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ABSTRACT
Binary code injection into an executing program is a common form
of attack. Most current defenses against this form of attack use a
‘guard all doors’ strategy, trying to block the avenues by which ex-
ecution can be diverted. We describe a complementary method of
protection, which disrupts foreign code execution regardless of how
the code is injected. A unique and private machine instruction set
for each executing program would make it difficult for an outsider
to design binary attack code against that program and impossible
to use the same binary attack code against multiple machines. As
a proof of concept, we describe a randomized instruction set em-
ulator (RISE), based on the open-source Valgrind x86-to-x86 bi-
nary translator. The prototype disrupts binary code injection attacks
against a program without requiring its recompilation, linking, or
access to source code. The paper describes the RISE implemen-
tation and its limitations, gives evidence demonstrating that RISE
defeats common attacks, considers how the dense x86 instruction
set affects the method, and discusses potential extensions of the
idea.
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1. INTRODUCTION
Standardized interfaces between software and hardware are a double-
edged sword. On the one hand, they lead to huge productivity im-
provements through independent development and optimization of
hardware and software. But, they also allow a single attack code
designed against an exploitable flaw to gain control of thousands
or millions of standardized systems. One approach to controlling
this form of attack is to ‘destandardize’ the protected system in an
externally unobservable way, so that an outside attacker either can-
not easily obtain the information needed to craft the attack or must
manually regenerate the attack once for each new attack instance.
Techniques that take this approach include obfuscation, informa-
tion hiding, and automated diversity.

In the case of binary code injection, many defense techniques
act to block known routes by which foreign code is placed into the
execution path of a program. For example, stack defense mecha-
nisms [20, 37] that protect return addresses defeat large classes of
buffer overflow attacks; separate techniques [18, 32] defeat buffer
overflows in other write-accessible parts of address space. Attacks
such as ‘return into libc’ [30] avoid injecting any executable code
at all, instead altering only data and addresses so that code already
existing in the program is subverted to execute the attack; defense
techniques like address obfuscation [16, 14, 32] counter by hiding
and/or randomizing existing code locations.

In addition to such ‘perimeter defense’ techniques aimed at spe-
cific attack vectors, a secret destandardization of the executing code
itself offers a complementary and quite general method of protec-
tion. With such instruction set obfuscation, each program (or pro-
cess, or machine, or other unit of machine code execution) has a
different and secret instruction set. If the number of possible in-
struction sets is large and externally unobservable, the cost of de-
veloping an attack from the outside is greatly increased, and differ-
ent attacks must be crafted for each protected system.

In this paper we describe randomized instruction set emulation
(RISE), an instruction set obfuscation technique implemented at
the machine emulator level. Each byte of protected code in the
program is individually scrambled using pseudorandom numbers
seeded with a random key that is unique to each program execu-
tion. With the scrambling constants it is trivial to transform the ob-
fuscated code back to normal instructions executable on the phys-



ical machine, but without knowledge of the key it is infeasible to
produce even a short code sequence that implements any given be-
havior. Foreign binary code that reaches the path of execution will
be descrambled without ever having been correctly scrambled, pro-
ducing essentially random bits that will usually crash the program
under attack.

1.1 Threat model
RISE does not address, let alone solve, all possible security prob-
lems or even all possible attacks via communications networks.
Our specific threat model is binary code injection from the network
into an executing program. This includes many real world attacks,
but explicitly excludes others, such as macro viruses that involve in-
jection of something other than binary code, or the ‘data injection’
attacks mentioned above that do not rely on machine code. We as-
sume that attacks arrive via network communications and that the
contents of local disks are therefore trustworthy before an attack
has occurred.

Our threat model is related to, but distinct from, other models
used to characterize buffer overflow attacks [21, 18], so it is im-
portant to compare and contrast the approaches. Our threat model
includes any attack in which native code is injected into a running
binary, including misallocated malloc headers, footer tags [2], and
format string attacks that can write a byte to arbitrary memory loca-
tions without actually overflowing a buffer [31]. RISE will protect
against injected code arriving by any of these methods. On the
other hand, other buffer overflow defenses, such as the address ob-
fuscation mentioned earlier, can prevent attacks that are specifically
excluded from our code-based threat model. RISE provides no de-
fense against data-only attacks, which can range from the modifi-
cation of jump addresses and parameters to call an existing library
function (such as the family of return-into-libc attacks [30]) to the
modification of password files or other critical information (for ex-
ample, a privilege escalation as in [4]).

