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Abstract

Spacetime stereo and its applications

Li Zhang

Chair of Supervisory Committee:

Professor Steven M. Seitz
Computer Science and Engineering

A long-standing challenge in computer vision is to recover 3D shapes from images,

especially when the shapes change over time. Among the numerous existing shape

acquisition methods, very few are able to accurately measure time-varying shapes at

both high spatial and temporal resolution. Furthermore, some previous methods have

strict assumptions on surface color and texture and do not work robustly for complex

object shapes. In this dissertation, we address these limitations and present a new

approach, spacetime stereo, for dynamic shape acquisition.

Spacetime stereo formulates stereo matching as a 3D window warping problem in

video volumes. This new formulation incorporates the temporal variations of image

pixels as a cue for better shape reconstruction, and is a general framework for different

variants of triangulation-based shape reconstruction methods, namely, passive stereo,

active stereo, one-shot structured light, and multi-shot structured light. Under this

framework, we develop algorithms that accurately reconstruct deforming objects at

high spatial and temporal resolution. Spacetime stereo is also effective for a class of

natural scenes, such as waving trees and flowing water, which have repetitive textures

and chaotic behaviors and are challenging for existing stereo algorithms.





To demonstrate an application of spacetime stereo, we build a dynamic face cap-

ture system that consists of off-the-shelf cameras, projectors, and computers. We

also propose a new template fitting and tracking method that computes a sequence of

3D face meshes with vertex-to-vertex correspondence by combining shape and optical

flow estimation. The resulting system is able to continuously (20Hz) capture high

resolution (about 20K points) facial motion simultaneously from multiple viewpoints

without the need to paint markers on the face. Finally, we develop data-driven facial

animation tools that take advantage of the captured 3D face sequence. These tools

enable untrained users to produce realistic facial expressions and animations.
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Chapter 1

INTRODUCTION

Understanding the way objects change shape is a fundamental problem in many

scientific disciplines. For example, modeling how human beings change facial shapes

to express their emotion is an interesting problem in psychology, and relating these

shape changes to muscle actuation is an important problem in bio-mechanics and

plastic surgery. Additional examples include predicting liver deformation after a sur-

gical incision, which is a critical problem in medical robotics, and simulating the way

clothing wrinkles and folds in response to body pose changes, which is a fundamental

problem in computer graphics. Solutions to these problems will have a wide spectrum

of applications, ranging from computer games and visual effects in movies to med-

ical practice. Yet these problems are not fully understood, because the underlying

complex, dynamic shape variations are hard to measure and, as a result, difficult to

model.

In this dissertation, we address the problem of accurately capturing three dimen-

sional (3D) shapes of dynamic objects at high spatial and temporal resolution from

image streams. Specifically, we propose a novel binocular stereo method, spacetime

stereo, for recovering time-varying 3D shapes. We also combine the spacetime stereo

method with existing optical flow methods to estimate high resolution 3D motion. As

an application, we demonstrate how the resulting 3D shape and motion data can be

used for data-driven expression synthesis and facial animation in computer graphics.

In this chapter, we first give a formal problem statement of the dissertation and
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list the desired properties of its solution. We then review a variety of previous shape

acquisition methods that may be applied for dynamic scenes and summarize their pros

and cons. Finally, we give an overview of this dissertation and outline its organization.

1.1 Problem statement

The objective of this dissertation is as follows:

Given a dynamic object, compute the object’s time-varying surface shape from

different view points, using video cameras and video projectors.

We seek shape recovery solutions with the following desired properties.

• High spatial and temporal resolution. We are interested in the dynamic object’s

detailed shape variation over time. Therefore, we seek to measure its shape

at both high spatial and high temporal resolution. Specifically, we would like

to use high frame rate cameras to record the object and reconstruct the 3D

position for every pixel in the recorded videos.

• Accurate reconstruction. We seek to reconstruct shape accurately so that the

resulting data can be used for shape synthesis and recognition applications,

e.g., synthesizing winkles on a human face or expression recognition. For an

object comparable in size to a human face, the reconstruction accuracy should

be sub-millimeter.

• Robustness. The new methods should handle complex shapes, which may have

disconnected components and large depth discontinuities. These types of shapes

are not well handled in some previous methods. The new methods should also

be robust to both texture-less and highly textured surfaces, to both neutral

color and saturated color surfaces.
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• Simultaneous multi-view acquisition. Complex dynamic scenes usually can not

be captured completely from a single view point. We seek methods that are

able to capture the scene from multiple viewpoints simultaneously.

• Off-the-shelf equipment. For the purpose of easy replication, the new method

should be implementable with off-the-shelf devices.

In this dissertation, we present a novel method for reconstructing dynamic shapes

that possesses all these properties. Previous methods, by contrast, possess only sub-

sets of these properties. In the next section, we briefly review the previous work in

dynamic shape acquisition.

1.2 Previous work in dynamic shape acquisition

Over the last century, a vast number of shape acquisition methods have been pro-

posed. Curless [26] provides an excellent categorization of most existing shape ac-

quisition methods. These methods vary significantly in terms of their capabilities

and equipment requirements. Some are designed to capture high resolution shapes

for static scenes, while others are designed to capture dynamic scenes at low spatial

resolution. Very few methods are capable of robustly capturing dynamic scenes at

high spatial and temporal resolution. In this section, we focus on the methods that

have been demonstrated to capture dynamic shapes, which includes both a subset of

methods discussed in [26] and several more recently published results.

1.2.1 A taxonomy of dynamic shape acquisition

From the top level in Figure 1.2, dynamic shape acquisition can be divided into

contact and non-contact methods.

The contact methods include Magnetic Motion Capture (Mocap), Shape Tape,

and Optical Mocap. These methods attach some set of “sensors” on a moving object,
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Dynamic Shape acquisition


Contact

Non-contact

Optical Mocap
 Active
 Passive


Time-of-flight depth sensors


Photometric stereo


Temporally coded structured light


Interferometry


Holography
 Moire


Active depth from defocus


Active stereo


Shape tape
Magnetic Mocap


Stereo
 Structure from motion


Spatially coded structured light
Ultrasound imaging


Figure 1.1: A taxonomy of dynamic shape capture

usually a human subject, to measure the object motion. Magnetic Mocap uses a

set of coil sensors which can measure their own location and orientation within a

source magnetic field [24]. The Shape Tape technique [65] uses a fiber optic sensor to

measure 3D bend and twist continuously along its length. Both Magnetic Mocap and

Shape Tape are mainly used to measure body poses, not detailed body deformation,

e.g., muscle bulging. The Optical Mocap technique requires a few reflective markers

placed on a human body and computes 3D positions of the markers by simultaneously

videotaping them from multiple viewpoints [68]. Optical Mocap is mainly used to

capture human poses as Magnetic Mocap does. Recently, engineers in the movie

industry have tried placing more than a hundred small markers on an actor’s face

to capture his facial motion for the movie “Polar Express”. However, this approach

still falls short of capturing expressive nuances in facial motion. As camera resolution

increases, we can imagine putting smaller and denser sets of markers on a target

surface for higher resolution capture. However, doing so is cumbersome and greatly
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increases the overhead of shape measurement.

Compared to contact methods, non-contact methods do not require placing sensors

on the object surface; they reconstruct 3D shapes by recording videos of the scene.

These methods can be further divided into active and passive methods, depending on

whether the videos are recorded under controlled or natural conditions.

Passive methods

Passive methods reconstruct 3D shape from videos taken under natural lighting, e.g.,

outdoor video. These methods are typically based on the principle of triangulation,

as illustrated in Figure 1.2. Based on this principle, a point’s 3D position can be

reconstructed by intersecting the lines of sight of the corresponding points in two or

more images. Two fundamental computer vision problems, stereo and structure from

motion, are based on this principle.

Stereo assumes the camera positions and orientations are known and seeks to com-

pute pixel correspondence for 3D reconstruction. Stereo has been studied for decades;

Scharstein and Szeliski [85] provide an excellent overview of the state of the art. A

known difficulty for stereo is that pixels in texture-less regions cannot be matched

accurately. Most stereo algorithms address this difficulty by assuming a smoothness

prior model for the underlying shape to regularize the reconstruction. As a result,

existing stereo algorithms provide very good approximate shape reconstructions, but

not very accurate ones.

Structure from motion assumes that, for a set of image features, their correspon-

dences across different images are given, and seeks to compute camera motion and

the 3D positions of these image features. Hartley and Zisserman [46] provide a com-

prehensive overview of existing methods, which all assume the scene is rigid. More

recent work [15, 93] addresses the cases of non-rigid scenes, e.g., humans and animals.

A known difficulty in structure from motion is that pixel correspondences can be re-

liably computed only for the salient feature points. Therefore, structure from motion
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A

B C

a
b

c

a'

b'
c'

R, t

Figure 1.2: The principle of shape from triangulation. The 3D shape of an object can
be reconstructed by intersecting corresponding lines of sight from two different view-
points. The 3D reconstruction problem boils down to two subproblems: computing
pixel correspondence and estimating camera motion. Given the camera rotation R

and translation t, stereo seeks to establish pixel correspondence a → a′, b → b′, and
c → c′, so that the 3D positions of A, B, and C can be computed. Given the pixel
correspondence a → a′, b → b′, and c → c′, structure from motion seeks to compute
the camera motion R and t, and the 3D positions of A, B, and C.

often only recovers sparse shape.

Active methods

Active methods reconstruct 3D shape by sending certain types of energy waves onto a

surface and imaging the reflected waves. A large body of methods have been proposed

in this area. While many of the methods use lights as energy waves, other types of

waves, e.g., ultrasound waves, are also used. These methods differ in the way they

control the waves and the way they reconstruct shapes from the reflected signals.
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Active stereo Active stereo seeks to alleviate the difficulty caused by low contrast

regions in passive stereo by projecting a high contrast texture pattern, e.g., a sinu-

soidally varying stripe pattern [56] or a random dot pattern [62], onto the surface.

This approach introduces synthetic textures over the surface without the overhead of

physically touching the surface. However, this approach usually results in reconstruc-

tions with limited spatial resolution, because reliable matches are limited to the image

pixels with high local contrast in the projected pattern. For example, in some com-

mercial active stereo systems [62], surface positions are only computed for a selective

subset of pixels.

Temporally coded structured light Since the main challenge in the triangulation

based shape acquisition is establishing pixel correspondence, a large body of research

has focused on simplifying the correspondence problem by encoding the correspon-

dence using specially designed lighting patterns. One group of such techniques seeks

to uniquely encode the illumination rays using multiple lighting patterns. Specifi-

cally, the temporal intensity variation of each ray from the light source is unique.

Representative examples of such methods include laser scanners (e.g., [29, 49]) and

hierarchical stripe scanners [83]. These methods traditionally require the scene to be

completely static over the multiple frames. More recently, with the advance of high

speed projection and imaging technologies, researchers [45, 47, 52] have started to

apply multi-frame encoding methods to moving scenes, because the scene in a few

neighboring frames can be approximated as being static.

Spatially coded structured light Instead of encoding illumination rays over time

using multiple frames, another group of methods seeks to design a single lighting

pattern such that the intensity variation within a spatial neighborhood is unique.

This approach has the advantage that the scene structure can be recovered using only

one pattern. Furthermore, this approach can be readily applied to dynamic scenes by
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repeating the reconstruction for each single frame. Examples of this approach include

color stripes [13] and random dot patterns [67]. However, this approach also has a

limitation similar to the active stereo methods: only a subset of pixels can be encoded

and reconstructed accurately.

Interferometry Interferometry methods operate by projecting a periodic pattern

onto a surface. The surface geometry will warp the phase of the periodic pattern.

The warped phase can be computed by demodulating the reflected pattern using

the original periodic pattern. There are two kinds of interferometry, as illustrated

in Figure 1.2. One of them uses the wave nature of light (holography) to represent

the sinusoidal pattern and get sub-wavelength accuracy. The other does intensity

modulation (moire) and is intended for large scale surfaces. Both require phase un-

wrapping that does not work with disconnected components and depth discontinuity.

Interferometry also assumes uniform surface albedo so that surface geometry is the

only source of phase change. In practice, highly textured surfaces violate this assump-

tion. Recently, Fong and Buron [39] combines the phase unwrapping approach and

the one-shot color structured light scanning method to address the issues of depth

discontinuity and disconnected components. However, the highly textured surfaces

still remain to be a challenging case for these methods.

Photometric stereo Photometric stereo works by taking multiple (at least three)

images from one fixed viewpoint under varying illumination[97]. It then computes the

surface orientation for each pixel based on its shading variation under the different

lighting conditions. The surface shape can be generated by integrating over the

estimated surface normal filed. Traditionally, photometric stereo has been used only

for static scenes. Recently, Wengeret al. [96] have applied photometric stereo to

reconstruct the 3D face of a performing actor using a 2160 fps camera with a computer

controlled lighting rig. They report that, at such a high frame rate, a moving face
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can be approximated as being static for every three or four consecutive frames.

Active depth from defocus Depth from defocus [73, 69] recovers the distance of

a surface point by estimating its blur in the image. This method works by taking mul-

tiple images while varying the distance between the imaging plane and the lens. Then

the depth for each pixel can be computed based on the pixel blur in different images.

Depth from defocus shares the same weakness with stereo triangulation: it requires

the object surface to have high frequency textures. In practice, this requirement is

achieved by projecting lighting patterns onto the surface, the same idea used in active

stereo. Among many systems based on this approach, Nayar et al. [69] demonstrated

the most impressive system, which is able to produce 512x480 depth estimates at

30Hz, with an accuracy of 0.3%. This performance is achieved by taking only two

simultaneous scene images and designing an optimal projection pattern taking into

account optical transfer functions, image formation, and focus measure operators.

Their method, however, assumes the projected light pattern is the dominant texture

on the scene surface for optimal performance. Further, it is unclear whether more

than one projector-camera system can be used to simultaneously capture the scene

from different viewpoints, because the interference among the pattern projections may

pose a problem for the optimal depth estimation.

Time-of-flight depth sensors Time-of-flight depth sensors measure the distance

to a surface by sending a light pulse to the surface and recording the time delay of the

reflected pulse. This principle has been used in radar and sonar for decades, mainly

for measuring targets at a large physical scale. Recently, Canesta [50] and 3DV Sys-

tems [91] commercialized 3D depth sensors based on this time-of-flight principle that

capture at video rates. Their depth accuracy is around a few centimeters, and this

accuracy is constant regardless of the object distance from the camera. Although

this accuracy may suffice for large scale environments, it is not good enough for small
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objects on the order of less than one meter in size. To achieve sub-millimeter accuracy

with such a working volume, the time-of-flight measurement must be accurate in the

femtosecond range [26], and building timing circuity at such a high speed is a sig-

nificant challenge. Also the time-of-flight systems are sensitive to surface reflectance

variations, though some recent work [42] attempts to address this issue.

Ultrasound imaging The time-of-flight principle has also been used in medical

imaging where an ultrasound pulse, instead of a light pulse, is sent to the surface and

the time delay of the echo is then used to reconstruct the 3D surface. Ultrasound

imaging has been used in obstetrics and gynecology for measuring the size of the fetus

to determine the due date, in cardiology for seeing the inside of the heart to identify

abnormal structures or functions, and in urology for measuring blood flow through

the kidney. However, ultrasound waves do not pass through air, limiting its operation

range to solid organs that are inside bodies.

1.2.2 A summary of the taxonomy

Among the numerous dynamic shape acquisition methods, there are very few methods

that robustly measure shape at both high spatial and temporal resolution. Contact

methods capture shapes at high temporal resolution but low spatial resolution. Time-

of-flight methods capture shape at both high spatial and temporal resolution, but their

results on small objects are not accurate. Interferometry methods can recover dynamic

shape under the assumption that the surfaces are textureless. Active defocus sensors

can recover dynamic shape at high spatial and temporal resolution. However, they

require customized hardware, and multiple scanners may interfere with each other

when used simultaneously from multiple viewpoints. Various off-the-shelf structured

light methods either capture shape at high spatial resolution or at high temporal

resolution, but not both. Recent work on applying existing temporal structured light

methods on dynamic scenes with high speed imaging seems a promising approach.



11

However, our experience indicates that, even at 500 frames per second, inter-frame

motion many not be negligible for fast motion, e.g., cloth waving. Therefore, there

is a clear need for a new method that can robustly acquire dynamic shapes at high

spatiotemporal resolution using off-the-shelf equipments.

1.3 Dissertation overview

This dissertation consists of two main parts. The first part is focused on the solutions

to the problem of dynamic shape reconstruction stated in Section 1.1. The second part

is focused on how the captured 3D data can be used in synthesizing facial animation.

We summarize these two parts as follows.

1.3.1 Dynamic shape reconstruction

The most straightforward approach to recovering time-varying 3D shapes from videos

is to recover a shape at each frame independently, so-called one-shot methods. Chap-

ter 2 overviews such methods in detail and proposes a new one-shot method. This

new method estimates the 3D shape of an object from a single image taken when the

object is illuminated by one color stripe lighting pattern. The method works by match-

ing the projected color transitions with observed edges in the image. It eliminates

some restrictions posed by previous methods in this area, e.g., global smoothness as-

sumptions, strict ordering constraints, and singly-connected surface constraints. The

resulting approach is suitable for generating high-speed scans of moving objects when

projecting a single stripe pattern and recording an image stream.

Our one-shot method, as well as most other one-shot methods, suffer from the

limitation that only a subset of pixels along edges can be accurately reconstructed.

To resolve this limitation, Chapter 3 considers the problem of recovering dynamic

shapes from a pair of stereo sequences. The key observation is that we should match

sequence to sequence, instead of frame-by-frame as in one-shot methods, in order to
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have more accurate 3D estimation for every pixel. Based on this observation, we

propose a new stereo framework, spacetime stereo, in which the temporal variation of

each pixel is used as a cue for pixel correspondence between different image sequences.

Under the new stereo formulation, we propose a window warping stereo matching

algorithm that is able to reconstruct time-varying shapes accurately (down to sub-

millimeter) for each pixel. The resulting approach has all the desired properties listed

in Section 1.1.

Although the algorithm proposed in Chapter 3 improves the state-of-art in dy-

namic shape capture, it has an over-fitting problem. Specifically, it neglects the

consistency constraints for depth estimation between neighboring pixels. Chapter 4

proposes a global optimization technique for spacetime stereo matching that over-

comes this over-fitting deficiency.

To evaluate the spacetime stereo algorithms, we have built several camera systems

to capture 3D shapes. Chapter 5 describes these experimental setups in detail, which

include a portable stereo system consisting of a laptop and two Firewire cameras and

a multi-camera system for capturing moving human faces from different viewpoints.

1.3.2 Application in facial animation

Spacetime stereo generates surface shape measurement for dynamic objects. When

using the measured shapes for 3D animation, it is useful to know the 3D motion as

well, i.e., the point correspondence between the shapes. In Chapter 6, we propose a

new surface tracking and fitting procedure to compute the 3D surface motion that

optimally fits both the 3D shape measurements and 2D optical flow of the surface color

in image streams. This method generates a sequence of surface meshes with vertex-

to-vertex correspondence and also fills in the missing data in the shape measurement.

