
Complexity Theory Column 89:

The Polynomial Hierarchy, Random Oracles,
and Boolean Circuits1

Benjamin Rossman, Rocco A. Servedio, Li-Yang Tan

Abstract

We give an overview of a recent result [RST15] showing that the polynomial hierarchy is
infinite relative to a random oracle. Since the early 1980s it has been known that this result
would follow from a certain “average-case depth hierarchy theorem” for Boolean circuits. In
this article we present some background and history of related relativized separations; sketch
the argument showing how the polynomial hierarchy result follows from the circuit lower bound;
and explain the techniques underlying the new circuit lower bound.

1 Introduction

An overarching goal in complexity theory is the classification of computational problems according
to their inherent di�culty. One of the most intensively studied such classifications is provided
by the polynomial hierarchy, which was introduced by Albert Meyer and Larry Stockmeyer in
1972 [MS72] (see also [Sto76, Wra76]). Informally, this hierarchy classifies problems according to
a natural notion of logical complexity, and is defined with an infinite number of levels: problems
at the zeroth level are the “easiest”, and for every integer k, problems at the (k + 1)-st level have
logical complexity “one notch higher” than those at level k. Formally, we define ⌃P

0

:= P, and for
every k 2 , a language L is in the k-th level ⌃P

k of the hierarchy i↵ there exists a polynomial-time
Turing machine M and a polynomial p such that

x 2 L() 9 y
1

2 {0, 1}p(|x|) 8 y
2

2 {0, 1}p(|x|) · · · Qk yk 2 {0, 1}p(|x|) M(x, y
1

, . . . , yk) = 1,

where Qk is 9 if k is odd, and 8 if k is even. The polynomial hierarchy is PH :=
S

k2 ⌃P

k , the class
of all languages that can be defined with a constant number of alternating quantifiers.

Recall that ⌃P

1

= NP, the class of languages involving a single existential quantifier: for example,
the Boolean Satisfiability problem asks if there exists a satisfying assignment to a Boolean
formula, and the Traveling Salesman problem asks if there exists a short tour visiting every city

1 c�B. Rossman, R. Servedio, L.-Y. Tan, 2015.

once. Higher levels of the polynomial hierarchy capture natural decision and optimization problems
that are not known to be in NP. For example, the Formula Minimization problem is in ⌃P

2

since it
asks a question with two quantifiers: “Given a Boolean formula � and an integer k, does there exist
a formula ' of size at most k such that for all assignments x, we have �(x) = '(x)?” As another
example, consider the VC Dimension problem: “Given a collection S = {S

1

, . . . , Sm} of subsets
of a finite set U (concisely represented by poly(m) bits) and an integer k, does there exist a subset
Y ✓ U of size at least k, such that for all X ✓ Y , there exists i 2 [m] satisfying Si\Y = X”? This
problem is in ⌃P

3

since it asks a question with three quantifiers. Indeed, Formula Minimization

is ⌃P

2

-complete [BU11] and VC Dimension is ⌃P

3

-complete [Sch99]; see Schäfer and Umans’s
surveys [SU02a, SU02b] (the 37th and 38th edition of this Complexity Theory Column) for a
compendium of problems that are complete for various levels of the polynomial hierarchy.

A central conjecture in complexity theory posits a far-reaching generalization of P 6= NP
(i.e. ⌃P

0

6= ⌃P

1

): all the infinitely many levels of the polynomial hierarchy are distinct. Just as
Boolean Satisfiability is conjectured not to be in P, it is conjectured that Formula Min-

imization is not in NP, VC Dimension is not in ⌃P

2

, and so on: for every k 2 , it is con-
jectured that ⌃P

k -complete problems are not in ⌃P

k�1. Several important results in complexity
theory are built on this conjecture: for example, if the polynomial hierarchy is indeed infinite
then NP does not have small circuits (i.e. NP 6✓ P/poly) [KL80] and Graph Isomorphism is not
NP-complete [BHZ87, Sch88].

1.1 The polynomial hierarchy in relativized worlds

More than forty years after Meyer and Stockmeyer’s paper, we remain far from separating even
the zeroth and first levels of the hierarchy (showing P 6= NP), much less showing that all its levels
are distinct. However, there has been significant success in understanding the structure of the
hierarchy in relativized worlds. The following question, attributed to Meyer, was listed as a main
open problem in the seminal paper of Baker, Gill, and Solovay [BGS75] which initiated the study
of relativization:

Meyer’s Question. Is there a relativized world within which the polynomial hierarchy is infinite?