We envision the relatively general code-based mechanism of RISE
being used in conjunction with more specific data- and address-
based mechanisms to provide deeper, more principled, and more
robust defenses against both known and unknown attacks.

1.2 Overview
In this paper we present a proof-of-concept RISE system, build-
ing randomized instruction set support into a version of the Val-
grind x86-to-x86 binary translator [36]. In Section 2 we describe
a randomizing loader for Valgrind that scrambles code sequences
loaded into emulator memory from the local disk using a hidden
random key. Then, during Valgrind’s emulated instruction fetch
cycle, fetched instructions are unscrambled, yielding unaltered x86
machine code runnable on the physical machine. The RISE design
makes few demands on the supporting emulator and could be easily
ported to any binary-to-binary translator for which source code is
available.

In Section 3 we present our experimental results. We have found
that RISE is successful in preventing code injection attacks, both
synthetic and real, as described in Section 3.1. Section 3.2 ana-
lyzes the potential problem of creating valid instructions with the
randomization given the dense x86 instruction set and Section 3.3
comments on performance issues.

When binary attack code, arriving over the network, exploits a
bug and manages to interpose itself into the emulator execution
path, the injected code will not have been scrambled by the loader.
Consequently, when the attack code is fetched and unscrambled
by the emulated instruction unit, it will appear as an essentially
random string of bits. Despite the density of the x86 instruction

set, we present data suggesting that the vast majority of random
code sequences will encounter an address fault or illegal instruc-
tion quickly, aborting the program. Thus with RISE, an attack that
would otherwise take control of a program is downgraded into a
denial-of-service attack against the exploitable program. Regard-
less of what flaw is exploited in a protected program—whether
well-known or entirely novel—the network binary code injection
attack will fail with very high probability.

Section 4 summarizes related work, and Section 5 concludes
with a general discussion.

2. TECHNICAL APPROACH AND IMPLE-
MENTATION

This section describes the prototype implementation of RISE using
Valgrind [36] for the Intel x86 architecture. The RISE strategy is
to provide each program copy its own unique and private instruc-
tion set. To do this, we consider what is the most appropriate ma-
chine abstraction level, how to scramble and descramble instruc-
tions, when to apply the randomization and when to descramble,
and how to protect interpreter data. We also describe idiosyncrasies
of Valgrind that affected the implementation.

2.1 Machine abstraction level
The native instruction set of a machine is a promising computa-
tional level for automated diversification. Since all computer func-
tionality can be expressed in machine code, it is a desirable level to
attack and protect. Also, with a network-based threat model, all le-
gitimately executing machine code comes from the local disks, pro-
viding a clear trust boundary. By contrast, a Javascript interpreter
in a web browser would be a poor candidate for this approach, be-
cause most Javascript code arrives over the network without firm
trust boundaries between more and less legitimate code sequences.

A drawback of native instruction sets is that they are tradition-
ally physically encoded and not readily modifiable. RISE therefore
works at an intermediate level, using software that performs binary-
to-binary code translation. The performance impact of such tools
can be minimal [11, 15]. Indeed, binary-to-binary translators some-
times improve performance compared to running the programs di-
rectly on the native hardware [11]. For ease of research and dis-
semination, we selected an open-source system, Valgrind [36], as
the basis for our demonstration implementation.

Although Valgrind is billed primarily as a tool for detecting mem-
ory leaks and other program errors, it contains a complete x86-to-
x86 binary translator. The primary drawback of Valgrind is that it
is very slow, largely due to its extensive access checking. However,
the additional slowdown imposed by adding RISE to Valgrind is
modest (see Section 3), and we are optimistic that porting RISE to
a more performance-oriented emulator will yield a fully practical
code defense.

2.2 Instruction set randomization
Instruction set randomization could be as radical as developing a
new set of opcodes, instruction layouts, and a key-based toolchain
capable of generating the randomized binary code. And, it could
take place at many points in the compilation-to-execution spec-
trum. Although performing randomization early could help dis-
tinguish code from data, it would require a full compilation envi-
ronment on every machine, and recompiled randomized programs
would likely have one fixed key indefinitely. RISE randomizes as
late as possible in the process, scrambling each byte of the trusted
code as it is loaded into the emulator, and then unscrambling it be-
fore execution by the virtual machine. Deferring the randomization



to load time makes it possible to scramble and load existing files
in the Executable and Linking Format (ELF)[38] directly, without
recompilation or source code, provided we can reliably distinguish
code from data in the ELF file format.

