
}

int main(int argc, char *argv([]) {
printf(“30 factorial is: %i“, factorial(30);
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
We have liftoff...

Z With procedural languages came real power.

Almost all UNIX based software (including the
kernel itself) is written in a procedural language.

4 C, FORTRAN, PASCAL are all procedural.

& They offer the ability to create “functions” or

“procedures” where commonly used code could
be aggregated by the user.

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
What'’s wrong with GOTO?

% What do we gain by using a procedural language
as opposed to using GOTO?
— Software can be broken down into modules.
— Modules can be written by different people.
— Modules can be verified/validated independently.

— Modules can be “downloaded,” shared between
projects or even purchased from a vendor.

This means larger, more complex, software
projects are within our grasp!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Are procedures all we need?

& Procedures require you to “think” (and hence
program) in the way the designer operates.

Z Procedures tend to be heavily type dependent.
% Procedures have no inherent state.

Z Testing procedures requires other procedures.
% Groups of procedures cannot be “linked.”

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Typical procedural madness...

public int main(int argc, char *argv[]) {
struct MySDKStateVariables statevars = null;
MySDKInitStateVars(statevars);
MySDKSetinParams(123, “/dev/null”, statevars);
MySDKDoSomeAction(statevars);
MySDKSetOutParams(5, “/tmp/stuff”’, statevars);
MySDKSendOutput(statevars);
MySDKCleanUp(statevars);

memcpy(statevars, 0, sizeof(statevars));

Copyrigrk 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Procedures are contrived!

2 Think of a procedure as a commonly used list or set of
instructions:

public do_the_laundry(void * dirty_clothes) {
/* gather dirty clothes */
/* put clothes in laundry machine */
/* put detergent in laundry machine */
/* turn on machine */
... you get the idea

}
2 Is that really the way you think about everyday tasks?

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Procedures are for Math!

Computers and computer science was
developed as a branch of mathematics.

 Procedural languages were invented by
mathematicians to solve mathematical problems.

Today, we use computers for many things other
than solving math problems.

We need a paradigm shift!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Introducing the object...

The world is made of objects

Objects have two aspects to them
— State variables
— Actions that modify the state variables

Z Goal: “model” real (or abstract) objects
— Representation is everything!

— If we can represent the objects and their behavior,
we've essentially solved our problem

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
A balloon for starters...

4 The state of a balloon can be described by:
* Position (numerical data - x,y,z)
* Inflation characteristics (number - diameter)
« Structural integrity (boolean - hasHole)

#Actions that can be performed include:
* Move(newX, newY, newZ)
* Inflate(appliedPressure, numberOfSeconds)

* Pop()

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Details about the actions...

4 Move(newX, newY, newZ)
+ Set the x,y,z state coordinates to the new values

% Inflate(appliedPressure, seconds)

+ Calculate the new diameter based on the amount of
pressure and how long it was applied

+ |If the new diameter is “unfeasible,” run the Pop() action

4 Pop()

+ Set the hasHole state variable to true, diameter to zero

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

Declaring the class and fields...

public class Balloon {

int x =0; // position
inty =0; // position
intz=0; // position

float diameter = 0.0F; // size
boolean hasHole = false; // integrity

final double MAX_DIAMETER = 100.0;
final double INFLATE_CONSTANT = 5.0;

/* put all of the methods here */
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

The Move and Pop Methods

public void move (int x, int y, int 2) {

this.x = x;
this.y = y;
this.z =z;
// what does the keyword “this” mean?

}
public void pop () {

this.diameter = 0.0F;
this.hasHole = true;

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

e =

The Inflate Method

public void inflate (double p, double t) {
if (this.hasHole != true) {
this.diameter += (float)(t*p/INFLATE_CONSTANT);
if (this.diameter > MAX_DIAMETER) {
this.pop();
}
}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Using Our Balloon

Z To use our objects, we need to “instantiate” them
— Class definitions are like blue prints
— Instances are like the results of manufacturing
Instances are created with the keyword “new”
— Class myClass = new Class();
— myClass is the reference to the object

— references point to memory locations, kind of like the
serial number of manufactured products

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
An Example of Balloon Use

public class RunMe {
public static void main(String [] args) {

// the following is called the creation
// of an instance of Balloon
Balloon myBalloon = new Balloon();

// now we call methods & access data
myBalloon.move(1, -3, 5);
myBalloon.inflate(15.0, 0.75);
System.out.printin(myBalloon.diameter);
myBalloon.pop();

}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Instances Aren'’t Linked

public class RunMe {
public static void main(String [] args) {

Balloon A = new Balloon();
Balloon B = new Balloon();

A.move(0, 1, 0);
A.move(1, -3, 5);
B.move(2, 3, 7);

// what will this code print out?
System.out.printin(A.x+“ “+A.y+“ “+A.z);
System.out.printin(B.x+“ “+B.y+“ “+B.z);

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

e =

Who is “this™?