The end result of Chapter 6 is a dense, marker-less facial motion capture system.

In Chapter 7, we address the problem of how to use the dense 3D motion estimation

for expression synthesis and facial animation. Specifically, we have developed an
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intuitive expression synthesis tool, faceIK, that is able to synthesize a wide range

of new expressions by exploiting the correlation in the captured 3D faces. The tool

enables posing new expressions by dragging surface points interactively. For example,

pulling up on one corner of the mouth causes the entire face to smile. The tool also

enables creating new expressions that do not exist in captured faces. For example,

asymmetric faces can be created from a set of symmetric faces. We also develop

a face graph representation that encodes the dynamics of a face sequence. This

graph can be traversed to create a variety of animations via key-framing or texture-

synthesis techniques. Our approach enables untrained users to produce expressive

facial animations.

Finally, we conclude in Chapter 8 by stating our contributions in this disserta-

tion and suggesting topics for future research. In this dissertation, Chapter 2 and 3

describe joint work with Brian Curless and Steven M. Seitz, first presented in IEEE

3DPVT 2002 [99] and IEEE CVPR 2003 [100], respectively. Chapter 4, 6, and 7

describe joint work with Noah Snavely, Brian Curless, and Steven M. Seitz, first pre-

sented in ACM SIGGRAPH 2004 [102]. In the next chapter, we start from discussing

the one-shot methods.
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Chapter 2

ONE-SHOT SCANNING USING COLOR STRUCTURED

LIGHT

Among the various shape reconstruction methods discussed in Chapter 1, triangu-

lation based methods, e.g., stereo and structured light, are probably the most widely

used due to their reconstruction accuracy, their scalability to a large variety of working

volumes, and their requirements of only off-the-shelf devices. Traditional triangulation

methods reconstruct a dynamic scene by taking one or more videos synchronously and

then estimating the underlying shape at each time instant independently. As these

methods use images taken at one time instant, or sometimes even just a single image,

they are often referred as one-shot methods. Previous one-shot methods face a few

challenges. First, scenes with complex geometry, e.g., disconnected components or

large depth discontinuities, often cause errors for the reconstructions. Second, only

a subset of the camera pixels, instead of all pixels, are usually reconstructed. In

this chapter, we focus on the one-shot approach, and present a new method that

addresses the first challenge.1 In Chapter 3 and 4, we propose methods to address

both challenges; these methods are not one-shot methods.

Specifically, in this chapter, we present an accurate triangulation system by pro-

jecting a single structured light pattern consisting of high frequency alternation of

color stripes. The shape is reconstructed by matching the projected color transitions

with observed edges in the image. Due to the finite number of distinct color transitions

available in three color channels, some matching ambiguity remains. Furthermore,

1This chapter describes joint work with Brian Curless and Steven M. Seitz, first presented in
IEEE 3DVPT 2002 [99].
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since the surface reflectance modulates the projected lighting pattern, uncertainty

also exists for determining the type of color transition for each edge in the image. As

a result, the edges themselves may have non-zero likelihood of being associated with

several different color transition or even none. We address this multi-hypothesis cor-

respondence problem with a novel multi-pass dynamic programming algorithm. This

algorithm reconstructs piecewise-continuous surfaces and overcomes the monotonic

surface limitation in previous dynamic programing based methods.

The rest of this chapter is structured as follows. Section 2.1 overviews some of

the structured light methods suitable for capturing shapes for dynamic scenes and

proposes the architecture of our scanner. In Section 2.2 we formulate the edge cor-

respondence problem as a multi-hypothesis code matching problem and present the

multi-pass dynamic programming solution. Next, in Section 2.3, we describe the de-

sign of a color-coded projection pattern and its use in reconstructing shape from a

single image. In Section 2.4, we describe our implementation and show results. Fi-

nally, in Section 2.5, we summarize the work and suggest avenues for future research.

2.1 Related work

Optical triangulation has been an active area of research for decades. The techniques

that have been developed range from those that require many images to reconstruct

a surface to those that require only a single image. To handle faster motion, many

methods use only one pattern. These patterns can be divided into two categories:

pseudorandom patterns and periodic patterns.

Pseudorandom patterns seek to encode projected light rays using spatial neigh-

borhoods. For example, Boyer and Kak [13] designed a color stripe pattern in which

each window of spatially adjacent stripes has a unique color intensity configuration.

The stripe color is chosen from red, green, and blue, and the windows of stripes are

separated by black stripes. Following Boyer and Kak’s work, Hügli and Maitre [48]
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use de Bruijn sequences, a type of sequences within which each subsequence of cer-

tain length is unique. De Bruijn sequences avoid the need for black stripes as special

tags. In both cases, the authors first classify the color of each stripe in the images

before matching it to the projected pattern. This two-step procedure is sensitive to

errors in stripe identification. Monks and Carter [66] and Chen et al. [22] combine the

color identification and stripe matching together as an optimization problem and use

dynamic programming to solve both simultaneously. The constraint in these cases is

that the order of stripes in the projected pattern is the same as that in the observed

image.

Pseudo randomness can also be used for patterns that are not based on stripes.

For example, a 2D extension of de Bruijn sequence is called an M-array, which is an

R × C matrix with each r × c sub-matrices being unique. These sub-matrices can

be used as codes to establish the correspondence between a projected pattern and

a recorded image. Griffin and Narasimhan [43] and Davies and Nixon [30] used M-

arrays to design patterns for structured light. However, these methods are sensitive

to surface colors and depth discontinuities, both of which can cause decoding errors

for their methods.

Aside from pseudo random patterns, periodic patterns have also been used. Proes-

mans et al. [78, 77] demonstrate a scanner that projects a grid pattern onto the scene

and matches the observed grid to the projected pattern by a global 2D grid optimiza-

tion algorithm. In this case, the constraint is that the visible portion of the object

consist of a single connected component.

Wust and Capson [98] present a three-step phase shift method. They designed

a pattern with three sinusoid stripe patterns encoded in the red, green, and blue

channels. These three sinusoidal pattern differ 90◦ in phase. In the observed image,

the phase of each pixel can be recovered from its red, green, and blue pixel values.

This approach assumes the scene surface has neutral colors and does not have large

depth discontinuities.



17

Custom hardware solutions have been developed to solve the problem of shape

capture for dynamic scenes. For example, Nayar et al. [69] build a real-time focus

range sensor using customized cameras and projector. Although these methods gen-

erate good results under certain constraints, the need for customized hardware makes

it hard to replicate these methods. We seek to construct range finders from more

commonly available and easily assembled components, making our methods more

accessible to other researchers.

To this end, we describe a technique that uses a video camera to record a dynamic

scene when it is illuminated with a color stripe pattern from a projector.2 By matching

projected color transitions and observed color edges with a novel multi-pass dynamic

programming method, we overcome the limitations presented in previous work, the

monotonicity constraint in [22], the singly-connected component constraint in [78],

and depth discontinuity ambiguity in [98, 47].

2.2 Multi-hypothesis code matching

The basic principle of one-shot triangulation is illustrated in Figure 2.1(a): an illu-

mination pattern is projected onto an object and the reflected light is captured by

a camera. The relative distance between a point in the illumination pattern and its

position in the captured image is inversely related to depth, allowing the 3D position

of the point to be reconstructed, assuming the camera and projector parameters are

known.

The primary challenge in one-shot triangulation is obtaining correspondence be-

tween points in the projected pattern and pixels in the image. This correspondence

problem is mitigated by two observations. First, as shown in Figure 2.1(a), the 2D

correspondence problem reduces to determining correspondences between each row of

the projected pattern and its corresponding row of the rectified camera image [37].

2In our implementation, we use a video projector, but it can be replaced by a slide projector.
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Figure 2.1: Summary of the one-shot method. (a) In optical triangulation, an illu-
mination pattern is projected onto an object and the reflected light is captured by a
camera. The 3D point is reconstructed from the relative displacement of a point in
the pattern and image. If the image planes are rectified as shown, the displacement is
purely horizontal (one-dimensional). (b) An example of the projected stripe pattern
and (c) an image captured by the camera. (d) The grid used for multi-hypothesis code
matching. The horizontal axis represents the projected color transition sequence and
the vertical axis represents the detected edge sequence, both taken for one projector
and rectified camera scanline pair. A match represents a path from left to right in the
grid. Each vertex (j, i) has a score, measuring the consistency of the correspondence
between ei, the color gradient vectors shown by the vertical axis, and qj, the color
transition vectors shown below the horizontal axis. The score for the entire match is
the summation of scores along its path. We use dynamic programming to find the
optimal path. In the illustration, the camera edge in bold italics corresponds to a
false detection, and the projector edge in bold italics is missed due to, e.g., occlusion.

Second, we can choose whatever pattern we wish to project; therefore, we should

choose a pattern that simplifies the correspondence. Laser triangulation scanners

take this strategy to the extreme by projecting a narrow beam or plane of light that

is easily identified in the image as a point or contour on the surface. Since very little
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information is available in each image, reconstruction from laser scanners typically

requires a very large number of images. Multi-stripe techniques, on the other hand,

often use a detailed pattern to obtain as much information about the scene as possible

from a small number of images. In this chapter, we treat the problem of obtaining

correspondence using multi-stripe techniques, in particular from color stripe patterns

of the form shown in Figure 2.1(b) that yield camera images like the one shown in

Figure 2.1(c).

While the concepts from this chapter are applicable to a wide range of patterns, we

begin by considering specifically the case of patterns consisting of equal-width color

stripes to be used for capturing shape with a single image. We can enumerate these

stripes by a string of colors P = (p0, p1, . . . , pN). The information we will use for

triangulation is encoded in the transitions between colors. This transition sequence,

call it Q = (q0, q1, . . ., qN−1), is comprised of elements qj = (qr
j , q

g
j , q

b
j) where each

color channel takes on a value of -1, 0, or 1 corresponding to a falling, constant, or

rising transition, respectively. For example, (0,−1, 1) indicates no change in the red

channel, a fall from 1 to 0 in the green channel, and a rise from 0 to 1 in the blue

channel. For convenience, we adopt a notation in which, qj refers to the j-th projector

edge, q refers to any (generic) projector edge, and qc refers to the transition in color

channel c ∈ {r, g, b} of projector edge q.

The reflection of the projected pattern from the scene is detected in the image as

a sequence of color edges, E = (e0, e1, . . ., eM−1) for each sensor scanline, where (using

the simplified notation mentioned above) a color edge e = (er, eg, eb) is described by

its 1D intensity gradients in each of the three color channels. Our objective is to solve

the correspondence between the transition sequence Q and the edge sequence E.

Correctly identifying the correspondence between projected and imaged stripes,

shown in Figure 2.1(b) and (c) respectively, brings out two key difficulties:

• Mislabeling: In addition to the projected pattern, the color of image pixels
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depends on factors such as surface reflectance and shading, viewing direction,

color cross-talk between projector spectra and sensor filters, and sensor noise.

Consequently, obtaining reliable estimates of color directly from pixel values is

not at all straightforward, and misclassifications can result.

• Occlusions: Real scenes often have occlusions, shadows, and surface discon-

tinuities. It is therefore not realistic to assume that every projected transition

is visible in the image, nor that every observed edge has a corresponding color

transition in the projected pattern.

We address the mislabeling problem by introducing a technique that allows for

multiple hypotheses. Rather than assigning a unique label to every stripe in the image,

every label assignment is represented, along with its probability of matching. A final

labeling is then obtained by applying a global optimization technique that accounts

for occlusions, shadows, and discontinuities.

Specifically, a global match hypothesis φ between the projected transition sequence

Q and observed edge sequence E is defined as a sequence of integer pairs

φ =












j1

i1




 ,






j2

i2




 , . . . ,






jΦ

iΦ












(2.1)

where Φ is the number of integer pairs of φ, j1 < j2 < . . . < jΦ, and i1, i2, . . . , iΦ are

distinct from each other. Each integer pair (jk, ik)
T indicates that edge eik corresponds

to the transition qjk
.

The match φ is equivalent to a path in a 2D grid, as illustrated in Figure 2.1(d).

The horizontal axis represents the projected transition sequence Q and the vertical

axis represents the observed edge sequence E. The match φ represents a path from

left to right in the grid, intersecting each row and each column no more than once.

The quality of a match is computed by assigning each vertex (j, i) a score, score(qj, ei),

measuring the consistency of the correspondence between edge ei and transition qj.
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The specific definition of score(qj, ei) is described in Section 2.3. The score of the

entire match φ is the summation of scores of all the vertices in φ, defined as

σ(φ) =
Φ∑

k=1

score(qjk
, eik) (2.2)

The optimal match is therefore defined as

φ∗ = arg max
φ

{σ(φ)} (2.3)

In general, the possible paths represented by the φ’s may go up and down and have

disconnected components due to occlusion, texture edges, etc. Therefore, the space

of all possible matches is enormous, of size O(MN). A common technique for making

this optimization problem tractable is to introduce an assumption of depth-ordering,

or monotonicity [3]

i1 < i2 < . . . < iΦ. (2.4)

With this assumption, Eq. (2.3) may be solved efficiently using dynamic programming

[3, 71, 41, 25, 6, 22, 51, 10]. The monotonicity assumption should be used with care,

however, since it is violated in the presence of occlusions, and can produce artifacts.

In practice, we have observed that violations of the monotonicity assumption result

in dropouts, i.e., portions of the scene that are not reconstructed. We show how this

problem can be addressed by use of a multi-pass dynamic programming technique.

First, we review the basics of dynamic programming in the following subsection.

2.2.1 Correspondence by dynamic programming

We adopt a notation similar to that of Cox et al. [25]. Let Gj,i be the sub-grid defined

by [0, j] × [0, i], and φ∗
j,i be the optimal path in Gj,i. Three possible configurations

of φ∗
j,i exist: (1) it consists of vertex (j, i) and the optimal path φ∗

j−1,i−1 in Gj−1,i−1,

(2) it is entirely in the sub-grid Gj−1,i, or (3) it is entirely in Gj,i−1. In the latter

two cases, φ∗
j,i = φ∗

j−1,i or φ∗
j,i = φ∗

j,i−1, respectively. Consequently, σ(φ∗
j,i) may be
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Figure 2.2: Violation of the monotonicity assumption. (a) 9 transitions, q1, q2, . . . , q9,
are projected onto a scene comprised of a thin foreground surface against a background
surface, and 8 edges, e1, e2, . . . , e8, are detected. Projected edge q3 is occluded by the
foreground element and not detected. (b) The resulting match grid shows that camera
edge indices do not increase monotonically with corresponding projector edge indices.
A multi-pass DP algorithm can recover the (A,B,C,D,E) path in the first pass, and
the (F,G) path in the second pass.

recursively computed as

σ(φ∗
j,i) =







0, if j = 0 or i = 0;

max







σ(φ∗
j−1,i−1) + score(qj, ei),

σ(φ∗
j−1,i),

σ(φ∗
j,i−1)







, otherwise.
(2.5)

The cost of the optimal solution φ∗ to Eq. (2.3) is given by σ(φ∗
N,M), and evaluating

every σ(φ∗
j,i) takes O(MN) space and time. φ∗

N,M is computed by tracing back through

the cost matrix [25], which takes O(M + N) time. A common technique to reduce

the complexity is to restrict the depth range to a user-defined value (e.g., 10% of the

maximum possible depth range).
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2.2.2 Multi-pass dynamic programming

A fundamental limitation of matching algorithms based on dynamic programming

(DP, for short) is the assumption of monotonicity, which is violated in the presence

of occlusions. An example of such a violation is shown in Figure 2.2(a). In the figure,

a thin foreground element lies in front of a background plane. Due to the occlusion,

the order of projected transitions and detected edges is not the same, resulting in a

non-monotonic path in the grid, shown in Figure 2.2(b).

The DP algorithm therefore fails to find the optimal path; instead, it will identify

the optimal monotonic solution. While this solution could potentially be quite differ-

ent than the optimal path, in practice we have seen that it corresponds to a monotonic

component of the optimal solution. In the case of Figure 2.2(b), DP identifies the

sub-path consisting of (A,B,C,D,E). The rest of the optimal solution, sub-path

(F,G), is itself monotonic and can be identified by applying DP on the sub-grid ob-

tained by removing columns (1, 2, 4, 5, 6, 9), and rows (1, 2, 5, 6, 7, 8) from the original

grid. The same procedure may be repeated until all rows and columns are exhausted.

This procedure, which we call MultiPassDP, is summarized as follows

procedure MultiPassDP(grid)

set path to be empty;

while(path1 := DP(grid) is not empty)

path := path
⋃

path1;

remove columns and rows in path1 from grid;

return path;

end MultiPassDP

MultiPassDP computes the monotonic components of the optimal path in mul-

tiple passes, enabling solution of correspondence problems with occlusions that are

not possible with traditional DP. Instead of exhausting the positive monotonic com-

ponents, path1, in the grid, the number of DP passes can also be specified by a user,
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based on prior knowledge of how many “layers” of structure the scene contains.

2.3 One-shot patterns and scoring functions

The previous section describes the machinery needed to compute an optimal surface

given a projected pattern and observed image. In this section, we discuss design deci-

sions in choosing a pattern to project and a scoring function to be used in computing

the optimal one-shot surface.

2.3.1 De Bruijn illumination patterns

Choosing a good pattern to project is important for achieving accurate correspondence

with optical triangulation techniques, particularly one-shot methods. Assuming the

patterns and images are rectified, the pattern may be designed for a single scanline

and replicated to produce a 2D vertical pattern. One design choice is whether to

project a smooth or a piecewise-constant pattern. For a one-shot method, encoding

information in smooth intensity variations is difficult to do, because surface shading

can affect these variations substantially. Thus, we choose to encode information on

edges and resort to a piecewise-constant illumination pattern.

In addition, a good pattern has the property that correspondences between pro-

jected edges and observed edges is easy to determine. As noted earlier, each edge

element of Q is comprised of three color edge transition labels that can each take

values -1, 0, or 1. This value assignment implies an “edge alphabet” of 27 unique

edges; however, since the edge (0, 0, 0) is really no edge at all, 26 edges are actually

available to us.

Projecting exactly 26 edges would lead to well-determined correspondence, since

each edge is unique, but this would yield very sparse reconstructions. Alternatively,

we could lay out the same sequence of edges and repeat them as many times as needed

to fill out the desired total number of projected edges. Consider, though, the case of
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an object that is 26 projected stripes in width. The dynamic programming algorithm

will prefer to find a sequence of matches that corresponds to a single connected surface

(rather than a set of scattered matches), but due to the repetition in the pattern, a

set of equivalent answers will arise. In fact, such a repetitive pattern can result in

ambiguity for even larger objects. To minimize such ambiguity, we instead we seek

to find a sequence that has a good windowed uniqueness property, i.e., a sequence

that has the desired number of transitions with a small window size n such that each

sub-sequence of n consecutive stripes is unique within the entire sequence.