Meyer’s question quickly became the central open problem in relativized complexity. However
progress was modest for a decade, with only the first three levels shown to be distinct [BGS75, BS79].
In 1985 breakthrough results of Andrew Yao [Yao85] and Johan H̊astad [H̊as86a] finally answered
Meyer’s question in the a�rmative: there is an oracle A relative to which ⌃P

k�1 6= ⌃P

k for all k 2 .
(We refer the reader to [Kol85], written shortly after the announcement of [Yao85], for a popular
account of this result and the surrounding excitement then.)

The polynomial hierarchy relative to a random oracle. Yao and H̊astad’s celebrated result
may be viewed as an important piece of evidence in favor of the conjecture that the hierarchy
is infinite in our actual, oracle-less world. However, it does not provide much information about
the oracle witnessing this separation . . . could it be that this oracle is a particularly degenerate
one, craftily engineered so that the hierarchy has infinitely many distinct levels in this atypical
relativized world? Could the truth actually be the opposite relative to most other oracles, in most
other relativized worlds? Indeed, in [H̊as86a, H̊as86b, H̊as89] H̊astad asked whether his result can
be strengthened to address these concerns: is the hierarchy infinite relative to not just some oracle,
but a random oracle?

In this column we give an overview of a recent result which answers H̊astad’s question in the
a�rmative:

Theorem 1 ([RST15]). The polynomial hierarchy is infinite relative to a random oracle: with
probability 1, a random oracle A satisfies ⌃P,A

k�1 6= ⌃P,A
k for all k 2 .

We recall that a random oracle A {0, 1}⇤ is one in which every string is independently in-
cluded with probability 1/2; this induces a probability measure on {0, 1}⇤ that corresponds to the
Lebesgue measure on [0, 1]. As observed by Bennett and Gill in their paper [BG81] initiating the
study of random oracles, the set of oracles relative to which complexity-theoretic statements hold
satisfy Kolmogorov’s zero-one law: these statements hold with probability one or with probability
zero relative to a random oracle. Understanding the relationship of complexity classes relative to a
random oracle often o↵ers useful intuition regarding the unrelativized case — the truth of a state-
ment relative to a random oracle may even be viewed as evidence of its truth in the unrelativized
setting — though we emphasize that precise relationship between the “random oracle world” and
our actual unrelativized world remains poorly understood.

1.2 Organization of this column

We begin in Section 2 by presenting the background and history of relativized separations leading
up to [Yao85, H̊as86a] and [RST15]. We especially highlight the pivotal role played by the work of
Furst, Saxe, and Sipser [FSS81], which draws a close connection between the relativized polynomial
hierarchy and small-depth Boolean circuits. In Section 3 we present the [FSS81] framework in the
context of separating P from NP relative to an oracle; describe how it extends to the setting of
random oracles; and outline how both settings extend to higher levels of the polynomial hierarchy.
In particular, we sketch how Yao and H̊astad’s resolution of Meyer’s question follows from a certain
depth hierarchy theorem for Boolean circuits, and how Theorem 1 follows from an average-case
extension of such a depth hierarchy theorem. Finally, in Section 4 we explain the techniques used
in [RST15] to prove the average-case depth hierarchy theorem, and thereby establish Theorem 1.

2 The relativized polynomial hierarchy: an abbreviated history

It is well known that the 1980s were a “golden age” for small-depth circuit lower bounds, during
which many landmark results were established [FSS81, Ajt83, Yao85, H̊as86a, Raz87, Smo87]. What
is sometimes not so well remembered is that much of this pioneering work was largely motivated
by a connection between small-depth Boolean circuits and the polynomial hierarchy that was first
discovered by Furst, Saxe, and Sipser [FSS81]. They gave a super-polynomial size lower bound
for constant-depth circuits, proving that depth-k circuits computing the n-variable parity function

must have size ⌦(nlog

(3k�6) n), where log(i) n denotes the i-th iterated logarithm. They also showed
that an improvement of this lower bound to super-quasipolynomial for constant-depth circuits
(i.e. ⌦k

�
2(logn)

c�
for all constants c) would yield an oracle A such that PSPACEA

6= PHA. Ajtai

independently proved a stronger lower bound of n⌦k(logn) [Ajt83]; his motivation came from finite
model theory. Yao gave the first super-quasipolynomial lower bounds on the size of constant-depth
circuits computing the parity function [Yao85], and shortly after H̊astad proved the optimal lower
bound of exp(⌦(n1/(k�1))) via his influential Switching Lemma [H̊as86a].