The unscrambling process needs to be fast, and the scrambling
process must be as hard as possible for an outsider to deduce. Our
current approach is to generate at load time a pseudo-random se-
quence the length of the overall program text using the Linux /de-
v/urandom device [39], which uses a secret pool of true ran-
domness to seed a pseudo-random stream generated by feedback
through SHA1 hashing. The resulting bytes are simply XORed
with the instruction bytes to scramble and unscramble them. If the
underlying truly random key is long enough, and as long as it is
infeasible to invert SHA1 [35], then we can have confidence that
an attacker could not break the entire sequence. We return to the
issue of how secure the RISE encoding in Section 5.

2.3 Design decisions
Two important aspects of the RISE implementation are how it han-
dles shared libraries and how it protects the plaintext executable.

Much of the code executed by modern programs resides in shared
libraries. This form of code sharing can significantly reduce the ef-
fect of the diversification, as processes must use the same instruc-
tion set as the libraries they require. When our load-time random-
ization mechanism writes to memory that belongs to shared objects,
the Operating System does a copy-on-write, and a private copy of
the scrambled code is stored in the virtual memory of the process.
This significantly increases memory requirements, but increases in-
terprocess diversity and avoids having the plaintext code mapped in
the protected processes’ memory.

Protecting the plaintext instructions inside Valgrind is a second
concern. As Valgrind simulates the operation of the CPU, during
the fetch cycle when the next byte(s) are read from program mem-
ory, RISE intercepts the bytes and unscrambles them; the scram-
bled code in memory is never modified. Eventually, however, a
plaintext piece of the program (semantically equivalent to a ba-
sic block) is written to Valgrind’s cache. From a security point
of view, it would be best to separate the RISE address space com-
pletely from the protected program address space, so that the plain-
text is inaccessible from the vulnerable program, but as a practical
matter this would slow down emulator data accesses to an extreme
and unacceptable degree. For efficiency, the RISE interpreter is
best located in the same address space as the target binary, but of
course this introduces some security concerns. A RISE-aware at-
tacker could aim to inject code into a RISE data area, rather than
that of the vulnerable process. This is a problem because the cache
cannot be encrypted. To protect it, cache pages are kept as read and
execute only. When a new translated block is ready to be written to
the cache, we mark the affected pages as writable, execute the write
action, and return them to their original non-writable permissions.

2.4 Implementation issues
An emulator needs to create a clear boundary between itself and
the process to be emulated. In particular, the emulator should not
use the same shared libraries as the process being emulated. Val-
grind deals with this issue by adding its own implementation of
any library function it requires using a local name, for example,
VGplain printf(...) instead of printf(...). However,
we discovered that Valgrind occasionally jumped into the target bi-
nary to execute low-level functions (e.g., umoddi and udivdi).
When that happened, the processor attempted to execute instruc-
tions that had been scrambled for the emulated process, causing
Valgrind to abort. Although this was irritating, it did demonstrate

the robustness of the RISE approach in that these latent ‘boundary
crossings’ were immediately detected. We worked around these
dangling unresolved references by adding more local functions and



renaming affected symbols with local names (e.g., rise umoddi(...)
instead of ‘%’ (the modulo operator)).

A more subtle problem arises because the IA32 does not impose
any data and code separation requirement, and some libraries still
use dispatch tables stored directly in the code. In those cases the
addresses in one of these internal tables are scrambled at load time
(because they are in a code section), but are not descrambled at ex-
ecution time because they are read as data. Although this does not
cause an illegal operation, it causes the emulated code to jump to a
random address and fail inappropriately. We solved this problem by
adding machine code to check for internal references in the block
written to the cache. If the reference was internal, we performed
an additional descrambling operation on the address recovered as
data.

An additional difficulty was discovered with Valgrind itself. For
somewhat subtle reasons involving dynamic libraries, Valgrind has
to emulate itself at certain moments, and it has a special workaround
in its code to execute certain functions natively, avoiding an infinite
emulation regress. We handled this by detecting Valgrind’s own
address ranges and treating them as special cases. We believe this
issue is specific to Valgrind, and we expect not to have it in other
emulators.