Our goal now is to devise a color sequence P that yields an edge sequence Q

with a good windowed uniqueness property. First, we consider the fact that given

a color pj, the next color pj+1 must be different in at least one channel for an edge

transition to occur. If we think of these colors as being mapped to base-2 numbers

{000, 001, . . . , 111} (i.e., black, blue, ..., white), then a legal edge is produced by

performing a bitwise XOR (exclusive or) of a given color with a number in the range

{001, . . . , 111}. For example, the color index corresponding to green, 010, could

change to 110 (yellow) by flipping the red channel, i.e., by XOR’ing with 100. We

could then attain local and global non-periodicity if we could choose a sequence of

XOR patterns (of which we have 7 to choose from) that are unique when taken in

groups of n at a time.

De Bruijn sequences [40] are ideally suited to this problem. In particular, a k-

ary de Bruijn sequence of order n is a circular sequence d0, d1, . . . , dkn−1, where each

element dj is taken from a set of k values and for which any sub-sequence of length

n appears exactly once. In our case, we can construct up to a 7-ary sequence with

each element dl ∈ {001, . . . , 111}. Then, we can generate a color index sequence

(p0, p1, . . . p7n) by choosing an initial color p0 ∈ {000, . . . , 111} and following the

iteration:

pj+1 = pj XOR dj (2.6)

In practice, we only needed 125 stripes and thus worked with k = 5, n = 3. We
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Figure 2.3: Using a de Bruijn sequence, we can generate binary R, G, and B patterns
that combine to make a sequence for which each three consecutive color transitions
are unique. This example is a complete sequence for k = 5, n = 3, which is used to
generate the results in this paper.

eliminated 110 and 111 from the de Bruijn sequence, as we found that simultaneous

red and green transitions suffered the most from residual crosstalk errors after approx-

imate decoupling (see Section 2.3.2). Figure 2.3 shows a complete color stripe pattern

generated in this manner. Note that while de Bruijn sequences are not straightfor-

ward to derive, they have been previously tabulated by researchers in combinatorics.

We use generators available online [82] to obtain de Bruijn cycles.

2.3.2 Color edge detection

After the illumination pattern from the previous section is projected onto an object,

a camera records an image of the reflected light. In an ideal world, the light from

each projector color channel reaches only its correspondingly colored sensor pixel

(e.g., red light is seen only by red pixels). In practice, however, each projector color

channel has some influence on all three sensor channels, a phenomenon known as

color crosstalk. This coupling is complicated by the intervention of a surface that

may modify the projector spectrum in unknown ways before it is observed at the

sensor. One solution would be to assume that the surface is spectrally uniform, so

that we need only measure a projector-camera color crosstalk matrix that indicates

how much each projector channel influences each camera channel. Caspi et al. [19],

however, demonstrate that a less severe restriction can work fairly well. In particular,
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they relate observed camera color s to projector color p as:
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(2.7)

where X is the projector-camera color channel crosstalk matrix, F is the scene albedo

matrix at a point on the surface, and o is the ambient light observed by the camera

for the same surface point. By pre-multiplying each camera color by X−1, we obtain

new camera colors:

s̃ = X−1s =


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


ρrpr + õr

ρgpg + õg

ρbpb + õb




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



(2.8)

where õ = X−1o. Using this model, crosstalk has largely been factored out so that

each color channel can be analyzed independently and correlated more closely to

projected colors.

Given a color-corrected camera scanline, we can now localize color edges by looking

for local extrema in gradients (1D derivatives) in each of the color channels. In

practice, however, this will lead to distinct localizations in each color channel. Instead,

we compute a combined gradient function along a scanline that is comprised of the

sum of the squares of the gradients in each of the color channels. The edges are then

determined to be local maxima of this function, and their strengths are the color

gradient values at the localized edges.

2.3.3 Edge-based scoring functions

We now consider the problem of evaluating a match between a projected color tran-

sition q and an observed edge e in an image by defining a score function score(q, e).

Let e = (er, eg, eb), where ec ∈ [−1, 1] is the 1D intensity gradient of e in channel c,

and let transition q = (qr, qg, qb), with qc ∈ {−1, 0, 1}. e and q are consistent only
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Figure 2.4: Consistency measure consistency(qc, ec) between projector transition qc

and ec. (a) qc = 1, (b) qc = 0, and (c) qc = −1.

if they match in all three channels. Accordingly, we use the following definition of

score:

score(q, e) = min
c∈{r,g,b}

{consistency(qc, ec)} (2.9)

where consistency(qc, ec) ∈ [−1, 1] measures the agreement between corresponding

color channels of q and e. For example, when qc = 1, consistency(1, ec) should be

1 if ec is sufficiently large, 0 if |ec| is sufficient small, and negative if ec is negative.

More formally, consistency(qc, ec) is defined by the following equation, Eq. 2.10(a),

and illustrated in Figure 2.4(a). For the cases of qc = 0 and −1, consistency(0, ec)

and consistency(−1, ec) are similarly defined in Eq. 2.10(b,c) and illustrated in

Figure 2.4(b,c) respectively.

consistency(1, ec) = CLAMP( ec−α
β−α

;−1, 1) (a)

consistency(0, ec) = CLAMP(1 − |ec|−α
β−α

;−1, 1) (b)

consistency(−1, ec) = consistency(1,−ec) (c)

(2.10)
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where

CLAMP(x; x0, x1) =







x0 if x < x0;

x if x0 < x≤x1;

x1 if x1 < x.

(2.11)

and 0≤α < β≤1 are soft thresholds that are chosen based on the uncertainty of edge

measurement. In particular, gradients in the range of [α, β] can be classified with

fractional values that reflect their uncertainty, whereas gradients with absolute values

that are sufficiently large or small are assigned either -1, 0, or 1. The decision on how

to label each edge is deferred to the global optimization stage. In the degenerated

case when α = β, the gradients are classified with hard thresholds, as in [13]. The

larger the value of β − α, the more uncertain consistency. Less certain consistency

measures are useful when there are significant differences in the intensity of projected

and reflected patterns, due for instance to noise, shading, or surface texture.

Note that edge pair (q, e) will get matched by DP only if score(q, e) is positive

and it will not get matched if any of its channel consistency measures is negative. As

a result, clamping of negative consistency values is not necessary in theory, but in

practice avoids possible numerical problems of large negative numbers when α and β

and nearly equal.

2.4 Results

We have developed an experimental system for testing our one-shot shape capture

methods. The hardware consists of a Kodak DCS520 digital still camera and a Com-

paq MP1800 digital projector. To simulate resolutions more comparable to a video

camera (the sensor type we ultimately plan to use for realtime capture), we downsam-

pled the Kodak images by a factor of 2X in each dimension, yielding 864x576 images.

The projector operates at 1024x768 resolution. For geometric calibration, we image

a checkerboard textured plane in a variety of poses. For each pose, we also project

a distinct checkerboard pattern onto the plane and take an additional image. The
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(a) (b) (c) (d)

Figure 2.5: Comparison between DP and CFG [13]. (a) Photo of original Einstein
bust. (b) Stripe image used for one-shot reconstruction. The bust was photographed
on its side, but the image shown here is rotated by 90 degrees for convenient visu-
alization. (c) Shaded rendering of the CFG reconstruction. (d) Shaded rendering of
the DP reconstruction. In areas of high curvature, false edges are more prevalent,
and result in dropouts in the CFG reconstruction, whereas DP is free to ignore such
edges in pursuit of a global optimum.

images taken without the projected pattern are used to estimate the camera intrinsics

and plane poses (see Bouguet [12]). For the remaining images, we can compute the

3D coordinates of the the projected pattern features (corresponding to projector rays)

and thus calibrate the projector. We employ a linear projective model for both the

camera and projector; these projective matrices are used to rectify [38] the projected

pattern and the recorded images before the edge detection and code matching proce-

dures are performed. In addition, to improve color channel alignment in the digital

camera, we image the checkerboard textured plane an additional time and compute

separate 2D homographies for the red and blue channels relative to the green.

The X matrix in Eq. 2.7 is approximated by projecting solid red, green, and blue

patterns to a fronto-parallel white board and capturing three images accordingly. The
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(a) (b) (c)

Figure 2.6: Sensitivity to surface reflectance. (a) Photo of original porcelain cat
model. (b) Stripe image used for one-shot reconstruction. (c) Shaded rendering of
the DP reconstruction. Although this model is not “colorless” the reconstruction
behaves reasonably well. Completely black regions, of course, lead to range dropouts.

mean colors of the three captured images constitute the three columns of X.

We must note that, while we have taken some measures to reduce color misalign-

ments and account for color crosstalk, we still observe some residual misalignments

and non-linear crosstalk behaviors that have not been accounted for. As a result,

some of the rendered reconstructions shown in this section exhibit coherent ridges at

color transition boundaries.

We have tested the one-shot capture method on a variety of scenes. In each case,

the projected pattern consists of de Bruijn generated sequences with 7 pixel wide

stripes (roughly 150 stripes total).

First, we compare the dynamic programming approach to the Crystal Fitting and

Growing (CFG) algorithm developed by Boyer and Kak [13], for which results are

shown in Figure 2.5. CFG first labels each edge transition code by computing the

signs of intensity transitions in the three channels, followed by matching the labeled

edge sequence by iteratively finding the longest matching sub-sequences. In practice,
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(a) (b)

(c) (d)

Figure 2.7: Comparison between one-pass DP and two-pass DP. (a) Photo of original
scene of a hand and finger in front of a cloth background. (b) Stripe image used for
one-shot reconstruction. Note that image (a) is taken at a different time instant than
the image (b); therefore the hand poses in these two images are slightly different. (c)
Shaded rendering of a one-pass DP reconstruction. (d) Shaded rendering of a two-
pass DP reconstruction. The second pass recovers most of the finger that violated
monotonicity and was not recoverable in a single pass. The “double-finger” hole in
the background corresponds to projector and sensor visibility shadows.

we have found this technique to be fragile in the presence of erroneous edge labels,

resulting in outlier points and holes in the reconstruction as shown in the figure. One-

pass DP, on the other hand, is able to cope with these mis-labelings by searching for a

globally optimal, monotonic solution. The result is fewer holes in the reconstruction.
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Figure 2.8: In this paper, we show how to reconstruct the shape of a scene, such
as the two hands shown on the left, given a single photograph of the scene under
color-striped illumination shown at center. A novel dynamic programming method
leads to the geometric reconstruction on the right, shown as a shaded rendering from
a new viewpoint.

The Einstein bust in the previous example is fairly “white,” similar to the color

crosstalk calibration target. To test sensitivity to fairly non-white surfaces, we took

one-shot images of human hands (Figure 2.8) and of a painted porcelain cat (Fig-

ure 2.6). In both cases, the reconstructions are fairly accurate and complete, in-

cluding, for instance, regions around the cat’s red nose and over its orange body.

Particularly dark areas result in holes in the reconstructions, since edges in these

areas are not detected by the sensor.

Note that one noticeable artifact in Figure 2.8 is the occurrence of false edge

extensions at the boundary of the object. This artifact arises, because DP is free to

add points onto the boundary while still increasing the score. Thresholding out low

intensity gradients minimizes the effect. Further, these points can be downweighted

when used, e.g., to reconstruct surfaces [94]

Finally, to demonstrate the multi-pass DP method, we show a simple example that

violates the monotonicity constraint: a finger in front a piece of cloth (Figure 2.7).

Using a single DP pass, the finger is lost in favor of reconstructing the cloth back-

ground. The second pass, however, recovers much of the lost finger. Note that this

example, together with Figure 2.8, also demonstrates that our scanning method is

applicable to scenes with disconnected components, which can not be reconstructed
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by methods that rely on traversing edge graphs spatially within a single connected

component (as in the case of, e.g., Proesmans et al. [78, 77]).

In the above experiments, each range map takes less than 1 minute to compute

offline using a 900 MHz Pentium III PC. The exact time generally depends on the

number of edges detected and the depth range of the scene. Reconstructions typically

contain tens of thousands of range points, with dense vertical sampling along stripe

edges and comparatively sparse sampling horizontally. For a triangulation angle of

approximately 17 degrees, and an x-y field of view of about 40cm x 25cm, we have

found plane-fit accuracy to have a standard deviation of 0.18mm.

Video demonstration of applying our method repeatedly to a sequence of images

for recovering 3D dynamic scenes are available on the website

http://grail.cs.washington.edu/projects/moscan/.

2.5 Discussion

This chapter presents a general multi-pass dynamic programming algorithm to solve

the multiple hypothesis code matching problem in structured light scanning. Dynamic

programming has long been used in stereo vision, but has a number of limitations that

have made it less desirable than other methods of stereo reconstruction. In the context

of color structured light rangefinding, however, we show that it can be quite powerful.

One limitation of dynamic programming in this setting is the requirement that the

surface be monotonic with respect to the projector and camera. Our multi-pass

dynamic programming overcomes this limitation by constructing piecewise-continuous

matchings for surfaces that violate monotonicity. A second problem with dynamic

programming as applied to traditional stereo correspondence is that incorporating

inter-scanline constraints is problematic, resulting in abrupt disparity discontinuities

between adjacent scanlines. With the aid of color structured light, however, we have

observed that the inter-scanline inconsistency problem is much less severe. This is
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primarily due to the fact that the structured light pattern is very coherent; i.e., it is

identical across scanlines.

This work has potential for improvement in several directions. Although the

dynamic programming method works reasonably well in our experiments, it would

interesting to investigate its theoretical convergence properties. Also, we wish to

explore the possibility of using 2D optimization techniques, such as graph cuts [57],

and compare them with dynamic programming in future work. Compared to the list

of desired properties in section 1.1, one limitation of this work is that it only estimates

shape at edges. To obtain shape reconstructions at the higher resolution, we would like

to estimate depth for every pixel. Another limitation is that the shape estimation is

based on edge detection. This is problematic, because the projected color transitions

may be corrupted by surface texture. Further, the projected color transitions may

interfere with each other if several patterns are projected simultaneously from different

viewpoints for multi-view shape capture. To overcome these limitations, we present

a more general method in the next chapter for accurately recovering per-pixel depth

that is resilient to surface texture and overlapping structured light projections.
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Chapter 3

SPACETIME STEREO

The appearance of the real world varies over time, due to lighting changes, mo-

tion, and changes in shading or texture over time. Traditional one-shot triangulation

methods [13, 78] handle these variations by treating each time instant in isolation

and computing spatial correspondences between pixels in a single pair of images for

a static moment in time. While they enable reconstructing moving scenes, they typ-

ically provide limited shape detail and resolution. In this chapter, we instead argue

that better results may be obtained by considering how each pixel varies over time

and using this variation as a cue for correspondence, an approach we call spacetime

stereo.1

The basic principle of spacetime stereo is straightforward. First, consider conven-

tional stereo algorithms, which generally represent correspondence in terms of dispar-

ity between a pixel in one image and the corresponding pixel in another image. The

matching function used to compute disparities often compares spatial neighborhoods

around candidate pairs of pixels. Spacetime stereo simply adds a temporal dimension

to the neighborhoods used in the matching function. The spacetime window can be

a rectangular 3D volume of pixels, which is useful for reconstructing scenes in which

changes in lighting and appearance, rather than shape changes, dominate. When

the object is moving significantly, the disparity must be treated in a time-dependent

fashion. In this case, we compute matches based on oriented spacetime windows that

allow the matching pixels to shift linearly over time. In either case, the match scores

1This chapter describes joint work with Brian Curless and Steven M. Seitz, first presented in
IEEE CVPR 2003 [100].
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based on spacetime windows are easily incorporated into existing stereo algorithms.

The spacetime stereo approach has several advantages. First, it serves as a simple

yet general framework for computing shape when only appearance or lighting changes.

These changes may be natural, e.g., imparted by the weathering of materials or the

motion of the sun, or they may be artificially induced, as in the case of structured light

scanning. We present results specifically for the latter. Second, when shape changes

are small and erratic and the appearance has complex semi-repetitive texture, such as

one might find when observing a waterfall or a collection of leaves on a tree blowing in

the wind, spacetime stereo allows robust computation of average disparities or “mean

shapes.” Finally, for objects in motion, possibly deforming, the oriented spacetime

window matching provides a way to compute accurate disparity maps when standard

stereo methods fail. This last case is shown to be particularly effective for structured

light scanning of moving scenes.

The rest of this chapter is organized as follows. Section 3.1 discusses prior work

both in stereo and in structured light scanning. Section 3.2 presents spacetime

metrics used to evaluate candidate correspondences. Section 3.3 describes how to

adapt existing stereo algorithms to perform spacetime stereo matching. Section 3.4

presents experimental results. Section 3.5 concludes with a discussion of the strengths

and weakness of the approach.

3.1 Previous work

Our work builds upon a large literature on stereo correspondence and structured light

scanning. Here we summarize the most relevant aspects of this body of work.

Stereo matching has been studied for decades in the computer vision community.

We refer readers to Scharstein and Szeliski’s recent survey paper [85] for a good

overview and comparison of the current state of the art. Traditional stereo algorithms

match two or more images acquired at a single time instant and do not exploit other
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cues that exist over time. Recently, a number of researchers have proposed integrating

stereo matching and motion analysis cues, an approach called motion stereo. For

example, Mandelbaum et al. [64] and Strecha and van Gool [90] recover static scenes

with a moving stereo rig; in particular, they acquire multiple frames over time to

better reconstruct occluded regions in a single stereo pair. Tao et al. [92] represent a

scene with piecewise planar patches and assume a constant velocity for each plane to

constrain dynamic depth map estimation. Vedula et al. [95] present a linear algorithm

to compute 3D scene flow based on 2D optical flow and estimate 3D structures from

the scene flow. Zhang et al. [104] compute 3D scene flow and structure in an integrated

manner, in which a 3D affine motion model is fit to each local image region and

an adaptive global smoothness regularization is applied to the whole image. They

later improve their results by fitting parametric motion to each local image region

obtained by color segmentation, so that discontinuities are preserved [105]. Carceroni

and Kutulakos [18] present a method to recover piecewise continuous geometry and

parametric reflectance under non-rigid motion with known light positions.

Unlike this previous motion stereo work, spacetime stereo does not estimate inter-

frame motion, but rather uses a linear model to approximate local disparity variation

in space and time. The locally linear model is generally valid for interior regions of

continuous surfaces so long as the cameras have a sufficiently high frame rate with

respect to the 3D motion. A key advantage of our approach is that it does not require

brightness constancy over time. Caspi and Irani [20] use a related idea to align image

sequences assuming a global affine transformation between sequences. Our approach

can be viewed as extending this method to compute a full stereo correspondence

instead of a global affine transformation.

One important application where brightness constancy is especially violated is

structured light scanning, where controlled lighting is used to induce appearance

variation and used to reconstruct accurate shape models. In section 2.1, we reviewed

several representative structured light methods that use a single projection pattern.
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Better results can be obtained if multiple patterns and images are used. Projecting

many frames of single stripe patterns, Kanade et al. [54] and Curless and Levoy [27]

used temporal intensity variation (the latter authors called it “spacetime analysis”)

to resolve correspondence between sweeping laser stripes and sensor pixels. Pulli

et al [79] adapted spacetime analysis to match a sweeping projector stripe observed

by multiple video cameras. Bouguet and Perona [11] applied spacetime analysis to

shadow profiles simultaneously cast onto a scene and a calibrated plane as observed

by a single video camera. These single-stripe spacetime analysis methods are limited

to static scenes and require hundreds of images for reconstructing an object.