 Represents the “current” instance

Let's say you have two instances A and B
— When A.move() is run, this means A public void move

(int x, inty, int 2) {

— When B.move() is run, this means B~ thisx=x;

th.is.yf;/.;

% Extremely important for scoping! e
— Distinguish between local and class scope variables
— Can also be used when executing methods

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
What about initial parameters

% Wouldn't it be nice to create an instance of the
balloon that begins it's a life in a specific place?
 To do this, we declare additional constructors:
public Balloon(int x, int y, int z) {
this.x = z;
thiS.y =Y;
this.z=2z;

}
* We could also do the same with initial size

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

11

S
Using A Non-Default Constructor

public class RunMe {
public static void main(String [] args) {

Balloon myBalloon = new Balloon(1, 2, 3);
Balloon otherBalloon = new Balloon();
otherBalloon.move(1, 2, 3);

// otherBalloon and myBalloon are now
// at “equivalent” positions

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Object Equivalence

& If we were to just say ask == for two references,
we would almost never get what we mean

& Example:
Balloon A = new Balloon(1,-1,5);
Balloon B = new Balloon(1,-1,5);
if (A==B){
System.out.printin(“Same place!”);

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

12

e =

Override .equals()

& java.lang.Object provides a method “equals’
— Used by the system in many places
Z Override this and put in a use definition
 Be careful to preserve the properties specified in
the JAVA API documentation!
— reflexive: x.equals(x) is always true
— symmetric: x.equals(y) <-> y.equals(x)
— transitive: x.equals(y), y.equals(z) -> z.equals(x)
— x.equals(null) should return false

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Example of Overriding .equals()

public boolean equals(Object obj) {

Balloon other = (Balloon)obj;
boolean output = false;
if (other != null) {
if(this.x == other.x &&
this.y == other.y &&
this.z == other.z) {
output = true;
}
}

return output;

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

13

S
Using .equals() in Your Code

Replace the == from before and now everything
should work the way you think it should

& Example:
Balloon A = new Balloon(1,-1,5);
Balloon B = new Balloon(1,-1,5);
if (A.equals(B)) {
System.out.printin(“Same place!”);

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Printing Out and Object

Z Primitives can be printed easily:
int X =42;
System.out.printin(x);
But what happens when | print an object?
Balloon myBalloon =
new Balloon(4,2,1);
System.out.printin(myBalloon);
| will get the memory location of myBalloon, not
exactly the most useful thing in the world

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

14

S
Overriding the .toString() Method

java.lang.Object defines a “.toString()” method
that is automatically called by things like
System.out.printin() and other methods

& Override this method and you will get useful
output from System.out.printin()

& Of course, you can also invoke this manually
when you need it

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Example of .toString()

public String toString() {

String output = new String(“Position - ”);
output += “ X:” + this.x;

output +=“ Y:” + this.y;

output += “ Z:” + this.z;

return output;

}

% Now if | run:
System.out.printin(new Balloon(3,4,5));

| will get the output:
Position - X:3 Y:4 Z:5

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

15

Bulletproofing

4 Never assume data is correct
+ Check all data before you operate on it
+ Especially if the data is coming from a user
Not checking inputs results in severe problems
+ Divide-by-zero
+ Buffer overruns
+ Severe security vulnerabilities
& Data hiding addresses these some of these issues
by enforcing when state variables can change

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

e =

Data Hiding

% Never allow direct access to state variables

public class MyObject extends Object {
private int someData = 0;
protected double otherData = 0.0;
package boolean moreData = true;

 Protected variables can be accessed directly by
subclasses that extend “this” class

Package variables are accessible to members of
the same package as “this” class

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

16

S
Why Hide Data?

Allowing users to directly modify state variables
can result in an inconsistent state

¥ Consider an object with two state variables
— y depends on x... if x changes, y needs to change
— if x is changed directly, y may be inconsistent

% Sometimes, proper notification of other objects is
necessary to keep the global state consistent

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Data Hiding Example

public class Balloon {

private int x = 0; // position
private inty = 0; // position
private int z = 0; // position

public int getX() {
return x;

}

public void move(int x, int y, intz) {
notifyOwnerBalloonMoved();
this.x = x;
this.y =vy;
this.z=2z;

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

17

S
Data Hiding Prevents Disaster

Before, would could do something like this:

Balloon A = new Balloon();
A.x=5;