3. EXPERIMENTAL RESULTS
The results reported in this section were obtained using the RISE
prototype, available under the GPL from http://cs.unm.edu/˜immsec.
We have tested RISE’s ability to run programs successfully under
normal conditions and its ability to disrupt a variety of machine
code injection attacks (Section 3.1). In addition, we have tested
the safety of executing instruction sequences after they have been
randomized (Section 3.2) and concluded that programs randomized
under RISE can execute with very low probability of doing dam-
age. Finally, we make some observations about the performance of
RISE (Section 3.3), concluding that the approach could be used in
a production system if ported to a more efficient emulator.

3.1 Attacks
We tested two synthetic and a dozen real attacks. The synthetic at-
tacks, published in [23], create a vulnerable buffer—in one case on
the heap and in the other case on the stack—and inject shellcode
into it. Without RISE, both attacks successfully spawned a shell,
and with RISE, the attacks were stopped. The real attacks were
launched from the CORE Impact attack toolkit [1]. We selected
twelve attacks that satisfied the following requirements of our threat
model and the chosen emulation tool: the attack is launched from a
remote site; the attack injects binary code at some point in the exe-
cution; the attack succeeds on a Linux OS. Valgrind is specifically
designed to run under Linux, and we tested several different Linux
distributions, reporting data from two (RedHat from 6.2 to 7.3 and
Mandrake 7.2).

All of the attacks were tested to make sure they were success-
ful in the vulnerable application before retesting with RISE. The
attacks were all successfully defeated by RISE (column 4 of Table
1). When we analyzed the logs generated by RISE, however, we
discovered that 9 of the 14 tested attacks failed without ever exe-
cuting the injected attack code (column 3). This class of attacks is
notoriously fragile, and the mere fact of emulation can often dis-
rupt them; one could imagine modifying the attacks to overcome
the perturbations of the emulator, and in the future we hope to test
these modified attacks against RISE.

The synthetic attacks and the more robust real attacks (Bind NXT,
Samba trans2, and rpc.statd), were unaffected by the emulator’s
presence and all managed to establish a shell successfully when

Stopped by Stopped by
Attack Linux unmodified RISE

Distribution Valgrind
Synthetic heap overflow N/A

√

Synthetic stack overflow N/A
√

Apache OpenSSL SSLv2 RedHat 7.0
√ √

and 7.2
Apache mod php RedHat 7.2

√ √

Bind NXT RedHat 6.2
√

Bind TSIG RedHat 6.2
√ √

CVS pserver double free RedHat 7.3
√ √

SAMBA nttrans RedHat 7.2
√ √

SAMBA trans2 RedHat 7.2
√

SSH integer overflow Mandrake 7.2
√ √

rpc.statd format string RedHat 6.2
√

sendmail crackaddr RedHat 7.3
√ √

buffer overflow
wuftpd format string RedHat 6.2

√ √

to 7.3
wuftpd glob “ {” RedHat 6.2

√ √

Table 1: Results of attacks executed under Valgrind (without
RISE) and RISE.

the target program was run on an unmodified version of Valgrind.
However, all of them were stopped by RISE. Bind NXT and Samba
trans2 attacks are both based on stack overflows, while the rpc.statd
attack injects binary code into the GOT table.

These results confirm that we successfully implemented RISE
and that a randomized instruction set prevents injected machine
code from executing without the need for any knowledge about how
or where the code was inserted in process space.

3.2 How safe is it to execute random instruc-
tions?

Defenses such as RISE depend on randomization to prevent an at-
tacker from knowing precisely what an attack will do. If foreign
machine code is injected into a RISE protected program without
scrambling, then when it is unscrambled for execution it will be
mapped to essentially random bytes and will not perform any spe-
cific function.

If such random code does not behave as intended, what does it
do? The expectation is that random code strings will cause the at-
tacked program to crash quickly, but we don’t know a priori what
will happen. The RISE prototype produces randomized instruction
sets that are in byte-for-byte correspondence with actual x86 in-
structions, so the transformation process does not affect code size
or layout. This avoids complexity and allows us to defer random-
ization until load time. But, with so much of the x86 opcode space
already defined, there is a significant chance that a randomly scram-
bled opcode will be something other than an illegal instruction.