In the direction of using fewer images, Sato and Inokuchi [84] describe a set of hier-

archical stripe patterns to give range images with log N images, where N is the number

of resolvable stripes. In particular, each camera pixel observes a bit code over time

that uniquely determined its correspondence. In [86], Scharstein and Szeliski combine

hierarchical stripe patterns and sine wave patterns at different frequencies and phases

to obtain accurate depth maps as ground truth for stereo matching benchmarks.

They also combine camera-to-camera and camera-to-projector correspondences to ob-

tain more complete shape reconstructions. Both these methods are limited to static

scenes. Hall-Holt and Rusinkiewicz [45] describe a method that consists of projected

boundary-coded stripe patterns that vary over time. By finding nearest stripe patterns

over time, a unique code can be determined for any stripe at any time. The constraint

in this case is that the object move slowly to avoid erroneous temporal correlations,

and only depths at stripe boundaries are measured. Huang et al. [47] implemented

the three-step phase shift method [98] sequentially over time using a customized high

speed projector. Specifically, they project a sequence of sinusoidal stripe patterns

in which each frame is obtained by shifting the previous one by 120◦. A dynamic

shape is approximated as being static during every three consecutive frames, and the

recovered phase of each pixel can be used to infer the pixel’s depth. Note that each of

these methods is specially designed for a certain class of patterns and is not applicable
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under more general illumination changes. The spacetime stereo framework presented

here subsumes these previous methods as special cases and extends the ones that only

work for static scenes to handle moving scenes.

Concurrently with our work, Davis et al. [31] developed a similar spacetime stereo

framework to the one presented here. However, their work is focused on analyzing

and presenting results for geometrically static scenes imaged under varying illumi-

nation. In this chapter, we describe how to handle both illumination variation and

geometrically moving scenes.

3.2 Spacetime stereo metrics
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Figure 3.1: Illustration of spacetime stereo. Two stereo image streams are captured
from stationary sensors. The images are shown spatially offset at three different
times, for illustration purposes. For a static surface (a,b), the spacetime windows are
“straight”, aligned along the line of sight. For an oblique surface (b), the spacetime
window is horizontally stretched and vertically sheared. For a moving surface (c), the
spacetime window is also temporally sheared, i.e., “slanted”. The best affine warp of
each spacetime window along epipolar lines is computed for stereo correspondence.
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In this section, we formulate the spacetime stereo problem, and define the metrics

that are used to compute correspondences.

Consider a Lambertian scene observed by two synchronized and pre-calibrated

video cameras.2 Spacetime stereo takes as input the two rectified image streams

Il(x, y, t) and Ir(x, y, t) from these cameras. To recover the time-varying 3D structure

of the scene, we wish to estimate the disparity function d(x, y, t) for each pixel (x, y)

in the left image at each time t. Many existing stereo algorithms solve for d(x, y, t)

at some position and moment (x0, y0, t0) by minimizing the following error function

E(d0) =
∑

(x,y)∈W0

e(Il(x, y, t0), Ir(x − d0, y, t0)) (3.1)

where d0 is shorthand notation for d(x0, y0, t0), W0 is a spatial neighborhood window

around (x0, y0), and e(p, q) is a similarity measure between pixels from two cameras.

Depending on the specific algorithm, the size of W0 can vary from being a single pixel

to, say, a 10x10 neighborhood, or can be adaptively estimated for each pixel [55]. A

common choice for e(p, q) is simply:

e(p, q) = (p − q)2 (3.2)

in which case Eq. (3.1) becomes the standard sum of squared differences (SSD).

We have obtained better results in practice by defining e(p, q) to compensate for

radiometric differences between the cameras:

e(p, q) = (s·p + o − q)2 (3.3)

where s and o are window dependent scale and offset constants to be estimated.

Other forms of e(p, q) are summarized in [4]. Note that Eq. (3.3) is similar enough

to a squared difference metric that, after substituting into Eq. (3.1), we still refer to

the result as an SSD formulation.

2Here we assume the two cameras are offset horizontally. However our formulation can be used
for any stereo pair orientation.
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We seek to incorporate temporal appearance variation to improve stereo matching

and generate more accurate and reliable depth maps. In the next two subsections,

we’ll consider how multiple frames can help to recover static and nearly static shapes,

and then extend the idea for moving scenes.

3.2.1 Static scenes

Scenes that are geometrically static may still give rise to images that change over

time. For example, the motion of the sun causes shading variations over the course

of a day. In a laboratory setting, projected light patterns can create similar but more

controlled changes in appearance.

Suppose that the geometry of the scene is static for a period of time T0 = [t0 −

∆t, t0 + ∆t]. As illustrated in Figure 3.1(a), we can extend the spatial window to

a spatiotemporal window and solve for d0 by minimizing the following sum of SSD

(SSSD) cost function:

E(d0) =
∑

t∈T0

∑

(x,y)∈W0

e(Il(x, y, t), Ir(x − d0, y, t)) (3.4)

This error function reduces matching ambiguity in any single frame by simultaneously

matching intensities in multiple frames. Another advantage of the spacetime window

is that the spatial window can be shrunk and the temporal window can be enlarged

to increase matching accuracy. This principle was originally formulated as spacetime

analysis in [27, 54] for laser scanning and was applied by several researchers [11, 79]

for structured light scanning. However, they only consider either single-frame spatial

window or single-pixel temporal window and their specialized formulation is only

effective for single stripe illumination. Here we are casting this principle in a general

spacetime stereo framework that is valid for any illumination variation.

We should point out that both Eq. (3.1) and Eq. (3.4) treat disparity as being

constant within the window W0, which assumes the corresponding surface is fronto-

parallel. For a static but oblique surface, as shown in Figure 3.1(b), a more accurate
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(first order) local approximation of the disparity function is

d(x, y, t) ≈ d̂0(x, y, t)
def
= d0 + dx0

· (x − x0) + dy0
· (y − y0) (3.5)

where dx0
and dy0

are the partial derivatives of the disparity function with respect to

spatial coordinates x and y at (x0, y0, t0). This local spatial linearization results in

the following SSSD cost function to be minimized:

E(d0, dx0
, dy0

) =
∑

t∈T0

∑

(x,y)∈W0

e(Il(x, y, t), Ir(x − d̂0, y, t)) (3.6)

where d̂0 is a shorthand notation for d̂0(x, y, t), which is defined in Eq. (3.5) in terms

of (d0, dx0
, dy0

) and is estimated for each pixel. Non-zero dx0
and dy0

will cause a hor-

izontal stretch or shrinkage and vertical shear of the spacetime window respectively,

as illustrated in Figure 3.1(b). These window warping effects can also be described

by the following equation:
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where (xl, yl) and (xr, yr) are pixel coordinates in the left and right images, respec-

tively.

3.2.2 Quasi-static scenes

The simple SSSD method proposed above can also be applied to an interesting class of

time-varying scenes. Some natural scenes, like water flow in Figure 3.7, have spatially

varying texture and motion, but an overall shape that is roughly constant over time.

Although these natural scenes move stochastically, people tend to fuse the image

stream into an average shape over time. We refer to this class of natural scenes as

quasi-static. By applying the SSSD method from the previous section, we can compute

a temporally averaged disparity map which corresponds roughly to the “mean shape”
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of the scene. In graphics applications where a coarse geometry is sufficient, one could,

for instance, use the mean shape as static geometry with time-varying color texture

mapped over the surface.

3.2.3 Moving scenes

Next, let’s consider the case where the object is moving in the time interval T0 =

[t0 − ∆t, t0 + ∆t], as illustrated in Figure 3.1(c). Because of the object motion, the

window in the left video is deformed in the right sequence. The temporal trajectory of

window deformation in the right video is determined by the object motion and could

be arbitrarily complex. However, if the camera has a high enough frame rate relative

to the object motion and there are no changes in visibility, we can locally linearize the

temporal disparity variation in much the same way we linearized spatial disparity in

Eq. (3.5). Specifically, we take a first order approximation of the disparity variation

with respect to both spatial coordinates x and y and temporal coordinate t as

d(x, y, t) ≈ d̃0(x, y, t)
def
= d0 + dx0

· (x − x0) + dy0
· (y − y0) + dt0 · (t − t0) (3.8)

where dt0 is the partial derivative of the disparity function with respect to time at

(x0, y0, t0). This local spatial-temporal linearization results in the following SSSD cost

function to be minimized:

E(d0, dx0
, dy0

, dt0) =
∑

t∈T0

∑

(x,y)∈W0

e(Il(x, y, t), Ir(x − d̃0, y, t)) (3.9)

where d̃0 is a shorthand notation for d̃0(x, y, t), which is defined in Eq. (3.8) in terms

of (d0, dx0
, dy0

, dt0) and is estimated for each pixel at each time. Note that Eq. (3.8)

assumes a linear model of disparity within the spacetime window, i.e., (d0, dx0
, dy0

, dt0)

is constant within W0 × T0.

We use the term straight window to refer to a spacetime window whose position

and shape is fixed over time, such as the windows shown in Figure 3.1(a,b). If the

position of the window varies over time, we say that the spacetime window is slanted,
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such as the one in the right camera in Figure 3.1(c). Similar to Eq. (3.7), the window

warping in this case can be characterized by the follow equation:
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where (xl, yl, tl) and (xr, yr, tr) are pixel coordinates in the left and right videos,

respectively.

In its current formulation, spacetime stereo requires matching a straight spacetime

window around each pixel (x, y) at each time t in the left image stream to, in general,

a slanted spacetime window in the right image stream. It would be straightforward to

make the metric more symmetric by matching a slanted window in the left to a slanted

window in the right through the minimization of the following objective function:

E(d0, dx0
, dy0

, dt0) =
∑

t∈T0

∑

(x,y)∈W0

e(Il(x +
d̃0

2
, y, t), Ir(x −

d̃0

2
, y, t)) (3.11)

In practice, however, we have found this symmetric formulation results in similar

reconstruction results as the asymmetric formulation, Eq. (3.9), does. Therefore, we

use Eq. (3.9) as our general objective function throughout this chapter.

3.3 Spacetime stereo matching

A wide variety of existing stereo algorithms are easily adapted for spacetime stereo.

Most stereo algorithms have a “data term” C(xl, xr; y, t) that describes the similarity

of the pixel or region around (xl, y, t) in the left image and (xr, y, t) in the right. To

use these algorithms for spacetime stereo, one can simply replace the data term with

C(xl, xr; y, t) = min
dx,dy ,dt

E(xl − xr, dx, dy, dt) (3.12)

Eq. (3.12) can be incorporated as the cost function in most existing stereo al-

gorithms, e.g., window-based correlation, dynamic programming, graph cuts, and so
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forth (see [85] for a description and evaluation of these methods). For our experi-

ments, we used dynamic programming to compute a discrete correspondence followed

by Lucas-Kanade registration [63] to obtain floating point disparities. The dynamic

programming method has been presented in Section 2.2, and here we focus on ex-

tending the Lucas-Kanade method in spacetime.

3.3.1 The Lucas-Kanade method in spacetime

Lucas and Kanade [63] first applied the Gauss-Newton nonlinear least square method

to the image registration problem. Here we first briefly summarize the Gauss-Newton

method.

The Gauss-Newton method seeks to estimate a parameter vector p by minimizing

a sum of squared residual errors {ri}, which are all functions of p, defined as:

E(p) =
∑

i

r2
i (p) (3.13)

It starts with an initial value p0 and iteratively minimizes E by updating pk =

pk−1 + δpk. δpk is computed by first approximating E(p) near pk−1 as a quadratic

function:

E(pk−1 + δp) =
∑

i
r2
i (pk−1 + δp)

≈
∑

i

(

ri(pk−1) + ∂ri

∂p
(pk−1)

T

δp
)2

=
∑

i
ri(pk−1)

2 + 2ri(pk−1)
∂ri

∂p
(pk−1)

T

δp + δpT ∂ri

∂p
(pk−1)

∂ri

∂p
(pk−1)

T

δp

= c + 2gTδp + δpTHδp

(3.14)

where

H =
∑

i

∂ri

∂p
(pk−1)

∂ri

∂p
(pk−1)

T

g =
∑

i

∂ri

∂p
(pk−1)ri(pk−1)

c =
∑

i
ri(pk−1)

2

(3.15)
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To minimize Eq. (3.14), the optimal update δpk is

δpk = arg min
δp

E(pk−1 + δp) = −H−1g (3.16)

In the context of spacetime stereo, the parameter p is the disparity and its deriva-

tives in space and time, i.e., p = [d0, dx, dy, dt]
T. If the standard SSD is used as the

error metric, the error term ri(p) for pixel (xi, yi, ti) within the window centered at

(x0, y0, t0) is

ri(p) = Il(xi, yi, ti) − Ir(xi − [d0, dx, dy, dt]
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In this case,

∂ri

∂p
=













1

xi − x0

yi − y0

ti − t0













∂Ir

∂x
(3.18)

and H and g can be computed by substituting Eq. (3.17) and Eq. (3.18) into Eq. (3.14).

The SSD error metric assumes brightness constancy across two views, which is not

exactly satisfied in practice, due to radiometric differences of cameras and non-

lambertian reflectance of the surface. To compensate for these factors, we can use the

gain-bias error metric as

ri(p) = Il(xi, yi, ti) − s · Ir(xi − [d0, dx, dy, dt]
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, yi, ti) − o (3.19)



48

In this case,
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s
∂Ir

∂x
− Ir

∂s

∂p
−

∂o

∂p
(3.20)

and H and g can be computed by substituting Eq. (3.19) and Eq. (3.20) into Eq. (3.14).

However in this case, we need to know s and o and their derivatives with respect to

the disparity parameters ∂s
∂p

and ∂o
∂p

. s and o can be computed in closed form given

pk−1:

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where N is the number of pixels in the window.

From Eq. (3.21), we can compute the derivatives of s and o with respect to dis-

parity parameter p.
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In summary, we perform the spacetime stereo matching as follows: given pk−1

(initialized from dynamic programming), we compute s, o, ∂s
∂p

, and ∂o
∂p

using Eq. (3.21)

and Eq. (3.22). Then we compute H and g using Eqs. (3.15, 3.19, 3.20) and update

pk−1 and using Eq. (3.16). We iterate the above procedure a few times (5 in our

experiments). In the case that the gain and bias are not modeled, we set s = 1,

o = 0, ∂s
∂p

= 0, and ∂o
∂p

= 0. Notice that, in this case, Eq. (3.19) and Eq. (3.20) are

the same as Eq. (3.17) and Eq. (3.18), respectively.

In some of the experiments, we assume certain disparity derivatives are zeros.
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For example, in the case of static cases, we assume dt = 0 and the spacetime stereo

matching can be performed simply by throwing out the fourth row and column in H

and the fourth element in g and solving for a 3 by 3 linear system. In the case of

quasi-static scenes with insufficient texture, we assume dx = dy = dt = 0 and throw

out the second, third, and fourth rows and columns in H and the second, third, and

fourth elements in p. In this case, Eq. (3.16) degenerates to a scalar equation.

3.4 Results

We performed several experiments to evaluate the performance of spacetime stereo for

static, quasi-static, and moving scenes. In each case, we performed camera calibration

using Bouguet’s calibration toolbox [12].

3.4.1 Static Scenes

To test the performance with static scenes, we applied varying illumination to induce

appearance changes. In the first experiment, we employed a stereo pair of synchro-

nized Basler A301f monochrome video cameras and projected light onto a scene with

a 60 Hz Compaq MP1800 digital projector. We defer the description of the experi-

mental to Chapter 5. Spacetime stereo places no restriction on the type of projected

pattern. For instance, a hierarchical stripe (Gray code) pattern [84], as shown in Fig-

ure 3.2(a) should yield reasonable depth maps. In practice, we obtained more accurate

results by projecting patterns with high spatial frequencies in each frame. Intuitively,

this happens because the coarse patterns, while providing some disambiguation cues

for the finer patterns, give little detailed information for disparity matching. Our

approach then is to take the Gray code and randomly shuffle the temporal columns

so that each is still unique, but each resulting horizontal pattern has high frequency

spatial detail (Figure 3.2(b)).

Our pattern sequence is comprised of 8 patterns, each of which has 256 4-pixel-
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stripe intensities

t=0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

t=1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0

t=2 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0

t=3 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

(a) Gray code

stripe intensities

t=0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

t=1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

t=2 0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0

t=3 1 0 1 0 1 0 1 0 0 1 0 1 0 1 0 1

(b) Modified Gray code

Figure 3.2: Structured light illumination patterns. Each pattern consists of a set of
black and white vertical stripes, defined by the sequence of zeros and ones shown
above. At each time instant, a different pattern is displayed. (a) A Gray code
pattern for 16 stripes. Each column is unique, but some rows contain only low spatial
frequencies. (b) After shuffling columns of the Gray code, we obtain a modified
pattern that still has unique columns, but also has high spatial frequencies in each
row.

wide stripes. Each pattern is low-pass filtered (using Gaussian kernel σ = 1) to obtain

patterns with continuous intensity variation. This gentle low-pass filtering avoids the

aliasing problem of imaging the hard stripe boundaries and results in more accurate

per-pixel matching.

Figure 3.3 shows the results obtained by imaging a small sculpture (a plaster bust

of Albert Einstein) and using 10 images taken from each camera matched with a

spacetime window of 5x5x10 (5x5 pixels per frame by 10 frames). The shaded render-

ing reveals details visually comparable to those obtained with a laser range scanner.

Eq. (3.3) is used as the pixel similarity measure in the Lucas-Kanade refinement for
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(a) (b)

(c) (d)

Figure 3.3: Structured light result with modified Gray code. (a) Einstein bust under
natural lighting. (b) One image taken from the set of 10 stereo pair images. The
images were taken with the bust laying on its side, but the one shown here has been
rotated 90 degrees. (c) Shaded rendering of geometric reconstruction. (d) Recon-
structed disparity map.
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(a) (b)

(c) (d)

Figure 3.4: Single camera stereo with mirror adapter. (a) The Pentax stereo mirror
adapter. (b) Sony TRV-900 camcorder mounted with the stereo adapter. (c) Nikon
Coolpix-990 camera mounted with he stereo adatper. (d) Nikon Coolpix-990 with
DigiSnap 2000 time lapse controller.

this example (also in the moving hand and deforming face examples later).