& Setting A.x = 5 is like “stealing” the balloon

Using our new Balloon, we can only change x by
invoking the “.move()” method

¢ In our new Balloon, the A.x =5 line would not
compile

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written auth

thorization is expressively prohibited

S
The Static Modifier

& If you want all instances of a class to “share” the
same field, use the static keyword:

public class MyObject extends Object {
static final int SOME_CONST = 25;
static double myData = 3.14159265;
static FileReader FR = null;

}

& This is often used in conjunction with the final
keyword to create “global constants”

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written auth

thorization is expressively prohibited

18

S
Using Static Fields

& Unlike regular fields, static fields can be accessed
without creating an instance of the class

4 Example:

public class Test {
public static double Pl = 3.1415926;
}

public class RunMe {
public static void main(String[] args) {
System.out.printin(Test.Pl);

}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Static Fields are “Shared”

public class Test {
public static int sharedVariable = 5;

}

public class RunMe {
public static void main(String[] args) {

Test A = new Test();
Test B = new Test();
Test.sharedVariable++;
A.sharedVariable++;
// what will this print out?
System.out.printin(B.sharedVariable);

}

Copyright 1;9-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

19

S
Static Initialization Blcoks

Z In order to initialize a static reference variable you
must use a static initialization block:

public class MyObject extends Object {
static FileReader FR = null;
static {
try {
FR = new FileReader(“Some File Name”);
} catch (Exception e) {
/* do some error handling */
}
}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Static Methods

4 Static methods can be invoked without
instantiating the class

& This is similar to the way static fields can be
accessed without instantiating the class

% Methods invoked / fields accessed by a static
method must also be static...

Z ... all methods called by main must be static

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

20

S
Static Method Example

public class Test {
public static int doStuff(int in) {
return ((in*in)/in);

}
}

public class RunMe {
public static void main(String[] args) {
System.out.printin(Test.doStuff(5));
Test A = new Test();
System.out.printin(A.doStuff(5));

}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Call by Reference vs. Value

Z All variables in JAVA are passed by value
— A copy of the variable is created
— The modifications to the copy are not saved
Reference variables are a way around this
— A copy of the reference variable is made
— The data that is being reference remains the same

— Modifications performed upon the referenced data
are preserved after the method returns

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

21

/ D

Primitives

public class Test {
public static void tryMe(int x) {
X=5:
}
public static void main(String [] args) {
int x = 3;
System.out.printin(x); / prints 3
tryMe(x);
System.out.printin(x); // prints ???
}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
assing Arrays (actually References)

public class Test {
public static void tryMe(int[] x) {
x[0] = 5;
}
public static void main(String [] args) {
intff] x={3,4,2,5,7};
System.out.printin(x[0]); // prints 3
tryMe(x);
System.out.printin(x[0]); // prints 2??
}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

22

S
Passing Class References

public class Test {
public static void tryMe(Integer x) {
X = new Integer(5);
}
public static void main(String [] args) {
Integer x = new Integer(3);
System.out.printin(x); / prints 3
tryMe(x);
System.out.printin(x); // prints ???
}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Modifying References

public class Test {
public static void tryMe(StringBuffer x) {
x.append(" world!");
}
public static void main(String [] args) {
StringBuffer x = new StringBuffer("Hello");
System.out.printin(x); / prints "Hello"
tryMe(x);
System.out.printin(x); / prints ???
}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

23

e =

Inheritance

 Take generic objects and “extend” them into
more specific versions for particular problems

Imagine if you had a generic Vehicle class that
had only the position parameters

Z You should be able to make a Car or Tank by
extending vehicle and adding a parameter for
number of doors, or size of the gun, etc.

You could make a “Honda” or a “BMW” by
extending Car, etc.

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

e =

The syntax is easy...

& public class ChildClass extends ParentClass

Z All members in ParentClass will be present in
ChildClass (constructors are not members!)

The super([optional args]) function must be run
in all constructors of ChildClass to invoke the
proper constructor of ParentClass

You can only extend from a single class
All JAVA classes are derived from “Object”

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

24

S
An Example of Inheritance

public class ParentClass {
private int x = 0;
public void setX(int x) {
this.x = x;
}
}

public class ChildClass extends ParentClass {
private inty = 0;
public void setXY(int x, int y) {
this.setX(x);
this.y =vy;
}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Parent; The 2D Point

public class Point2D {
private int x = 0;
private inty = 0;

public void setX(int x) { this.x = x; }
public void setY(int y) { this.y =y; }
public int getX() { return x; }
public int getY() { returny; }

public double distance() {
return Math.sqrt(x*x + y*y);

}

public Point2D(int x,int y) {
this.x=x; this.y=y;

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

25

/Q/ =
Child: The 3D Point

public class Point3D extends Point2D {
private int z = 0;
public void setZ(int z) { this.z=2z; }
public int getZ() { return z; }

public double distance() {
double a = super.distance();
return Math.sqrt(a*a + z*z);

}

public Point3D(int x, int y, int 2) {
super(x,y); // what do you think super references?
this.z = z;
}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Abstract and Final Classes

There may be classes which you do not want to
be used unless they are extended with some
additional functionality...