To test the safety of random instructions, we performed the fol-
lowing test: We built a small program that contained a rootshell
exploit coded in x86 machine code (the shellcode from ‘test-
sc2.c’ in [6]). When the program ran, it first randomized the
exploit code in place using a random number seed supplied on the
command line. It then ‘returned into’ the randomized attack code
following the pattern that could happen in an attack. We ran 30,000
tests varying only the random seed, running the program under gdb
to capture information about if, where, and why the program dies.
Table 2 and Figure 1 summarize the results. Over 99.8% of ran-
domizations lead to the program aborting by one of four signals.
SIGILL is an illegal instruction, SIGFPE is a floating point excep-
tion (such as division by zero), and SIGSEGV and SIGBUS are two



varieties of addressing problems. In the remaining cases, the pro-
gram entered an (apparently) infinite loop. In none of the 30,000
test cases did the attack code manage to access the command inter-
preter /bin/sh as intended by the attacker.

Outcome Count Percent Cumulative
Signalled 29,945 99.82% 99.82%

SIGSEGV 25,162
SIGILL 4,504
SIGFPE 178
SIGBUS 101

Looped(timeout) 55 0.18% 100.0%
Acquired shell 0 0.0% 0.0%

Total tests 30000

Table 2: Outcomes of executing randomized shell acquisition
code.

There are caveats to this data. Note that SIGSEGVs are by far
the most commonly emitted signal—but that could be misleading
because the test program is so small. A larger program with a cor-
respondingly larger space of legal addresses would be expected to
generate fewer SEGV’s and more jumps to random but legal ad-
dresses, causing more complex and possibly subtly harmful behav-
ior patterns.

Nonetheless, this case study suggests that the vast majority of
randomizations of a genuine attack do indeed simply cause a pro-
gram crash. Although this test does not directly answer the question
of how fast the crashes tend to occur, Figure 1 provides indirect data
on that point, illustrating where the program counter was when the
signal occurred. There is a strong peak at 0—in over one quarter
of all test cases, when the program was stopped it was on the first
byte of the randomized attack code, and the fraction of attacks falls
off rapidly at increasing offsets.

Another caveat in this test is that we don’t know exactly how
many instructions were executed before the signal occurred. Ran-
dom control transfers occur frequently, so the location of a signal
does not correlate directly with number of instructions executed.
As seen in Figure 1, for example, a cumulative total of about 6% of
the signaling cases occurred at addresses below the starting point
of the attack.

Using RISE itself, we can address the question of how many in-
structions are executed, because it is easy for an emulator to count
how many instructions it has emulated. However, it is much more
expensive to collect data this way. Table 3 gives results for a few
concrete data points. We show data on three real attacks against
vulnerable programs, with an average of under five instructions be-
ing executed before the attacked program is stopped (column 4).
Column 3 indicates how many attack instances we ran (each with
a different random seed for RISE) to compute the average. As col-
umn 5 shows, most attack instances were stopped by an attempt to
execute a non-existent opcode. In addition, we ran the two syn-
thetic attacks (described earlier) one hundred times each (with a
new seed each time) and discovered that neither attack ever exe-
cuted successfully. On average, each synthetic attack instance exe-
cuted 2.35 bytes of instructions before process death.

Within the RISE approach, one could avoid the problem of ac-
cidentally viable code by mapping to a larger instruction set. The
size could be tuned to reflect the desired percentage of incorrect
unscramblings that will likely lead immediately to an illegal in-
struction.

Attack Name Application No. of Avg. no. Illegal
attacks of insns. insn.

Named NXT Bind 8.2.1-7 33 2.84 84%
Resource

Record Overflow
rpc.statd format nfs-utils 0.1.6-2 25 4.13 80%

string
Samba trans2 smbd 2.2.1a 81 3.13 73%

exploit

Table 3: Survival time in executed instructions for attack code
in real applications running under RISE. Column 4 gives the
average number of instructions executed before failure, and
column 5 summarizes the percentage of runs failing because
of illegal instructions.

3.3 Performance
There is a significant cost introduced by the memory checking en-
gine of Valgrind. However, RISE adds only a modest performance
penalty beyond that. In terms of execution time, a RISE-protected
program executes about 5% more slowly than the same program
running under Valgrind; we believe much of that slowdown is due
to the relatively high cost of the mprotect system calls used to
control modifications of the trace cache. In terms of space, signifi-
cant impacts come from the scrambling information and the private
copies of shared libraries, each of which requires about as much
space as the protected code.