Next, we tried a simpler imaging system for static shape capture using much looser

structured light. For the stereo pair, we attached a Pentax stereo adapter to a single

SONY-TRV900 camcorder, as shown in Figure 3.4(a,b). For illumination, we shined

an ordinary desk lamp through a transparency printed with a black and white square

wave pattern onto the subject (a teddy bear) and moved the pattern by hand in a free-

form fashion. In this case, we captured 125 frames and tried both single frame stereo

for one of the image pairs using a 5x1 window and spacetime stereo over all frames
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(a)

(b) (c) (d)

Figure 3.5: Loosely structured light using transparency and desk lamp. (a) One out of
the 125 stereo pair images. (b) Disparity map for a traditional stereo reconstruction.
(c) Disparity map for spacetime stereo after dynamic programming. (d) Same as (c)
after Lucas-Kanade refinement.

using a 5x1x125 window. In both cases (also in the waterfall example later), spatial

disparity variation is ignored within the windows, i.e., dx = dy = 0, and Eq. (3.2)

is used as the pixel similarity measure. Figure 3.5 shows marked improvement of
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(a) (b) (c)

(d) (e) (f) (g)

Figure 3.6: Comparison between multiple one-shots and spacetime analysis. (a) Stack
of 7 stripe images taken of the Einstein bust for use with spacetime analysis. (b)
Shaded rendering of reconstruction produced by combining 7 one-shot results (using
shifted one-shot patterns). (c) Shaded rendering of reconstruction produced by space-
time analysis (using the patterns in (a)). (d) and (e) Renderings of the left eye (on
right side of the (b) and (c) images) using multiple one-shots and spacetime, respec-
tively. Notice the improved resolution in the wrinkles under spacetime. (f) and (g)
Renderings of the letters “mc” on the base of the bust using multiple one-shots and
spacetime, respectively. Notice the crisper, less noisy reconstruction under spacetime.
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spacetime stereo over regular stereo, in addition to improvement due to the final

Lucas-Kanade subpixel refinement step.

Matching between a projector and a camera

In the previous experiments, we sought to establish pixel correspondences between

two camera images using the spacetime stereo method. However, spacetime stereo

can also be used to compute correspondence between a projector and a camera, as

shown in Figure 3.6. In this case, we project a shifted sequence of 7 patterns onto

the Einstein bust. For comparison with a non-spacetime method, we first choose the

same pattern as in the one-shot method described in Chapter 2, shift the pattern by

one pixel 7 times, and independently estimate a range map for each image. We then

combine these range maps into a single high resolution range map as shown. For the

spacetime method, we blur the same pattern with a Gaussian filter (σ = 1.5 pixels),

shift it by two pixels at a time, and perform the reconstruction using spacetime stereo.

Specifically, we directly match the projected pattern and the observed image using

the gain-bias matching metric, over a 1× 1× 7 spacetime window, to compensate for

the intensity differences between them due to surface albedo. As the figure shows, the

spacetime method does a substantially better job of resolving fine detail. In particular,

the edge detection method used in the one-shot technique is susceptible to the rapid

shading changes in high curvature areas, whereas the spacetime technique is much

less so. To evaluate the reconstruction accuracy, we select a planar region on the base

of the Einstein bust and fit a plane to the region. The deviation of the plane-fitting

residuals for the multiple one-shot reconstruction is 0.18mm, while spacetime method

significantly reduce this deviation to 0.048mm.

3.4.2 Quasi-static scenes

For a quasi-static scene, we took a sequence of 45 images of a small but fast-moving

waterfall using a Nikon Coolpix 900 still camera with the stereo adapter attached,
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(a) (b) (c) (d)

Figure 3.7: Quasi-static rushing water experiment. (a) One out of the 45 stereo pair
images. (b) Disparity map for a traditional stereo reconstruction. (c) Disparity map
for spacetime stereo after dynamic programming. (d) Same as (c) after Lucas-Kanade
refinement.

shown in Figure 3.4(c). The camera is controlled by a time lapse trigger device,

Digisnap 2000, as shown in Figure 3.4(d). Figure 3.7 shows a comparison of the results

obtained with traditional stereo for one of the image pairs, followed by results obtained

with the same spacetime stereo technique used for the teddy bear in Figure 3.5. Note

how much more consistent and complete the spacetime result is.

3.4.3 Moving Scenes

For moving scenes, we tried two experiments. In the first, we projected the modified

Gray code pattern onto a human hand that is moving fairly steadily away from the

stereo rig. In this case, the disparity is changing over time, and the straight space-

time window approach fails to reconstruct a reasonable surface. By estimating the

temporal derivative of the disparity using slanted windows, we obtain a much better

reconstruction, as shown in Figure 3.8.

We also tried comparing spacetime stereo and one-shot stereo for moving scenes.

In this case, a short sequence of stripe patterns is generated randomly and projected

repeatedly to a deforming human face. To demonstrate the effect of extruding the
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(a) (b) (c)

(d) (e) (f)

Figure 3.8: Moving hand under structured light. (a), (b) Two images taken from
one of the cameras. The hand is moving away from the stereo rig, which is why it
is getting smaller. (c) Shaded rendering of the reconstructed model using slanted
window spacetime analysis. (d) Disparity map with straight spacetime windows. (e)
Disparity map with slanted spacetime windows. (f) Temporal derivative of disparity.
Since the hand is translating at roughly a constant speed, the disparity velocity is
fairly constant over the hand.

matching window over time, we choose a 9 × 5 × 5 spacetime window and a 15 ×

15 spatial window, which have the same number of pixels, to compare spacetime

stereo and frame-by-frame stereo on reconstructing facial expressions. Notice that

the spacetime reconstruction generates significantly more accurate results, as shown

in Figure 3.9. On our website,

http://grail.cs.washington.edu/projects/ststereo/,

we also show this comparison in video format. Notice that spacetime stereo results

in temporally much more stable reconstruction than frame-by-frame stereo.
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Figure 3.9: Comparison of spacetime and frame-by-frame stereo for a moving face
reconstruction. Top row: five face expressions reconstructed using a 15 × 15 spatial
window. Bottom row: the same face expressions reconstructed using a 9 × 5 × 5
spacetime window. Notice that although both the spatial and spacetime windows have
the same number of pixels, spacetime stereo results in a more detailed reconstruction.

Finally, we tried imaging moving and deforming textured objects under more

natural lighting conditions. In practice, we found that spacetime stereo performed

roughly the same as regular stereo. In the next section, we offer an explanation of
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why we did not observe substantial improvement with spacetime stereo under natural

illumination.

3.5 Discussion

In this chapter, we described a simple extension to traditional stereo that incorporates

temporal information into the disparity estimation problem. Here we discuss the

“operating range” of the technique and suggest ideas for future work.

For geometrically static scenes, the spacetime stereo framework has proved effec-

tive for reconstructing shape from changes in appearance. We have demonstrated

results for tightly controlled illumination changes, as well as more loosely controlled

variations, both in a laboratory setting. The framework subsumes previous structured

light triangulation methods as special cases; when implemented as triangulation be-

tween two cameras, it has the advantage that the illumination needs not be calibrated.

Further, the approach is general enough to handle more natural appearance variations

including shadows sweeping across architecture and objects that change texture nat-

urally over time (e.g., metallic patinas, food that browns with age, ants crawling

over surfaces, etc.). We conjecture that the approach should also demonstrate some

small amount of improvement over per-frame stereo for image streams of geometri-

cally static scenes with no temporal variations, because the influence of noise should

be averaged out over time.

For quasi-static scenes, we have also demonstrated improvement over per-frame

stereo. Instead of using our spacetime approach, one could compute the disparities

per-frame and then average them together, though we would expect a number of

outliers and non-matches to complicate this process, and it would actually be slower

to execute because of the need to perform stereo matching n times for n frames

instead of only once. An area for future work would be to try to model the statistical

variation of quasi-static and moving scenes, e.g., to model the stochastic changes in
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Figure 3.10: Trade-off between spatially narrow windows for spacetime stereo and
wide windows for traditional stereo.

disparity for a waterfall.

For dynamic scenes, our most compelling results have been for structured light

systems. In this setting, the fact that we do not perform motion stereo analysis (i.e.,

2D optical flow in tandem with stereo) is essential, since the brightness constancy

constraint does not apply. Our results indicate that dense structured light stereo is

possible even as the subject moves.

For dynamic scenes under more natural (smoother) and constant illumination, we

have observed less benefit with the spacetime stereo method. Let’s consider in partic-

ular a scene with constant lighting and with Lambertian reflectance at each surface

point. In this case, consider the trade-off between using a wider spatial window and

a narrower (but temporally longer) spacetime window, as illustrated in Figure 3.10.

The spacetime window {a, b, c} over time t = 0, 1, 2 contains the same information
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as the spatial window {f, b, g} at time t = 1 because the window f at t = 1 is the

same as window a at t = 0 and window c at t = 2 is the same as window g at t = 1.

Therefore, using a spacetime window is not always more powerful than a purely spa-

tial window. An existing frame by frame stereo matching algorithm with a spatial

window size {f, b, g} is expected to have the same performance as spacetime stereo

with spacetime window {a, b, c}.

The above analysis of the spacetime window tradeoff depends on the direction

of surface motion. For example, if the surface moves straight back along the light

of sights of the camera, increasing the temporal window size does not include new

appearance changes within the spacetime window, although we conjecture before that

spacetime stereo in this case may slightly improve the reconstruction by averaging out

imaging noise within the spacetime window. An area for future work is to formalize

these reasonings and extend the adaptive window method [55] to search for optimal

spacetime windows. Finally, another interesting direction would be to adapt global

optimization methods like graph cuts [57] to compute depth maps that are piecewise

smooth both in space and time.
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Chapter 4

GLOBALLY CONSISTENT SPACETIME STEREO

One major artifact of spacetime stereo matching is that it produces quite notice-

able ridging artifacts, evident in Figure 4.1(e). Our study indicates that these artifacts

are due primarily to the fact that Eq. (3.9) is minimized for each pixel independently,

without taking into account constraints between neighboring pixels. Specifically, com-

puting a disparity map with M pixels introduces 4M unknowns: M disparities and

3M disparity gradients. While this formulation results in a system that is convenient

computationally, it is clearly over-parameterized, since the 3M disparity gradients are

a function of only M disparities. Indeed, the estimated disparity gradients may not

agree with the estimated disparities. For example, dx(x, y, t) may be quite different

from its central difference approximation, 1
2
(d(x + 1, y, t) − d(x − 1, y, t)), because

dx(x, y, t), d(x+1, y, t), d(x−1, y, t) are independently estimated for each pixel. This

inconsistency between disparities and disparity gradients results in inaccurate depth

maps as shown in Figure 4.1(e,i). In this chapter, we reformulate spacetime stereo as

a global optimization problem to overcome this inconsistency deficiency.1

4.1 A global optimization formulation for spacetime stereo

The global spacetime stereo method computes the disparity function while taking

into account gradient constraints between pixels that are adjacent in space and time.

Given image sequences Il(x, y, t) and Ir(x, y, t), the desired disparity function d(x, y, t)

1This chapter describes joint work with Noah Snavely, Brian Curless, and Steven M. Seitz, first
presented in ACM SIGGRAPH 2004 [102].
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minimizes

Γ({d(x, y, t)})
∆
=

∑

x,y,t

E(d, dx, dy, dt) (4.1)

subject to the following constraints2

dx(x, y, t) = 1
2
(d(x + 1, y, t) − d(x − 1, y, t))

dy(x, y, t) = 1
2
(d(x, y + 1, t) − d(x, y − 1, t))

dt(x, y, t) = 1
2
(d(x, y, t + 1) − d(x, y, t − 1))

(4.2)

Eq. (4.1) defines a nonlinear least squares problem with linear constraints. We

solve this problem using the Gauss-Newton method [70] with a change of variables.

To explain our approach, we use D to denote the concatenation of d(x, y, t) for every

(x, y, t) into a column vector. Dx, Dy, and Dt are defined similarly, by concatenating

values of dx(x, y, t), dy(x, y, t), and dt(x, y, t), respectively. Given an initial value of

D, Dx, Dy, and Dt, we compute the gradient q and local Hessian J of Eq. (4.1) using

the Gauss-Newton approximation. Then, the optimal updates δD, δDx, δDy, and

δDt are given by
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= −q (4.3)

where J is a block-wise concatenation of the 4 by 4 Hessian matrices H in Eq. (3.15),

q is a concatenation of the 4 by 1 vector g in Eq. (3.15),

J =
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(4.4)

2At spacetime volume boundaries, we use forward or backward differences instead of central
differences.
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(a) (b)

(c) (d) (e) (f)

(g) (h) (i) (j)

Figure 4.1: Comparison of four different stereo matching algorithms. (a,b) Five
consecutive frames from a pair of stereo videos. The third frames are non-pattern
frames. (c) Reconstructed face at the third frame using traditional stereo matching
with a [15×15] window. The result is noisy due to the lack of color variation on
the face. (d) Reconstructed face at the second frame using stereo matching with a
[15×15] window. The result is much better because the projected stripes provide
texture. However, certain face details are smoothed out due to the need for a large
spatial window. (e) Reconstructed face at the third frame using local spacetime stereo
matching with a [9×5×5] window. Even though the third frame has little intensity
variation, spacetime stereo recovers more detailed shapes by considering neighboring
frames together. However, it also yields noticeable striping artifacts due to the over-
parameterization of the depth map. (f) Reconstructed face at the third frame using
our new global spacetime stereo matching with a [9×5×5] window. The new method
removes most of the striping artifacts while preserving the shape details. (g-j) Closeup
comparison of the four algorithms around the nose and the corner of the mouth.
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and P is a permutation matrix that reorders the elements in δD, δDx, δDy, and δDt

as follows:
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Specifically, P can be defined as
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(4.6)

Since Eqs. (4.2) are linear constraints, we represent them by matrix multiplication:

Dx = FxD Dy = FyD Dt = FtD (4.7)

where Fx,Fy, and Ft are sparse matrices encoding the finite difference operations. For

example, suppose d(x, y, t) is the i’th component of D, then the only nonzero columns

in row i of Fx are j and j ′ which correspond to d(x + 1, y, t) and d(x − 1, y, t) and

take values of 0.5 and −0.5, respectively. Substituting Eq. (4.7) into Eq. (4.3) and
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











I

Fx

Fy

Ft













T

PT on both sides, we obtain the optimal update δD by solving













I

Fx

Fy

Ft













T

PTJP













I

Fx

Fy

Ft













δD = −













I

Fx

Fy

Ft













T

PTq (4.8)

where I is an identity matrix of the same dimension as D. We initialize D using

dynamic programming with the spacetime window metric given in Eq. (3.4),3 and set

Dx, Dy, and Dt to be zero. Then we iteratively solve Eq. (4.8) and re-compute J and

q, until convergence.

4.1.1 The constraints on boundaries

Eq. (4.2) describes the neighborhood constraints for continuous interior regions. At

spacetime volume boundaries and depth discontinuities, the central difference is not

well defined; Instead, we use forward or backward differences in these cases. In our

implementation, we detect depth discontinuity boundaries after disparity initializa-

tion using dynamic programming. Specifically, we define a discontinuity between

neighboring pixels if their disparity difference is larger than a certain threshold. In

our implementation, the threshold is set to 4. The discontinuity condition is then

used to select the finite difference scheme for computing disparity derivatives. For

example, we use the forward finite difference for dx(x, y, t) if the pixel is on the right

of a discontinuity. Similarly, we use the backward finite difference for dt(x, y, t) if the

pixel’s disparity is discontinuous from its next frame.

3When using dynamic programming for initialization, we use a [1×3] image window for frame-
by-frame matching and a [1×3×3] window for spacetime matching.
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4.1.2 Scalable implementation

Although Dx, Dy, Dt, and J are very sparse, solving Eq. (4.8) using the conjugate

gradient method [76] over the whole video is not practical; a 10-second video of

640×480 resolution at 60Hz comprises nearly 180 million depth variables! To apply

global spacetime stereo matching over a long video, we take the follow two strategies.

First, we use the conjugate gradient method [76] to solve Eq. (4.8) iteratively. At

each iteration, the conjugate gradient method does not require knowing the product

of matrices on the left hand side of δD explicitly; Instead it only needs to evalu-

ate their product with the δD. To do so, we only need to save the sub-matrices

{H1,H2, · · · ,HM} during the iteration, avoiding storing the whole M × M matrix

product.

Second, we divide the video into a 3D (X, Y, T) array of blocks that are optimized

in sequence. For each block, we load the video data and the associated H and g for

each pixel into RAM. In practice, we have found the 80×80×90 blocksize works well

with our 2G RAM machine. When optimizing a particular block, we treat as boundary

conditions the disparity values in its adjacent blocks that have already been optimized.

To speed up the procedure, we distribute the computation over multiple machines

while ensuring that adjacent blocks are not optimized simultaneously. While many

traversal orders are possible, we found that the following simple strategy suffices: We

first optimize blocks with odd T values, and distribute blocks with different T values

to different CPU’s. On each CPU, we traverse the blocks from left to right and top

to bottom. We then repeat the same procedure for blocks with even T values. Our

prototype implementation takes 2 to 3 minutes to compute a depth map on a 2.8GHz

CPU and each depth map contains approximately 120K depth points. Therefore, it

takes 20 CPU’s about 7.5 hours to finish 3000 frames (a sequence of 50 seconds at

60fps).
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4.2 Results

To evaluate our global spacetime stereo method and also demonstrate it on a real

application, we built a camera rig to continuously capture dynamic facial performance.

Our system takes as input 6 synchronized video streams (4 monochrome and 2 color)

running at 60 Hz, and global spacetime stereo is used to recover the time varying 3D

facial shapes. The camera rig is shown in Figure 5.2. Three of the cameras capture the

left side of the face, and the other three capture the right side. All of the components

are off-the-shelf, and their specifics are described in Chapter 5.

To facilitate depth computation, we use two video projectors that project gray-

scale random stripe patterns onto the face. The projectors send a solid black pattern

every three frames, and surface color texture is captured at these frames. Figure 4.1

shows the improvement using global spacetime stereo by comparing it to the spacetime

stereo matching method presented in Chapter 3, as well as standard frame-by-frame

stereo. On our website,

http://grail.cs.washington.edu/projects/stfaces/,

we also provide a video of a pair of depth map sequences reconstructed from both left

and right sides of a moving face using global spacetime stereo.

4.3 Discussion

In this chapter, we presented a global spacetime stereo matching algorithm. This

method resolves the over-fitting problem of the method presented in Chapter 3, and

further improves the result. There are several important topics to explore in future

work.

Although global spacetime stereo removes a significant amount of ridging arti-

facts, some minor ridging artifacts still remain. To quantify the magnitude of these

remaining striping artifacts, we reconstruct a planar surface using spacetime stereo

and then fit a plane to the reconstruction. The standard deviation of the fitting resid-
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ual is 0.033mm, which is the approximate range of ridging artifacts and reconstruction

noise. Although these artifacts are numerically small, they are visually distracting

when the mesh is shaded, because shading a mesh requires computing surface nor-

mals and surface normals can vary dramatically even for small surface bumps. As a

result, the tiny coherent surface bumps result in a more substantial visual artifact.

To further reduce the coherent ridging artifacts, one approach is to choose projec-

tion patterns that do not contain coherent structures like stripes. For example, we

have tried using random dot patterns for projection and have not observed striping

artifacts in the final reconstruction. Some examples are shown in Figure 5.7 and the

detailed experiment is described in Section 5.3.2.

Our spacetime stereo matching techniques are based on window warping using a

locally linear disparity variation model, which fails near discontinuity boundaries. For

example, rapid lip movements during speech result in temporal depth discontinuities

in the scanned sequence. It is desirable to improve spacetime stereo algorithms for

better performance near spatial and temporal discontinuities. Specifically, the win-

dow should be adaptively selected based on local spacetime shape variation. In the

extremely case of large shape variation over time due to fast motion, the algorithm

should automatically switch to one-shot stereo. Kanade and Okutomi [55] proposed

an adaptive window selection theory for one-shot stereo assuming front-parallel dis-

parity model; adaptive window selection for locally linear disparity model in spacetime

remains an important topic for future research.