This is accomplished by abstract classes:
public abstract class SuperClass { ... }

Final classes are the opposite, they cannot be
extended any more
public final class LeafClass { ... }

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

26

e =

Interfaces

What does “interface” mean in English?

— “the place at which independent and often unrelated
systems meet and act on or communicate with each
other” — from the Merriam Webster Dictionary

— A remote control is the interface between a human
being and the TV

+ The TV is the “server”
+ The human is the “client”

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Interfaces in OOD/OOP

Two people are writing a program together
* One person is writing the GUI front end
+ The other person is writing a data retrieval module
Clearly, the front end GUI code must call the
data retrieval module at some point

% Things are much happier if they agree on an
interface ahead of time...

+ All methods, parameters and return types are predefined
+ The actual code is independent of the interface

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

27

Interfaces in JAVA

2 Suppose we need simple message exchanges:
public interface MesgXfer {
public String recvMessage();
public sendMessage(String);
}

2 A class would then implement the interface:
public class MyObject extends Object
implements MesgXfer {
/* compiler requires definitions of the
recvMessage and sendMessage methods
in here */

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

e =

Polymorphism

The type of an object can be that of the parent
 Let’s say a method takes a “ParentClass”

If you have a ChildClass extends ParentClass
you can pass that ChildClass to the method

& This works for interface implementation as well
as class extensions!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

28

e =

Polymorphic Example

public class ParentClass {
public void modifyTheGuy(ParentClass myGuy) {

}
}

public class ChildClass extends ParentClass {

public void somethingElse(ChildClass
otherGuy) {

this.modifyTheGuy(otherGuy);

}
}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Polymorphism and Interfaces

% Defined some interface:
public interface DatabaselO

There can be many implementations:
public class ibm.db2.DatabaselO
public class com.oracle.v8lO

User code always uses the interface type
Z Implementations can be swapped at will!

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

S
Polymorphic Interface Example

public interface DbIO { ...}
public class DB2 implements DbIO {...}
public class Oracle implements DbIO {...}

public class UserCode {
public static void main(String [] args) {
String LoadMe = “DB2”; // or Oracle
dbconn = Class.forName(LoadMe);
dbconn.doStuff();
}

}

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

/ D

Packages

4 Packages are nothing more than groups of
classes put together for organizational purposes

 Place the statement “package mypackage” at
the top of your JAVA file

& Forte automatically does this for you

The naming convention is to invert your domain:
package edu.columbia.cs.cgui.mars.client;

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

30

S
Event Driven Programming

We have classes, but we're still instantiating the
classes in a linear (imperative/procedural) way
— This is okay for CLIs, but not for GUIs
— For GUIs, we need multiple POEs

GUI actions (like clicking a button) generate
events that each trigger their own POE

Multiple buttons results in multiple possible (and
unpredictable) paths execution

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

e =

RAD tools are key!

Using Forte, you can startup a project using the
“Swing Forms” :: “JFrame” template and it will
popup a “toplevel” window

Z You can then drag and drop components (like
buttons, scroll bars, etc...) onto the window

Z Double clicking on a button brings you to the
POE where execution will begin when the button
is clicked

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

31

Without a RAD tool...

private void initComponents () {
jPanel1 = new javax.swing.JPanel ();
jButton1 = new javax.swing.JButton ();
addWindowListener (new
java.awt.event.WindowAdapter () {
public void windowClosing
(java.awt.event.WindowEvent evt) {
exitForm (evt); } });
jButton1.setText ("jButton1");
jButton1.addActionListener (new
java.awt.event.ActionListener () {
public void actionPerformed
(java.awt.event.ActionEvent evt) {
jButton1ActionPerformed (evt); } });
jPanell1.add (jButton1);
getContentPane ().add (jPanell,
java.awt.BorderLayout. CENTER);

Copynight 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

e =

In Summary

% In the beginning there were linear, imperative
and procedural languages

Z We've moved on to objected oriented and event
driven programming models because
— They allow for GUI interactivity
— They increase code reusability
— They permit us to engineer more complex software

Copyright 1999-2002 Simon Lok Reproduction and/or redistribution in whole or part without written authorization is expressively prohibited

32