We have been able to RISE-protect every one of the services
used in the experiments (httpd, named, cvs pserver, smbd, sshd,
rpc.statd, sendmail, wuftpd) on a 200 MHz Pentium computer with
128 MB RAM, and run it with reasonable response time. This is a
far smaller and slower machine than any modern x86-based server
system, which gives us confidence that the memory expense does
not make the scheme impractical and would be a reasonable trade-
off for increased security.

4. RELATED WORK
Our randomization technique is an example of automated diversity,
an idea that has long been used in software engineering to improve
fault tolerance [9, 34, 10], and more recently has been proposed as
a method for improving security [17, 24, 19]. An approach simi-
lar to RISE, but focusing on a whole-system emulator, is proposed
in [27]. Several other (nondiversifying) approaches have been de-
veloped for protecting against stack-smashing attacks, a method of
code injection [40, 20, 21, 25]. Instruction-set randomization is
also related to hardware encryption methods as protection against
piracy and eavesdropping for specialized applications [12, 13, 22]
and general purpose systems [29, 5].

4.1 Automated diversity
Diversity in software engineering is quite different from diversity
for security. In software engineering, the basic idea is to generate
multiple independent solutions to a problem (e.g., multiple versions
of a software program) with the hope that they will fail indepen-
dently, thus greatly improving the chances that some solution out
of the collection will perform correctly in every circumstance. The
different solutions may or may not be produced manually, and the
number of solutions is typically quite small, around ten.

Diversity in security is introduced for a different reason. Here,
the goal is to reduce the risk of widely replicated attacks, by forc-
ing the attacker to redesign the attack each time it is applied. For
example, in the case of a buffer overflow attack, the goal is to force
the attacker to rewrite the attack code for each new computer that
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is attacked. Here the number of different diverse solutions is very
high, potentially equal to the total number of program copies for
any given program. Manual methods are infeasible here, and the
diversity must be produced auomatically.

Cowan et al. introduced a classification of diversity methods ap-
plied to security (called ‘security adaptations’) which classifies adap-
tations based on what is being adapted, either the interface or the
implementation [19]. Interface adaptations modify code layout or
access controls to interfaces, without changing the underlying im-
plementation to which the interface gives access. Implementation
adaptations, on the other hand, do modify the underlying imple-
mentation of some portion of the system to make it resistant to
attacks. RISE can be viewed as an interface randomization at the
machine code level.

Earlier work in automated diversity for security has experimented
with diversifying data layouts [17, 33], file systems [19], and system-
call interfaces [16]. In addition, several projects address the code-
injection threat model directly, and we describe those projects briefly.

In 1997, Forrest et al. presented a general view of the possibil-
ities of diversity for security [24], introducing the idea of delib-
erately diversifying data layouts as well as code, and demonstrated
an example of diversification that randomly padded stack frames so
that exact return address locations would be less predictable, mak-
ing it harder for an attacker to locate the return address and other
key stack offsets. Developers of buffer overflow attacks have de-
veloped a variety of workarounds—such as ‘ramps’ and ‘landing
zones’ of no-ops and multiple return addresses—aimed at coping
with variations across different versions or different compilations
of the vulnerable software. Deliberate diversification via random
stack padding coerces an attacker to use such generalization tech-
niques; it also necessitates larger attack codes in proportion to the
size range of random padding employed.

The StackGuard system [20] provides a counter-defense against
landing zones and similar attack techniques by interposing a hard-
to-guess ‘canary word’ before the return address, the value of which
is checked before the function returns. An attempt to overwrite the
return address via linear stack smashing will almost surely change
the canary value and thus be detected.

4.2 Enforcing security with optimizing inter-
preters

It has been noted that the current trend in binary-to-binary opti-
mizing interpreters could be used for more detailed inspection of
executing code, because every control transfer is detected during
the interpretation process. Kiriansky et al. [28] proposed a method
called ‘code shepherding’ in which various policies are defined to
govern allowable control transfers. Two of those types of policies
are relevant to the RISE approach.