Stereo matching algorithms involve various parameters, such as window sizes in

spacetime stereo and regularization weight in Markov Random Field (MRF) stereo.

In practice, different data sets require different parameters for optimal performance.

Learning parameters automatically is therefore of great importance for these algo-

rithms to be deployed in automated vision systems for real applications. Toward

this goal, we address the problem of learning optimal parameters for MRF stereo

matching in [101]. How to apply this mechanism to spacetime stereo and other visual
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reconstruction algorithms is a very interesting problem for future research.

Although the accuracy of spacetime stereo is good enough for several applications,

e.g., face modeling and animation, a current limitation is speed. It takes 2-3 min-

utes to compute a disparity map. Some applications, such as 3D shape recognition

of faces, expressions, and poses for natural human computer interfaces, require 3D

reconstruction techniques that operate in real time. Techniques that can work both

accurately and in real time are not available yet, to our best knowledge. An important

future research avenue is to design new techniques and accelerate existing techniques

to fulfill both the speed and accuracy requirements for real time 3D reconstruction.
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Chapter 5

EXPERIMENTAL STRUCTURED LIGHT STEREO

SYSTEMS

In this chapter, we present two stereo systems we built to evaluate the spacetime

stereo algorithms presented in this dissertation. First, we describe a binocular stereo

system consisting of two video cameras connected to a laptop. Second, we describe

a multiple projector-camera system for face capture. Finally, we describe methods of

multiplexing shape acquisition and surface texture acquisition.

5.1 Portable two camera stereo system

We first describe the binocular stereo system used to capture the Einstein bust (Fig-

ure 3.3), hand (Figure 3.8), and face (Figure 3.9) sequences in Chapter 3. This system

uses two Basler A301f Firewire (a.k.a IEEE 1394) video cameras. These cameras out-

put 656×494 monochrome image streams at up to 80 frame per second (fps). Each

camera has a Tokina T10Z0814 C-mount lens.

For the purpose of portability, we connect these two cameras to an IBM Thinkpad

T40 laptop through two Ratoc CBFW1U PCMCIA Firewire cards,1 as shown in

Figure 5.1. Note that each Firewire card has one Firewire bus and each Firewire bus

has a bandwidth of 50MB. The Basler camera’s bandwidth requirement is 26MB/s

when running at the maximum 80fps frame rate. Therefore the two cameras have to be

on two different Firewire cards; attaching two cameras on the same card will saturate

1It is reported that Belkin Firewire CardBus Adapter works as well. We found that some Firewire
cards, such as the Pyro 1394DV, did not work successfully with Basler cameras.
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Firewire cable

Trigger cable

Power from AC source or DC battery

Firewire cable

Figure 5.1: The portable stereo system

the Firewire bus. The Ratoc Firewire card requires a separate power source. We used

an AC/DC adapter for indoor experiments and a battery, e.g., Bescor NMH-54, for

outdoor experiments.

To synchronize the cameras, we trigger the cameras using an external square wave

signal. This signal can be from any signal generator. We use an MFJ-5000 portable

function generator to create the needed signal.

5.2 A face capture rig

A binocular stereo system can only recover mutually visible portions of an object. To

enable more complete shape capture for a face, we built a multi-camera system that

enables simultaneously recovering depth maps of left and right sides of the face. We
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color cameras

monochrome cameras


projectors

Figure 5.2: Our face capture rig consists of six video cameras and two data projectors.
The two monochrome cameras on the left constitute one stereo pair, and the two on the
right constitute a second stereo pair. The projectors provide stripe pattern textures
for high quality shape estimation. The color cameras record video streams used for
optical flow and surface texture.

used this system to record image sequences shown in Chapters 4 and 6. This system

employs four Basler A301f cameras to form two stereo pairs. It also uses two NEC

LT260K DLP projectors (DLP stands for “Digital Light Processing”) for structured

light patterns, as shown in Figure 5.2. One stereo pair and one projector capture shape

from left side and the others capture from right side. The cameras are mounted on

several baseline bars, ordered from http://www.stereoscopy.com/jasper/.

5.2.1 Configuration of the workstations

We use two Dell Precision 650 workstations to receive the image streams. Each

workstation has 5 empty PCI slots, as shown in Figure 5.3, which can be used for

streaming in image sequences. The configuration of these slots is as follows. Slots #1

and #3 both have a 4601-22 Dual Firewire card and each card has two Firewire buses

on it. (Note this card is different from the card used for the laptop.) Other slots are

left empty. Because each card can be connected to two Basler cameras working at full

speed (80fps) and the integrated Firewire port can be connected to one more camera,
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Figure 5.3: Dell Precision 650 Architecture

this configuration can take 5 Basler cameras in total. The integrated U320 SCSI card

can then be used to stream image sequences from the Firewire card to SCSI hard

drives. In this case, slots #4 and #5 should be left empty to avoid diminishing the

bandwidth needed by the integrated SCSI controller.2 (The system drive is connected

to the ATA 100 controller.)

5.3 Capture surface texture under structured light

The four-camera systems described so far require projecting patterns on the surface

while taking images. These structured light patterns help to improve stereo matching

2Slots #3, #4, and #5 are all on PCIx buses (64bits/100MHz), which have 8 times the bandwidth
of a PCI bus (32bit/33MHz). However, the Firewire cards we used are 32bit/33MHz devices.
When such devices appear on a PCIx bus, the PCIx bus will work like an ordinary PCI bus with
lower bandwidth.
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but prevent us from capturing surface texture. However, capturing surface texture is

equally important in many applications, e.g., computing optical flow for estimating 3D

motion as described in Chapter 6. In order to capture surface texture while capturing

the shapes, we use two additional color cameras and operate the camera rig using the

following two strategies.

5.3.1 Time multiplexing

The first strategy is “time multiplexing” illumination, i.e., alternating between struc-

tured light and ambient light. Specifically, we project a solid black frame for every

third frames, during which the surface texture is captured by the 2 color cameras

under ambient light. Our ambient light consists of several light bulbs illuminating

the face from different angles. We also synchronize the projectors and cameras as

follows, shown in Figure 5.4(a). We use the video output from a computer to drive

projectors with structured light patterns at 60fps, and use the vertical sync signal

in the video output to trigger the cameras. Specifically, we split the video output

from the computer, a 15-pin VGA signal, into three video signals using a video split-

ter. Two of these outputs are used as projector video inputs and the vertical sync

(v-sync) signal of the third video signal is used to trigger all six cameras through

a signal splitter. The VGA splitter, an Aten VS-138, is an off-the-shelf device, as

shown in Figure 5.4(b). The v-sync signal splitter is something we built; it is simply

a breadboard on which the input v-sync pin of the VGA connector is connected to

all the output trigger pins of the camera IO connectors, as shown in Figure 5.4(c).

We should point out that the above system architecture may not work well for

every type of camera and projector. Some cameras’ shutters are not very accurately

synchronized to their trigger signals. Almost all commercial DLP projectors have

internal frame rates of 60Hz. However, some of them synchronize their internal frame

rates to the input video and others do not. All of these issues affect whether the

cameras and projectors can be synchronized. We tested our projector and camera
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VGA spliter

VGA vertical sync spliter
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Figure 5.4: A synchronized projector-camera system. (a) A Dell Precision 330 work-
station sends out structured light patterns through its VGA output. This VGA signal
is sent two NEC LT 260K projectors through a video splitter. In addition, the vertical
sync of this VGA signal is used to trigger four black and white Basler A301f’s and
two color Basler A310fc’s through a sync signal splitter. The video data from the
cameras are streamed into two Dell Precision 650 workstations in real time. (b) VGA
splitter: Aten VS-138. (c) Sync splitter: a breadboard on which the v-sync pin of the
VGA connector is connected to all the trigger pins of the camera I/O connectors.
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Figure 5.5: We build a near infrared projector by moving the projector color wheel
outside and attaching a UV block filter and an IR pass filter in front of the projector
lens.

models through many experiments, and verified that they work well.

The advantage of time multiplexing is that it is fairly straightforward to imple-

ment. The disadvantage is that it requires the synchronization between projector and

camera, limiting the cameras to operate at 60fps. Also, blank frames do not have

stripes, which may lower the shape reconstruction quality. Finally, the color data is

only acquired at one third the rate of shape data.

5.3.2 Spectrum multiplexing

Another way to capture surface texture is to project infrared (IR) structured light

for shape acquisition and use color cameras to capture surface texture in the visible

portion of the spectrum. Doing so avoids shining bright light into the subject’s

eyes. Furthermore, it enables capturing both shape and color at 60 fps. However,

IR projectors are not commonly available. Here we describe a prototype system we

developed to explore this idea.

We modified an off-the-shelf projector for IR projection. To allow IR light to flow

through the optical path of the NEC LT 260K DLP projector, we removed the color
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(a) (b)

Figure 5.6: Images taken under infrared structured light projection. (a) An image
from a black white camera with an IR filter attached. (b) An image from a color
camera. While most of the pattern is removed, notice that there is still a faint
pattern in the red channel in the color image. This is because the IR filter on the
projector, B+W 092, lets a small amount of red light through.

wheel filter from the path. The resulting light has much broader spectral content,

including IR and ultraviolet (UV).3 Then we attach a B+W 415 UV-block filter and

a B+W 092 IR-pass filter to the projector lens, so that the projector only passes IR

and not potentially hazardous UV radiation. Figure 5.5 shows our modified projector.

When using IR projection, we also attach the same IR pass filters to the black and

white cameras.

3In practice, we can not simply throw away the color wheel. If the color wheel is not detected
running, the projector electronics will shut down. Therefore, we mount the color wheel outside
the projector body and let it spin.
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Figure 5.6(a,b) shows images seen by a monochrome camera and a color camera,

respectively, when the IR projector is projecting a random dot pattern. Specifically,

the pattern is generated by randomly assigning each cell of a rectangular grid with

one of the gray levels {0, 0.2, 0, 4, 0.6, 0.8, 1.0}. Using two monochrome cameras with

IR-pass filters attached, we captured stereo sequences under infrared structured light

projection and applied spacetime stereo on these sequences. Figure 5.7 shows 4 exam-

ples from a reconstructed face sequence. These results are noisier than those obtained

using visible structured light, because our cameras are not very sensitive to infrared

light and the infrared images are much noisier than the images recorded under visible

structured light projection.

In Figure 5.6(b), we can still see a faint pattern in the red channel in the color

image. This is because the B+W 092 IR filter lets a small amount of red light through.

We did try using a more opaque IR filter (Hoya R72), but found that our monochrome

camera recorded much darker images; it is not very IR sensitive. Therefore, we use the

time-multiplex approach for the image acquisition in Chapter 4 and 6. IR sensitive

cameras are becoming more available because they also have applications in video

surveillance. We believe spectrum multiplexing is a very promising alternative to

allow simultaneous capture of both shape and texture with imperceptible structured

light.

Instead of spectrum multiplexing, Raskar et al. [81] implement an imperceptible

structured light system by consecutively projecting a pattern and its complement.

The human visual system then temporally averages out the flickering light patterns

and perceives the projector as a white light source with constant brightness. However,

with this approach, the projector may still be uncomfortably bright for human eyes.

In addition, due to the surface motion, the surface texture can not be easily obtained

by averaging out neighboring frames in the color image sequences.
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(a) (b) (c) (d)

(e) (f)

Figure 5.7: (a-d) Four examples of face reconstruction using infrared projection and
imaging. (e) A closeup view of the cheek region in (a). (f) The cheek region of a face
reconstruction using visible structured light projection and imaging. Notice that (e)
is noisier than (f) because our cameras are not very sensitive to infrared light and
record infrared images that are much noisier than images taken under visible light.
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Chapter 6

DENSE FACE MOTION CAPTURE

In previous chapters, we presented spacetime stereo methods and the design of a

camera rig to capture both shape and texture for a dynamic surface. The captured

shapes are represented as depth maps. These depth maps have missing data due to

occlusions. Also they lack correspondence information that specifies how a point on

the 3D surface moves over time. These limitations make it difficult to re-pose or re-

animate the captured faces. In this chapter, we present a novel method for computing

a single time-varying mesh that closely approximates the depth map sequences while

optimizing the vertex motion to be consistent with optical flow computed between

color frames.1 In the next section, we first review previous work in creating dynamic

face models and then present our approach.

6.1 Previous work on 3D face modeling

Face modeling is an active research topic in computer graphics and computer vision.

Here we review the most related work on 3D face tracking. 3D face tracking tech-

niques compute the facial motion by deforming a 3D face model to fit a sequence of

images [35, 75, 5, 32, 8] or 3D marker positions [44]. Blanz and Vetter [9] construct

particularly high quality models, represented as linear subspaces of laser-scanned head

shapes. Although subspace models are flexible, they fail to reconstruct shapes that

are outside the subspace. In order to handle expression variation, Blanz and Vet-

ter [8] laser-scanned faces under different expressions, a time-consuming process that

1This chapter describes joint work with Noah Snavely, Brian Curless, and Steven M. Seitz, first
presented in ACM SIGGRAPH 2004 [102].
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requires the subject to hold each expression for tens of seconds. A problem with

existing face tracking methods in general is that the templates have relatively few

degrees of freedom, making it difficult to capture fine-scale dimples and folds which

vary from one individual to another and are important characteristic features. We

instead work with a generic high resolution template with thousands of degrees of

freedom to capture such fine-grain features. This approach is related to the work

of Allen et al. [1] for fitting templates to human body data, except that they rely

on markers to provide partial correspondence for each range scan, whereas we derive

correspondence information almost entirely from images.

An interesting alternative to traditional template-based tracking is to compute

the deformable template and the motion directly from the image sequence. Torresani

et al. [93] and Brand [15] recover non-rigid structure from a single video assuming the

shape lies within a linear subspace. Although these methods are promising and work

from regular video streams, they produce relatively low-resolution results, compared

to, e.g., structured light stereo.

Compared to previous methods, our method seeks to combine both 3D shape

measurement and 2D optical flow for an optimal 3D motion estimation. Our method

starts by fitting a template mesh to the pair of depth maps captured in the first

non-pattern frame, initialized with a small amount of user guidance. The method

then tracks the template mesh through other non-pattern frames in the sequence

automatically and without the need for putting markers on the subject’s face. In the

next section, we first present template fitting at the first frame. Then we present

template tracking through the sequence in Section 6.3. We show results and discuss

the pros and cons of our methods in Sections 6.4 and 6.5, respectively.
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(a) (b)

(c) (d) (e)

Figure 6.1: Illustration of the template fitting process. (a,b) Depth maps from two
viewpoints at the first frame. (c) A face template. A few corresponding shape feature
positions are manually identified on both the face template and the first two depth
maps. (d) The template after initial global warp using the feature correspondence.
(e) Initial mesh after fitting the warped template to the first two depth maps. The
initial mesh is colored red for regions with unreliable depth or optical flow estimation.

6.2 Template fitting

Let M = (V, E) be an N -vertex triangle mesh representing a template face, with

vertex set V = {sn}
N
n=1 and edge set E = {(n1, n2) | sn1

and sn2
are connected}. Let

hj(x, y), j ∈ {1, 2}, be the two depth maps at frame 1, as shown in Figure 6.1(a,b).
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Figure 6.2: Illustration of the error metric of a vertex used in template fitting. (a)
s is a vertex on the template mesh and d is its displacement vector. Let h be the
intersection of the depth map, shown as a surface, and the line from optical center to
s + d. s + d − h is the difference vector between s + d and the depth map. (b) dt+1

and dt are the displacements for a vertex s on the template mesh at frame t and t+1,
respectively. U = dt+1−dt is the vertex motion from frame t to t+1. The projection
of U in the image plane, π(U), should be the same as the optical flow u. ‖π(U)−u‖
is used as a metric for consistency between vertex motion and optical flow.

Given the relative pose between these depth maps,2 we wish to solve for a displacement

dn for each vertex such that the displaced mesh M1, with vertex set {sn + dn}
N
n=1,

optimally fits the depth maps. Our fitting metric has two terms: a depth matching

term, Es, and a regularization term Er.

The depth matching term Es measures the difference between the depths of

vertices of M1 as seen from each camera’s viewpoint and the corresponding values

recorded in each depth map. Specifically,

Es({dn}) =
2∑

j=1

N∑

n=1

wn,jρ([sn + dn − hn,j]zj
, σs) (6.1)

where N is the number of mesh vertices, hn,j ∈ R3 is the intersection of the depth

2We obtain the relative pose between depth maps using the rigid registration tool provided in
Scanalyze [80].
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Tukey's Biweight robust estimator:

−σ σ

1.0

Figure 6.3: A plot of Tukey’s Biweight robust estimator.

map hj(x, y) and the line from the j’th camera’s optical center to sn +dn, as shown in

Figure 6.2(a); [·]zj
is the z component of a 3-d point in the j’th camera’s coordinate

system; ρ(·, σs) is Tukey’s biweight robust estimator, shown in Figure 6.3; and wn,j is

a weight factor governing the influence of the j’th depth map on the template mesh.

In experiments, we set σs = 20, which rejects potential depth map correspondences

that are over 20mm away from the template mesh. For wn,j, we use the product of

the depth map confidence, computed as in [28], and the dot product of the normals3

at hn,j and sn + dn; we set wn,j to 0 if the dot product is negative. Note that, in

practice, we do not need to intersect a line of sight with a surface to compute each

hn,j . Instead, we project each displaced template point into the depth map hj(x, y)

and perform bilinear interpolation of depth map values to measure depth differences.

In general, the shape matching objective function, Eq. (6.1), is under-constrained.

For instance, template surface points after being displaced could bunch together in

regions while still matching the depth maps closely. Furthermore, the depth maps do

not completely cover the face, and so the template can deform without penalty where

there is no data. Thus, we add a regularization term Er that penalizes large displace-

3We compute the normal of a vertex as the area-weighted average of the normals of its neighboring
triangles.
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template mesh

depth map

template mesh

depth map

(a) (b)

Figure 6.4: The need of regularization in template fitting. (a) Without additional
constraints, template surface points could bunch together while still matching the
depth map closely. (b) A smooth vertex displacement field can be obtained by adding
a regularization that penalizes large displacement differences between neighboring
vertices on the template mesh.

ment differences between neighboring vertices on the template mesh. Specifically,

Er({dn}) =
∑

(n1,n2)∈E

‖dn1
− dn2

‖2/‖sn1
− sn2

‖2 (6.2)

where the denominator ‖sn1
−sn2

‖2 helps to penalizes neighboring displacement differ-

ences according to the neighboring vertex distance. Notice that preferring a smooth

displacement field is different from preferring a smooth displaced template mesh; the

former preserves the shape details in the template mesh while the latter often smooths

out the details [1].

To fit the template mesh M to the depth maps at frame 1, we minimize a weighted

sum of Eqs. (6.1) and (6.2)

Φ = Es + αEr (6.3)

with α = 2.0 in our experiments.