Code origins policies grant differential access based on the source
of the code. When it is possible to establish if the instruction to be
executed came from a disk binary (modified or unmodified) or from
dynamically generated code (original or modified after generation),
policy decisions can be made based on that origin information. In
our model, we are implicitly implementing a code-origin policy,
in that only unmodified code from disk is allowed to execute. An
advantage of the RISE approach is that the origin check cannot be
avoided—only properly sourced code is mapped into the private in-
struction set so it executes successfully. Currently, the only excep-
tion we have to the disk-origin code policy is the code deposited in
the stack by signals, which is handled specially by Valgrind. Also
relevant are restricted control transfers in which a transfer is al-
lowed or disallowed according to its source, destination, and type.
Although we use a restricted version of this policy to allow signal

code on the stack, in other cases we rely on the RISE ‘language
barrier’ to ensure that injected code will fail.

4.3 Other defenses against buffer overflows
In addition to the stack-frame padding and canary methods [40, 20]
described earlier, several other solutions have been proposed to deal
specifically with buffer overflows [21]. These solutions employ
compiler extensions [20, 24], hardware characteristics [25, 32],
kernel modifications [37, 32], library modifications [3], or static
analysis [41] to prevent and detect exploitation of buffer overflow
vulnerabilities.

RISE shares many of the advantages of non-executable stack and
heap techniques, including the ability to randomize ordinary exe-
cutable files and no special compilation requirements however. Our
approach differs, however, from non-executable stacks and heaps
in important ways. First, most non-executable stack/heap systems
(such as PaX [32]) are applied systemwide, while RISE can be
selectively employed on a per-process basis. This distinction be-
comes important, for example, when we consider Java Virtual Ma-
chines, where a runtime compilation process generates code, places
it on the heap, then later jumps to it. In a system with a tradi-
tional non-executable heap, JVMs cannot run at all. In RISE, the
JVM process can simply be run outside of RISE without compro-
mising the security of other running processes. Second, enabling
non-executable stack/heap protection on a system often requires
additional hardware or operating system modification. RISE runs
as a user-level application and requires no special hardware or OS
changes. RISE is capable of running on any binary-to-binary trans-
lator, and so can run on any system with such software.

4.4 Hardware encryption
Because RISE uses runtime code scrambling to improve security, it
resembles some hardware-based code encryption schemes. Hard-
ware components to allow decryption of code and/or data on-the-
fly have been proposed since the late 70’s [12, 13] and imple-
mented as microcontrollers for custom systems (for example the
DS5002FP microcontroller [22]). The two main objectives of these
cryptoprocessors are to protect code from piracy and data from in-
chip eavesdropping. An early proposal for the use of hardware en-
cryption in general purpose systems was presented by Kuhn for
a very high threat level where the encryption and decryption was
performed at the level of cache lines [29]. This proposal still ad-
heres to the model of protecting licensed software from users, and
not users from intruders, so there is no analysis of how to deal
with shared libraries or how to encrypt (if desired) existing open
applications. A more extensive proposal was included as part of
TCPA/TCG [5]. Although the published TCPA/TCG specifica-
tions provide for encrypted code in memory, which is decrypted
on the fly, TCPA/TCG is designed as a much larger authentication
and verification scheme and has raised controversies about Dig-
ital Rights Management (DRM) and end-users losing control of
their systems ([7],[8]). RISE contains none of the machinery found
in TCPA/TCG for supporting DRM. On the contrary, RISE is de-
signed to maintain control locally to protect the user from injected
code.

5. DISCUSSION AND CONCLUSIONS
In this paper we introduced the concept of a randomized instruction
set emulator as a defense against binary code injection attacks. We
demonstrated the feasibility and utility of this concept with a proof-
of-concept implementation based on Valgrind. Our implementa-
tion successfully scrambles binary code at load time, unscrambles
it instruction-by-instruction during instruction fetch, and executes



the unscrambled code correctly. The implementation was success-
fully tested on several code-injection attacks, some real and some
synthesized to exhibit common injection techniques.

Although Valgrind has some limitations, discussed in Section 2,
we are optimistic that improved designs and implementations of
“randomized machines” would vastly increase performance and re-
duce resource requirements, potentially expanding the range of at-
tacks the approach can mitigate. In the current implementation,
aside from performance issues, there is a potential concern about
the dense packing of legal x86 instructions in the space of all possi-
ble byte patterns. A random scrambling of bits is likely to produce
a different legal instruction. Doubling the size of the instruction
encoding would enormously reduce the risk of a processor suc-
cessfully executing a long enough sequence of undescrambled in-
structions to do damage. Although our preliminary analysis shows
that this risk is low even with the current implementation, we be-
lieve that emerging ‘soft-hardware’ architectures such as Crusoe
will make it possible to reduce the risk even further.