We minimize Eq. (6.3) using the Gauss-Newton method. We initialize the opti-

mization by manually aligning the template with the depth maps. Specifically, we

select several corresponding feature positions on both the template mesh and the

depth maps (Figure 6.1(a,b,c)). Next, from these feature correspondences, we solve
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for an over-constrained global affine transformation to deform the mesh. To deter-

mine an affine transformation, at least 4 correspondences are needed; in practice, we

specify about 15 feature correspondences. Finally, we interpolate the residual dis-

placements at the feature positions over the whole surface using a normalized radial

basis function [17] similar to the method of Pighin et al. [74]. After the initial warp,

the selected feature correspondences are no longer used for template fitting. As shown

in Figure 6.1(d), the initial alignment does not have to be precise in order to lead to

an accurate final fitting result, as illustrated in Figure 6.1(e).

6.3 Template tracking

Given the mesh M1 at the first frame, we would now like to deform it smoothly through

the rest of the sequence such that the shape matches the depth maps and the vertex

motions match the optical flow computed for the non-pattern frames of the color

image streams. Specifically, we seek to compute {dn,t}, which gives the time-varying

shape {sn,t = sn +dn,t}. Let Ik(x, y, t), k ∈ {1, 2}, be color image sequences from two

viewpoints with pattern frames removed. We first compute optical flow uk(x, y, t) for

each sequence using Black and Anandan’s method [7]. The flow uk(x, y, t) represents

the motion from frame t to t+1 in the k’th image plane. We measure the consistency

of the optical flow and the vertex inter-frame motion Un,t = dn,t+1−dn,t, called scene

flow in [95], by the following metric:

Em({dn,t+1}) =
2∑

k=1

N∑

n=1

ρ(‖πk(Un,t) − un,t,k‖, σm) (6.4)

where πk(Un,t) is the image projection of Un,t in the k’th image plane and un,t,k is the

value of optical flow uk(x, y, t) at the corresponding location, πk(sn + dn,t), shown in

Figure 6.2(c); ρ(·, σm) is the same Tukey’s biweight robust estimator as in Eq. (6.1),

with σm = 20 pixels.

Starting from M1, we recursively compute Mt+1 given Mt by optimizing a weighted
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.5: Illustration of the template tracking result. (a,b,c,d): selected meshes
after tracking the initial mesh through the whole sequence, using both depth maps
and optical flows. The process is marker-less and automatic. (e,f,g,h): the projection
of a set of vertices from the selected meshes on the image plane, shown as green
dots, to verify that the vertex motion is consistent with visual motion. Note that the
subject had no markers on his face during capture; the green dots are overlaid on the
original images purely for visualization purposes.

sum of Eq. (6.3) and Eq. (6.4) where dn is replaced with dn,t:

Ψ = Es + αEr + βEm (6.5)

with α = 2.0 and β = 0.5 in our experiments.
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Figure 6.6: Four examples of the template tracking results for another sequence. In
this sequence, the subject wears a hair wrapper and his forehead region is correctly
recovered.

6.4 Results

We tried our mesh fitting and tracking methods on images sequences for several

subjects and show results for three subjects here. In Figure 6.5(a-j), sample results of

mesh tracking for the first subject are shown in gray shaded rendering. The video on

our website grail.cs.washington.edu/projects/stfaces shows the full sequence

both as gray-shaded and color-textured rendering. The sequence has 332 face meshes

and each mesh has 14883 vertices. Template tracking takes less than 1 minute per

frame.

Notice that in Figure 6.5, the forehead data is missing. This is because the hair

hanging over the forehead and the forehead itself form two layers of motion which

confuse the optical flow algorithm. Therefore, the forehead motion is not correctly

recovered and we manually specify a mask and cut it out. In Figure 6.3, we record

sequences of the same subject when he wears a hair wrapper. In this case, the full

facial shape and motion are recovered. This sequence has 384 mesh models, and each

mesh has about 23728 vertices.

In Figure 6.7, we show 4 examples of template tracking results for the second
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(a) (b) (c) (d)

(e) (f)

Figure 6.7: (a-d) Four examples of the template tracking results for the second subject.
(e) A closeup view of the skin deformation near the nose in the “disgusted” expression
shown in (b). (f) A closeup view of the wrinkles on the “frowning” forehead of (d).

subject. This sequence consists of 580 meshes and each mesh has 23728 vertices. In

Figure 6.8, we show 8 examples of the template tracking results for the third subject.

This sequence consists of 339 meshes and each mesh has 23728 vertices. Notice that,

in Figure 6.7(e,f) and Figure 6.8(i,j), we show closeup views of some of the face

meshes, demonstrating the ability to capture fine features such as the wrinkles on a

frowning forehead and near a squinting eye. These subtle shape details are extremely

important for conveying realistic expressions, because our visual system is well tuned



92

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 6.8: (a-h) Eight examples of the template tracking results for the third subject.
(i) A closeup view of the wrinkles near the left eye in (f). (j) A closeup view of the
pouting lips in (h).
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to recognize human faces. The uniqueness of our system is its capability to capture

not only these shape details, but also how these shape details change over time. In

the end, our system is an automatic, dense, and marker-less facial motion capture

system.

6.5 Discussion

In this chapter, we described a new template fitting and tracking procedure that

brings the surfaces into correspondence across the entire sequence without the use

of markers. This procedure enables us to use the captured 3D data for expression

synthesis and facial animation as presented in the next chapter.

There are many important open research topics to explore for shape fitting and

tracking. First, we only fit the template to one-third of the depth maps (at non-

pattern frames). A natural extension of our current work is to interpolate color along

optical flow to obtain face models at 60Hz. Second, our template face mesh, which

is cut from a whole body human model, has a resolution of about one-eighth of the

depth maps. In the future, it would be interesting to subdivide the template mesh

until its vertex count is comparable to the depth map resolution before applying

the fitting procedure. Although fitting a higher resolution mesh may result in more

detailed face models, it could also lead to fitting measurement noise. Therefore, it

would also be interesting to devise robust regularization that removes noises while

preserving features.

Notice that the definition of regularization term Er in Eq. (6.2) is translation-

invariant but not rotation-invariant, meaning that Er is zero if {dn} is constant, i.e.,

a translation motion field, but non-zero if {dn} is a rotation field. Therefore, it will

not work well for turning heads. In our experiments, we let subjects fix their head

poses and only change expressions. To handle face motion with large head rotations,

the affine-invariant regularization energy used in [1] could be a better alternative.
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Figure 6.9: Bunching and folding artifacts in tracking results due to optical flow
errors.

Our fitting and tracking techniques depend on optical flow estimation which can

be unreliable for textureless regions. Although the regularization of displacements

helps to produce smooth and overall pretty detailed meshes, we did observe some

folding and bunching of vertices in the textureless regions, as shown in Figure 6.9,

especially when the mouth moves fast. In the future, we hope to incorporate physical

skin models and temporal coherence to avoid these artifacts. If subjects wish, we

could also paint markers on their faces to simplify the tracking problem.

Our fitting and tracking methods are semi-automatic, requiring manual initializa-

tion for the first shape in each sequence. It would very useful to fully automate this

procedure to efficiently register measured shapes, especially for large data sets with

many different individuals.
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Chapter 7

DATA-DRIVEN 3D FACIAL ANIMATION

Creating face models that look and move realistically is an important problem

in computer graphics. It is also one of the most difficult, as even the most minute

changes in facial expression can reveal complex moods and emotions. In previous

chapters, we presented new techniques to continuously capture a moving human face

at high resolution. In this chapter, we study the problem of using the captured data

for expression synthesis and facial animation.1

Our objective is to create new facial poses and motion that accurately reflects the

shape and time-varying behavior of a real person’s face based on the captured face

models. In particular, we seek real-time, intuitive controls to edit expressions and

create animations. For instance, dragging the corner of the mouth up should result

in a realistic expression, such as a smiling face. Rather than programming these

controls manually, we wish to extract them from correlations present in the input

video. Furthermore, we wish to use these controls to generate desired animations

which preserve the captured dynamics of a real face. (By “dynamics,” we mean the

time-varying behavior, not the physics per se.)

To achieve this goal, we propose a data-driven, inverse kinematics technique we

call faceIK to interactively manipulate captured models to create new expressions.

FaceIK blends the models in a way that is automatically adaptive to the number of

user-specified controls. FaceIK can be used to create key frames for desired animation.

We also present a representation called face graph which encodes the dynamics of the

1This chapter describes joint work with Noah Snavely, Brian Curless, and Steven M. Seitz, first
presented in ACM SIGGRAPH 2004 [102].
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captured face sequence. The face graph can be traversed to generate in-between

frames given keyframes created by FaceIK. While our animation results do not match

the artistry of what an expert animator can produce, our approach enables untrained

users to produce realistic facial animations.

7.1 Previous work in 3D face editing and animation

Modeling and synthesizing faces is an active research field in computer graphics and

computer vision. Here we review two topics most related to this chapter: constraint-

based face editing, and data-driven facial animation.

Direct 3D face editing Following Parke’s pioneering work [72] on blendable face

models, most face editing systems are based on specifying blending weights to linearly

combine a set of template faces. These weights can be computed indirectly from user-

specified constraints [75, 53] or fit directly to images [9]. All these methods blend faces

based on predefined feature regions, e.g., eyes and mouths, to create more varieties

of facial expressions from a limited set of example faces. In particular, the editing

interface in [75] allows users to paint blending weights for face mesh vertices.

Our faceIK tool, as a general expression editing interface, is similar to the one

developed by Joshi et al. [53]. However, they segment a face into a region hierarchy

a priori, which decouples the natural correlation between different parts of the face.

Zhang et al. [103] address this problem with a hierarchical PCA technique in which

user edits may propagate between regions. Our faceIK method instead maintains

the correlation across the whole face and only decouples it — automatically and

adaptively — as the user introduces more constraints.

Data-driven 3D face animation A focus of our work is to use captured models of

human face dynamics to drive animatable face models. Several others have explored

performance-based methods for animating faces, using either video of an actor [8, 21],
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or speech [16, 14, 36] to drive the animation. These techniques can be considered

data-driven in that they are based on a sequence of example faces.

Still others have explored data-driven animation techniques in the domains of

human figure motion [61, 2, 58, 60] and video sprites [88]. We adapt ideas from these

other domains to devise 3D face animation tools.

7.2 FaceIK

In this section we describe a real-time technique for editing a face to produce new

expressions. The key property of the technique is that it exploits correlations in a set

of input meshes to propagate user edits to other parts of the face. So, for instance,

pulling up on one corner of the mouth causes the entire face to smile. This problem is

analogous to the inverse kinematics (IK) problem in human figure animation in which

the goal is to compute the pose of a figure that satisfies one or more user-specified

constraints. We therefore call it faceIK.

Our approach is based on the idea of representing faces as a linear combination

of basis shapes. While linear combinations have been widely used in face model-

ing [23, 9, 74], the problem of generating reasonable faces using only one constraint

(e.g., the corner of the mouth), or just a few constraints, is more difficult, because

the problem is severely underconstrained. One solution is to compute the coefficients

which maximize their likelihood with respect to the data, using principle component

analysis (PCA) [9, 1]. The maximum likelihood criterion works well for modeling face

variations under similar expressions and human body variations under similar poses.

However, applying PCA to facial expressions does not produce good results unless the

face is segmented a priori into separate regions, e.g., eyes, nose, and mouth [9, 53, 103].

Unfortunately, segmenting faces into regions decouples the natural correlation be-

tween different parts of a face. Further, the appropriate segmentation is not obvious

until run-time when the user decides what expressions to create. For example, to cre-
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ate an asymmetric expression, the left and right sides of the face must be decoupled.

As discussed in Section 7.2.2, under- or over-segmenting the face can result in unde-

sirable editing behavior. We instead describe a method that avoids these problems by

adaptively segmenting the face into soft regions based on user edits. These regions are

independently modeled using the captured face sequence, and then they are blended

into a single expression. We could model these regions using PCA; however, because

they are formed by user edits, we would then have to compute principal components,

a costly operation, at run-time for each region. To address this problem, we introduce

a fast method, Proximity-Based Weighting (PBW), to model the regions. We start

by describing how to use PBW to model the entire face as a single region, and then

extend it to handle multiple, adaptively defined regions.

7.2.1 Proximity-based weighting

Suppose we are given as input F meshes, each with N vertices. We use sn,f to denote

the n’th vertex in mesh f . Let {pl}
L
l=1 be user-specified 3D constraints, requiring

that vertex l should be at position pl; we call these constraints control points.2 We

seek a set of blend coefficients cf such that for every l,

F∑

f=1

cfsl,f = pl and
F∑

f=1

cf = 1 (7.1)

The second equation poses an affine constraint on the blend coefficients. This con-

straint makes the blend coefficients invariant to global translation. Specifically, if we

move all the meshes and control points by a same displacement, the same blend coef-

ficients will still satisfy Eq. (7.1) for the displaced meshes under displaced constraints.

Because the number of constraints L is generally far fewer than the number of

meshes F , we advocate weighting example faces based on proximity to the desired

expression, i.e., nearby faces are weighted more heavily, a scheme we call proximity

2We assume the L constraints are for the first L mesh vertices, to simplify notation without loss
of generality.
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based weighting. Specifically, we penalize meshes whose corresponding vertices are

far from the control points by minimizing

g(c) =
F∑

f=1

φ(‖s̄f − p̄‖)c2
f (7.2)

where c = [c1 c2 . . . cF ]T, s̄f = [sT1,f sT2,f . . . sTL,f 1]T, p̄ = [pT

1 pT

2 . . . pT

L 1]T,

‖s̄f − p̄‖ =
√

∑L
l=1 |sl,f − pl|2, and φ(·) is a monotonically increasing function. In our

experiments, we found that a simple function φ(r) = 1 + r worked well. Minimizing

Eq. (7.2) subject to Eq. (7.1) encourages small weights for faraway meshes, and can

be solved in closed-form as:

cf =
1

φf

s̄Tfa (7.3)

where φf = φ(‖s̄f − p̄‖) and a = (
F∑

f=1

1
φf

s̄f s̄
T

f )
−1p̄. The derivation of this solution is

given in Appendix A.

Screen-space constraints

Rather than requiring that constraints be specified in 3D, it is often more natural

to specify where the projection of a mesh vertex should move to. Given a set of

user-specified 2D constraints {ql}
L
l=1, Eq. (7.2) is modified as follows

g(c) =
F∑

f=1

φ(‖π(s̄f ) − q̄‖)c2
f (7.4)

such that

π(
F∑

f=1

cfsl,f ) = ql and
F∑

f=1

cf = 1 (7.5)

where π(·) is the image projection operator, π(s̄f )
def
= [π(s1,f )

T π(s2,f )
T . . . π(sL,f )

T 1]T,

and q̄ = [qT

1 qT

2 . . . qT

L 1]T. Since π is in general nonlinear, we approximate Eq. (7.5)

by
F∑

f=1

cfπ(sl,f ) = ql and
F∑

f=1

cf = 1 (7.6)
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This approximation works well in our experience, and minimizing Eq. (7.4) subject

to Eq. (7.6) yields the closed-form solution:

cf =
1

φf

π(s̄f )
T
a (7.7)

where φf = φ(‖π(s̄f ) − q̄‖) and a = (
F∑

f=1

1
φf

π(s̄f )π(s̄f )
T)−1q̄. The derivation of this

solution is the same as that for Eq. (7.3) with s̄f and p̄ replaced by π(s̄f ) and q̄.

7.2.2 Local influence maps

The faceIK method presented so far assumes that the entire face is created by linear

interpolation of input meshes with nearby meshes given larger weights. However,

this assumption is too limiting, since, for example, an asymmetric smile cannot be

generated from a data set that contains only symmetric smiles. We therefore propose

a method to blend different face regions by defining an influence map for each control

point. Specifically, we give each control point greater influence on nearby mesh points,

and then blend the influences over the entire mesh to allow for a broader range of

expressions that do not exist in the input data.

Accordingly, for each of the L control points, we compute a set of blending coef-

ficients cl by minimizing Eq. (7.2) or Eq. (7.4); This process is done independently

for each control point. These L sets of coefficients will result in have L meshes; each

mesh satisfies one of the L constraints but not necessarily the others. The resulting

L meshes are then blended together, using normalized radial basis functions [17] to

define spatially-varying weights. Specifically, we set the blending coefficient for vertex

sn as follows

c(sn) =
L∑

l=1

B(sn, sl)ĉl (7.8)

where B(sn, sl) =
exp(−‖sn−sl‖

2/r2

l
)

L∑

l′=1

exp(−‖sn−sl′‖
2/r2

l′
)

with rl = min
l′ 6=l

‖sl − sl′‖ and ĉl is a F -dimensional

vector defined at each control point l. In Appendix B, we describe how to compute
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(a) (b) (c)

(d) (e)

Figure 7.1: Advantages of adaptive face segmentation with faceIK. Many face editing
techniques pre-segment a face into regions (e.g., mouth, nose, eyes) and model each
region separately with PCA. (a) Three symmetric control points are used to create a
symmetric smile by applying PCA on the mouth region [1] to compute the maximum
likelihood (ML) shape. (b) When the control points become asymmetric, ML behaves
poorly, since all input mouth shapes are roughly symmetric. (c) For the same control
point positions, faceIK creates an asymmetric smile by dividing the mouth into three
soft regions (indicated by color variations) and blending the influence of each control
point. Each control point influences its region using PBW in real-time. By contrast,
using PCA would require computing principal components, a costly operation, at
run-time for each new region. (d) With the same control vertices as in (c), if the
point on the lower lip is moved by itself, the mouth opens unnaturally, because the
two control points on the mouth corners decouple their correlation to the lower lip.
(e) With only one control point on the lower lip, the mouth opens more naturally.
These comparisons indicate that it is more desirable to adaptively segment a face into
regions based on user edits, rather than a priori.

ĉl and prove that the components of c(sn) sum to 1 given that
L∑

l=1
B(sn, sl) = 1. For

each vertex sn, we use c(sn) to blend corresponding vertices in the mesh data set.

Figure 7.1 shows the advantage of using local influence maps to adaptively seg-

ment the face based on user-interaction, rather than specifying regions a priori. The

main observation is that the optimal set of regions depends on the desired edit; for in-
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(a) (b)

Figure 7.2: FaceIK user interface. A user can click any point on the face to define a
control point constraint, shown as the green ball. The positions of the control point
in the input mesh sequence are then shown as a cloud of blue points. The user can
move the control point within or slightly outside this point cloud to synthesize a new
face that satisfies the constraint. For example, (a) when dragging the lower lip down,
the user opens the mouth widely; (b) when dragging the left corner of the mouth to
the right, the user pouts the lips.

stance, generating an asymmetric smile from a set of roughly symmetric faces requires

decoupling the left and right sides of the mouth. However, an edit that opens the

mouth is more easily obtained without this decoupling. Our PBW scheme supports

the adaptive segmentation in real-time.

7.2.3 FaceIK user interface

We implemented the proximity-based weighting and local influence map blending in

real-time, providing an interactive tool for expression synthesis by direct-manipulation.