A valid concern when evaluating RISE’s security is its suscepti-
bility to key discovery, as an attacker with the appropriate scram-
bling information could inject scrambled code which will be ac-
cepted by the emulator. We believe that RISE is highly resistant to
this class of attacks.

RISE is resilient against brute force attacks because the attacker’s
work is exponential in the shortest code sequence that will make an
externally detectable difference if it is unscrambled properly. We
can be optimistic because most x86 attack codes are at least dozens
of bytes long, but if a software flaw existed that was exploitable
with, say, a single one-byte opcode, then RISE would be vulnera-
ble, although the process of guessing even a one-byte representa-
tion would cause system crashes easily detectable by an adminis-
trator.

An alternative path for an attacker is to try to dump arbitrary ad-
dress ranges of the process into the network, and recover the key
from the downloaded information. The download could be part of
the key itself (stored in the process address space), scrambled code,
or unscrambled data. Unscrambled data does not give the attacker
any information about the key. Even if the attacker obtains scram-
bled code or pieces of the key (they are equivalent because we can
assume that the attacker has knowledge of the program binary), us-
ing the stolen key piece might not be feasible. If the key is created
eagerly, with a key for every possible address in the program, past
or future, then the attacker would still need to know where the at-
tack code is going to be written in process space to be able to use
that information. However, in our implementation, where keys are
created lazily for code loaded from disk, the key for the addresses
targeted by the attack might not exist, and therefore might not be
discoverable. The keys that do exist are for addresses that are usu-
ally not used in code injection attacks because they are write pro-
tected. In summary, it would be extremely difficult to discover or
use a particular encoding during the lifetime of a process.

An attraction of RISE, compared to an approach such as code
shepherding, is that injected code is stopped by an inherent property
of the system, without requiring any explicit or manually defined
checks before execution. Although divorcing policy from mecha-
nism (as in code shepherding) is a valid design principle in general,
it is very easy to make mistakes in defining security policies, and a
mechanism that inherently enforces a correct policy is desirable.

An essential requirement for using RISE for improving secu-
rity is that the distinction between code and data must be carefully
maintained. The discovery that code and data can be systematically
interchanged was a key advance in early computer design, and that
dual interpretation of bits as both numbers and commands is inher-

ent to programmable computing. However, all that flexibility and
power turn into security risks if we cannot control how and when
data become interpreted as code. Code injection attacks provide a
compelling example, as the easiest way to inject code into a binary
is by disguising it as data, e.g., as arguments to functions in a victim
program.

Fortunately, code and data are typically used in very different
ways, so advances in computer architecture intended solely to im-
prove performance, such as separate instruction caches and data
caches, also have helped enforce good hygiene in distinguishing
machine code from data, helping make the RISE approach feasi-
ble. At the same time, of course, the rise of mobile code, such as
Javascript in web pages and macros embedded in word processing
documents, tends to blur the code/data distinction and create new
risks.

Although our paper illustrates the idea of randomizing instruc-
tion sets at the machine code level, the basic concept could be ap-
plied wherever it is possible to (1) distinguish code from data, (2)
identify all sources of trusted code, and (3) introduce hidden di-
versity into all and only the trusted code. A RISE for protecting
printf format strings, for example, might rely on compile-time
detection of legitimate format strings, which might either be ran-
domized upon detection, or flagged by the compiler for random-
ization sometime closer to runtime. Certainly, it is essential that a
running program interact with external information, at some point,
or no externally useful computation can be performed. However, as
the recent SQL attacks illustrate [26], it is increasingly dangerous
to express running programs in externally known languages. Ran-
domized instruction set emulators are one step towards reducing
that risk.

As the complexity of systems grows, and 100% provable over-
all system security seems an ever more distant goal, the principle
of diversity suggests that having a variety of defensive techniques
based on different mechanisms with different properties stands to
provide increased robustness, even if the techniques address par-
tially or completely overlapping threats. Exploiting the idea that it’s
hard to get much done when you don’t know the language, RISE
is another technique in the defender’s arsenal against binary code
injection attacks.
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