Figure 7.2 shows the interface of this tool. Figure 7.3 shows a sequence of edits that

leads from a neutral face to a complex expression. A screen capture of a real-time
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(a) (b) (c)

(d) (e) (f)

Figure 7.3: A faceIK editing session. From (a) to (f), we show the creation of a
complex expression by adding and moving control points one at a time, starting from
neutral.

FaceIK demo is available on our website at

http://grail.cs.washington.edu/projects/stfaces/capture2 fast2.avi.
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7.3 Data-driven animation

Producing realistic animations of the human face is extremely challenging, as subtle

differences in dynamics and timing can have a major perceptual effect. In this section,

we exploit the facial dynamics captured in our reconstructed 3D face sequences to

create tools for face animation. In particular we describe two such tools, one for

producing random infinite face sequences, and another for data-driven interpolation

of user-specified key frames.

Before introducing these tools, we first describe our model of face dynamics using

a graph representation. Our approach adapts related graph techniques used in video

textures [87] and character animation [58, 2, 60] to the domain of face animation.

7.3.1 Face graphs

Let M1, . . . ,MF be a sequence of face meshes. We represent face dynamics using

a fully connected graph with F nodes corresponding to the faces; we call this the

face graph. The weight of the edge between nodes i and j specifies the cost of a

transition from Mi to Mj in an animation sequence. This cost should respect the

dynamics present in the input sequence, balanced with a desire for continuity. Given

two frames Mi and Mj in the input sequence, we define the weight w of edge (i, j) as

w(i, j) = dist(Mi+1,Mj) + λdist(Mi,Mj) (7.9)

where dist is a distance metric between meshes. (We use the L2 norm, summed

over all the vertices.) The first term prefers following the input sequence, while the

second term penalizes large jumps. λ is a weight that balances the two terms. In our

experiments, we fixed λ = 2 for all texture synthesis examples and manually selected

λ for each segment in the final keyframe animation to achieve the best visual results.
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7.3.2 Random walks through face space

Video textures [87] generates non-repeating image sequences of arbitrary length. The

same technique can be used to generate random, continuously-varying face anima-

tions. To do so we simply perform a random walk through the face graph. As in the

work by Schödl et al. [87], we define the probability of a transition from mesh Mi

to mesh Mj to be Pij = 1
Z
e−w(i,j)/σ, where Z is a normalization factor so that the

sum of Pij over all j is 1. The parameter σ is used to define the frequency of tran-

sitions between different parts of the input sequence; lower values create animations

that closely follow the input sequence, whereas higher values promote more random

behavior. Using Pij as the transition matrix, we can generate random walks on the

face graph, and here is an example shown in the online video

http://grail.cs.washington.edu/projects/stfaces/videotexture.avi.

The random walks provide a way to visualize the space of captured faces.

Animation with regions

A limitation of the method described so far is that the frames composing the animation

are constrained to lie within the set of input meshes. We therefore generalize this

approach by defining regions on the face, animating the regions separately using the

above method, and then blending the results into a single animation.

Specifically, we independently generate multiple random walk sequences. For each

sequence, we associate a user specified control point; each of these control points

defines a influence map as we described in the Section 7.2.2. Then we use these

influence maps to blend the multiple random walks into a single random walk. The

online video,

http://grail.cs.washington.edu/projects/stfaces/videotexture.avi,

also shows an animation generated from this method using two control points. While

a majority of the resulting sequence looks natural and compelling, it also contains
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some unnatural frames and transitions, due to the fact that different parts of the

face are animated independently. The region-based random walks provide a way to

visualize the space of faces that can be synthesized given the configuration of control

points.

Linear interpolation

Data-driven interpolation

Figure 7.4: Illustration of linear interpolation (top row) vs. data-driven inter-
polation (bottom row), with the first and last columns as key frames. Lin-
ear interpolation makes the mouth and the eyes move synchronously, which
looks less realistic when played as an animation (also shown in the on-
line video http://grail.cs.washington.edu/projects/stfaces/keyframe.avi).
Data-driven interpolation, instead, first purses the mouth, then squints the eyes, and
finally opens the mouth. The sequential nature of the data-driven interpolation for
this example arose naturally because that is the way the real subject behaved.
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7.3.3 Data-driven keyframe animation

While the random walk technique produces animation very easily, it does not provide

a mechanism for user control. However, the same concepts may be used to support

traditional keyframe animations, in which in-between frames are automatically gen-

erated from user-specified constraint frames. The in-between frames are generated

using a data-driven interpolation method, which seeks to follow minimum-cost paths

through the graph [58, 2, 60, 88].

Suppose that an animator has a sequence of meshes available, and wants to an-

imate a transition between two expressions that appear in the sequence. In the

simplest case, the expressions comprise the endpoints of a subsequence of the input

sequence. More generally, the interpolation must blend two or more noncontiguous

subsequences.

To find a path between two keyframes Mi and Mj, we construct the graph defined

above, then search for the shortest path connecting Mi and Mj using Dijkstra’s algo-

rithm [59]. The result is a sequence of meshes. However, the length of this sequence

may not be the desired number of frames that need to be filled up between the two

keyframes. We therefore treat this sequence of faces as a sequence of high-dimensional

sample points along a curve in the face space. We then fit a cubic-spline for the sam-

ples and resample the spline uniformly to create the described number faces between

the two keyframes.

Keyframe animation with regions

The keyframe interpolation method is extended to work with multiple regions us-

ing the same technique as described for random walks. In particular, a separate

graph is defined for each region. Optimal paths on each graph are computed in-

dependently, and the resulting animations are blended together using the influence

functions to produce a composite key-frame animation. Figure 7.4 shows an example
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keyframe animation, comparing our data-driven interpolation to traditional linear in-

terpolation. We have also created a forty three second animation (shown in the online

video http://grail.cs.washington.edu/projects/stfaces/keyframe.avi) using

our data-driven technique. The animation uses nineteen keyframes, and each keyframe

has three control points.

7.4 Discussion

In this chapter, we demonstrated a data-driven, interactive method for face editing

that draws on the large set of fitted templates and allows specification of new expres-

sions by dragging surface points directly. We also described new tools that model the

dynamics in the input sequence to enable new animations, created via key-framing

or video texture synthesis techniques. There are many important topics to explore in

both face editing and animation for future work directions.

Our faceIK method generates natural results for control points that are relatively

near the input faces, but can produce bizarre (and even disturbing) results for larger

extrapolations, as shown in Figure 7.5. Although this behavior is not surprising, the

user must explore the space of faces by trial and error. More useful would be if the

tool could constrain the edits to the range of reasonable faces, by learning a set of

good controls. Another limitation of faceIK is that, although it allows the user to

segment the face adaptively, within an animation the segmentation cannot be changed.

Therefore, before creating an animation, the user must specify enough control points

so that any desired keyframe can be created. This limitation did not pose a problem

when we created the animation in the accompanying video; three control points (on

both eyebrows and the lower lip) were enough to create the expressions we wanted.

However, it would be desirable to allow the number and positions of control points to

vary across keyframes.

An alternative to computing blending coefficients using our PBW method is to
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Figure 7.5: An example of weird expression due to large extrapolation.

formulate face editing as a scattered data interpolation problem from the configuration

space of control vertices to the configuration space of all other vertices. The difference

between PBW and this alternative approach is that the interpolation coefficients of

the latter may not make the control points satisfy the user-specified constraints. Since

we could avoid applying the interpolation coefficients on the control vertices by simply

setting their values to be the user specified constraints, this alternative method is still

worth further study.

The animation tools presented in this paper are quite simple and could be extended

and improved in several ways. One limitation is that we assume that the key frames

are blends of the input frames. Although different regions can be controlled separately,

the approach does not provide good support for extrapolated faces, since such faces

may not be part of a motion sequence (i.e., there is no natural successor frame).

Another limitation is that our data-driven interpolation technique requires a rich

face sequence as input in order to produce natural-looking output transitions. If our

technique fails to find a desired transition in the face sequence, it may choose to use

linear interpolation or an unnatural backwards transition instead. In addition, eye
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blinks may occur at inopportune moments and gaze direction is fixed by the input

sequence; more careful modeling of the eyes, as well as insertion of teeth, would

improve the quality of resulting animations. Finally, more intuitive control of timing

would also help produce more realistic keyframe animations. All of these problems

are important areas for future work.

While we have focused on animating a single face, it would be interesting to explore

variations in dynamic behaviors among different human faces, similar in spirit to what

has been done for static shape variations [9, 1].
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Chapter 8

CONCLUSION

In this dissertation, we have presented new techniques that take raw image streams

recorded with off-the-shelf hardware and produce high-resolution, time-varying sur-

face models. We have also developed tools that use these models for 3D facial expres-

sion synthesis and animation applications. In this section, we review our technical

contributions and suggest areas for future work.

8.1 Contributions

This dissertation has five major contributions. First, we have proposed an improved

structured light method for generating high-speed scans of moving objects. The

method works by projecting a single, static stripe pattern of alternating colors while

simultaneously recording an image stream. The 3D shape is recovered by matching

the projected color transitions with observed edges in the image. We solve the cor-

respondence problem using a novel, multi-pass dynamic programming algorithm that

eliminates global smoothness assumptions, strict ordering constraints, and singly-

connected surface limitations present in previous formulations.

Second, we have introduced an approach called spacetime stereo, in which the

temporal variation of each pixel is used as a cue for correspondence. Specifically,

instead of using a spatial window to define matching cost as in traditional frame-

by-frame stereo, spacetime stereo adds a temporal dimension to the window. The

spacetime window can be a rectangular 3D volume if the local shape variations in

space and time are negligible. For significant shape variations, we have proposed a
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locally linear model to approximate the variations and formulated spacetime stereo

as a spacetime window warping problem. Starting with our local warping algorithm,

we have demonstrated that spacetime stereo improves spatial resolution and temporal

stability for shape capture of moving objects. However, the local method does not take

into account intrinsic constraints between windows of neighboring pixels, resulting in

an over-fitting problem. We have therefore developed a global optimization technique

that takes into account all such constraints and further improves spacetime stereo

reconstruction.

Spacetime stereo works effectively for dynamic scenes with smoothly changing

geometry and rapidly changing texture. First, it serves as a general framework for

structured light scanning, in which laser scanning, hierarchical striping, and active

stereo are subsumed as special cases. Within this framework, the spacetime window

warping algorithm is one of very few existing methods that can robustly reconstruct

objects that are moving and deforming over time. Beyond the controlled structured

light scanning application, spacetime stereo is also effective for a class of natural

scenes, such as waving trees and flowing water, which have repetitive textures and

chaotic behaviors and are challenging for existing stereo algorithms.

Third, we have presented a template fitting and tracking method to integrate

shape estimation and optical flow estimation from multiple viewpoints. This method

computes a sequence of surface meshes with vertex to vertex correspondence, such

that each surface mesh approximates the input shapes and each vertex moves in

agreement with the optical flow.

Fourth, based on our proposed algorithms, we have developed a research prototype

system that consists of off-the-shelf cameras, projectors, and computers for dynamic

3D face capture. Our system advances the state of the art of facial motion capture so-

lutions: it is able to continuously capture (20fps) high resolution (about 20K vertices)

facial motion of a dynamic face simultaneously from multiple viewpoints without the

need to paint markers on the face.
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Finally, we have developed data-driven facial animation tools that take advantage

of the spatio-temporally dense data. Specifically, we have presented an expression

synthesis tool, faceIK, that exploits the correlation in the large set of captured 3D

faces and allows for posing new expressions by dragging surface points directly. Based

on user edits, the tool also decouples the correlation between different regions on the

face — adaptively and automatically — at runtime. This is achieved by computing

spatial varying weights to blend input faces, thereby enabling the creation of new

expressions that do not exist in the database of captured facial expressions for that

individual. For example, asymmetric faces can be created from a set of symmetric

faces. We have also developed a representation called face graph that encodes the

dynamics of a face mesh sequence. This graph can be traversed to create a variety

of animations via key-framing or video texture techniques. We demonstrated that

interpolating keyframes via the face graph preserves the relative timing of the motion

over different regions of the face in the input sequence, and thereby generates more

realistic animation than classic linear interpolation does. Our approach makes it

simple for untrained users to produce expressive facial animations.

8.2 Future work

At the end of each previous chapter, we discussed limitations of our methods and

suggested relatively immediate research topics for future work. In this section, we

propose a few more ambitious problems that are based on measuring and modeling

3D dynamic shapes.

The dynamics of rigid bodies, solids, and fluids are relatively well understood;

however, realistic modeling of living biological forms, such as human faces and organs,

remains an important unsolved problem in bioengineering research. Today cameras

can be deployed to capture visual information almost everywhere, even inside human

bodies. Based on the reconstructed 3D models, many interesting research topics can
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be explored in dynamic shape modeling.

Learning controls for facial animation The low-level facial animation tools

developed in this dissertation, e.g., dragging points on faces and creating key frames,

are only a first step toward facial modeling. A more ambitious problem is to learn

computational models that describe human emotions. To address this problem, one

approach is to first capture facial motions and voices of human subjects under various

moods. Then we can consider the following open questions: How does emotion affect

our expression? How does it affect our voice tone? Answering these questions will be

very useful in graphics for modeling human behavior, as it helps to create high-level

controls for animation. For example, can we edit an existing facial animation by

tweaking a “knob” to make the face look happier across the entire sequence? It may

also be useful as a computational framework for psychologists [33] to quantify their

description of human behaviors and for expression and emotion recognition [34] in

computer vision and human computer interaction.

Learning dynamic skin models When we move, our bones interact with the

skin through body tissues in a complex way. For example, when we open our hands,

we see tendons contracting on the back of the hand; when we wave, a muscle quivers

on the forearm. How to model and simulate the relationship between bones and skin

is still an open problem in biomechanics. In graphics, existing methods for describing

this relationship, a.k.a., skinning, either treat it as a static mapping or simulate it

assuming body tissues are elastic solids. Consequently, existing skinning methods

do not effectively reproduce realistic shape details and secondary motion of human

bodies. An important research challenge is to learn a dynamic statistical model that

directly relates captured dynamic body shapes to skeleton motions obtained from

motion capture data. This approach may avoid complex physical simulation and yet

still realistically reproduce both shape and secondary motion.

Learning organ mechanics Today even human organs can be observed by

cameras, for example, in minimally invasive surgeries. There, surgeons operate on an
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organ by looking at videos taken inside the body through laparoscopes. An organ has

extremely complex (anisotropic, inhomogeneous) mechanical properties, and these

properties change as the organ changes its shape. Therefore, it is very hard to predict

the state and the property of the organ once the surgeon bends or cuts it. An

important research challenge is to reconstruct organ shapes from laparoscopic imagery

and register these shapes to the organ model acquired before surgery, e.g., using

M.R.I. With the aid of force sensors, another interesting problem is how to learn

the mechanical properties of the organs from the reconstructed shape sequence [89].

Solving these problems will aid in surgical planning during an operation and surgical

simulation for training. Understanding human tissue properties can also be used to

simulate bodily injuries, e.g., from an automobile accident or in a battle field, and to

design better seats and beds to maximize comfort and minimize injury risk.

Comparative study in populations Orthogonal to the study of statistical

and physical properties of human faces, bodies, and organs, an important research

challenge is to model these property variations across people. The study of human

body measurement is the main goal of anthropometry, in which only static shapes are

considered. Today, techniques allow us to measure not only static but also dynamic

shapes, not only from outside but also from inside the human body. Studying the

distribution of these new measurements over a population is of great scientific impor-

tance. Continuing on Allen et al.’s work on modeling static shape variations [1], an

interesting research topic is to apply machine learning methods to study how much

static attributes, like body size, weight, age, and sex, affect the aforementioned statis-

tical and dynamical properties of different people. Understanding these correlations

will enrich the applications of dynamic human shape modeling.
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Appendix A

THE CLOSED-FORM SOLUTION TO PBW

In this appendix, we show that Eq. (7.3) minimizes Eq. (7.2) subject to Eq. (7.1).

We first rewrite this constrained minimization problem using matrices as follows,

Mininize g(c) = cTQc

such that Bc = p̄
(A.1)

where

Q =













φ1 0 · · · 0

0 φ2 · · · 0

0 0
. . . 0

0 0 · · · φF
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


B =

















s1,1 s1,2 · · · s1,F

s2,1 s2,2 · · · s2,F

...
...

...
...

sL,1 sL,2 · · · sL,F

1 1 · · · 1

















(A.2)

Using Lagrange multipliers, we know the minimizer of Eq. (A.1) should satisfy the

following equation,

Qc = BTa (A.3)

where a is the Lagrange multiplier. From Eq. (A.3), we obtain the following relation

between c and a

c = Q−1BTa =













1
φ1

s̄T1a

1
φ2

s̄T2a

...

1
φF

s̄TFa













(A.4)

Substituting Eq. (A.4) into the constraint equation in Eq. (A.1), we have

Bc = BQ−1BTa = p̄ (A.5)
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Solving Eq. (A.5), we have

a = (BQ−1BT)
−1

p̄ = (
F∑

f=1

1

φf

s̄f s̄
T

f )
−1p̄ (A.6)

Eq. (A.6) and Eq. (A.4) together show that Eq. (7.3) indeed minimizes Eq. (7.2)

subject to Eq. (7.1).
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Appendix B

THE NORMALIZED PROPERTY OF SOFT REGION

WEIGHTS

In this appendix, we prove that the blending coefficients for vertex s, c(s), sum

up to 1 given that
L∑

l=1
B(s, sl) = 1. Our proof is based on two facts. To state the

facts succinctly, we first introduce two concepts. A vector is called normalized if its

components sum to 1. A matrix is called normalized if all of its rows are normalized.

FACT1. If an invertible square matrix A = [ai,j ] is normalized, then B = A−1 is

also normalized.

PROOF. Let B = [bi,j ]. B = A−1 ⇒ ∀i,∀j,
∑

k
bi,kak,j = δi,j ⇒ ∀i, 1 =

∑

j
δi,j =

∑

j

∑

k
bi,kak,j =

∑

k

∑

j
bi,kak,j =

∑

k
bi,k

∑

j
ak,j =

∑

k
bi,k.

FACT2. If an m by n matrix A = [ai,j] is normalized and an m dimensional vector

b = [bi] is normalized, then the n dimensional vector bTA is also normalized.

PROOF. bTA = [
∑

i
biai,j] ⇒

∑

j

∑

i
biai,j =

∑

i

∑

j
biai,j =

∑

i
bi

∑

j
ai,j =

∑

i
bi = 1.

Let C = [c1 c2 . . . cL]T and Ĉ = [ĉ1 ĉ2 . . . ĉL]T. We know from the construction

of the RBF that C = [B(sl′ , sl)] Ĉ. Because both C and [B(sl′ , sl)] are normalized,

the matrix Ĉ = [B(sl′ , sl)]
−1

C is also normalized, according to FACT1 and FACT2.

Again, from the definition of RBF, we know that c(s)T = [B(s,pl)]
T
Ĉ. Because both

vector [B(s,pl)] and matrix Ĉ are normalized, c(s), the blending coefficient for vertex

s, is also normalized.
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