Yao’s relativized separation of PSPACE from PH was improved qualitatively by Cai, who showed
that the separation holds even relative to a random oracle [Cai86]. Leveraging the connection made
by [FSS81], Cai accomplished this by proving average-case lower bounds against constant-depth
circuits, showing that constant-depth circuits of sub-exponential size agree with the parity function
only on a (1/2+on(1)) fraction of inputs. (Independent work of Babai [Bab87] gave a simpler proof
of the same relativized separation.)

Together, these results paint a fairly complete picture of the status of the PSPACE versus PH
question in relativized worlds: not only does there exist an oracle A such that PSPACEA

6= PHA,
this separation holds relative to almost all oracles. A natural next step is to seek analogous results
showing that the relativized polynomial hierarchy is infinite; recall that the polynomial hierarchy
being infinite implies PSPACE 6= PH, and furthermore, this implication relativizes. We recall
Meyer’s question from the introduction:

Meyer’s Question. Is there a relativized world within which the polynomial hierarchy is infinite?
Equivalently, does there exist an oracle A such that ⌃P,A

k�1 6= ⌃P,A
k for all k 2 ?

Early work on Meyer’s question predates [FSS81]. It was first considered by Baker, Gill, and
Solovay in their paper initiating the study of relativization [BGS75], in which they prove the exis-
tence of an oracle A such that PA

6= NPA
6= coNPA, answering Meyer’s question in the a�rmative for

k 2 {1, 2}. Subsequent work of Baker and Selman proved the k = 3 case [BS79]. Following [FSS81],
Sipser noted the analogous connection between Meyer’s question and circuit lower bounds [Sip83]:
to answer Meyer’s question in the a�rmative, it su�ces to prove a depth hierarchy theorem for AC0:
for every constant k 2 , there exists a Boolean function F computable by a depth-(k + 1) AC0

circuit such that any depth-k circuit computing F requires super-quasipolynomial size. (This is a
significantly more delicate task than proving super-quasipolynomial size lower bounds for the par-
ity function; see Section 4.1 for a detailed discussion.) Sipser also constructed a family of Boolean
functions — depth-(k + 1) read-once monotone formulas with alternating layers of AND and OR

gates of fan-in n1/(k+1) — for which he proved an n versus ⌦(nlog

(3k+3) n) separation. These came
to be known as the Sipser functions, and they play the same central role in Meyer’s question as
the parity function does in the relativized PSPACE versus PH problem.

In 1986, H̊astad gave the first proof of a strong depth hierarchy theorem for small-depth circuits,
by proving the following near-optimal separation for (a slight variant of) the Sipser functions:

Theorem 2 ([H̊as86a]; see also [H̊as86b, H̊as89]). For all k  c logn
log logn where c > 0 is a universal

constant, there exists an n-variable Boolean function F computable by a linear-size depth-(k + 1)
circuit which is such that no depth-k circuit of size exp(nO(1/k)) computes F correctly on all inputs.

This answered Meyer’s original question in the a�rmative for all k 2 .

2.1 Recent progress: The polynomial hierarchy is infinite relative to a random
oracle

Given H̊astad’s result, a natural goal is to complete our understanding of Meyer’s question by
showing that the polynomial hierarchy is not just infinite with respect to some oracle, but in fact
with respect to almost all oracles. Indeed, in [H̊as86a, H̊as86b, H̊as89], H̊astad poses the problem
of extending his result to show this as an open problem:

PSPACEA
6= PHA ⌃P,A

k�1 6= ⌃P,A
k for all k 2

Connection to lower bounds
[FSS81] [Sip83]for constant-depth circuits

Hard function(s) Parity Sipser functions

Relative to some oracle A [Yao85, H̊as86a] [Yao85, H̊as86a]

Relative to random oracle A [Cai86, Bab87] [RST15]

Table 1: Previous work and the result of [RST15] on the relativized polynomial hierarchy

Question 1 (Meyer’s Question for Random Oracles [H̊as86a, H̊as86b, H̊as89]). Is the polynomial
hierarchy infinite relative to a random oracle? Equivalently, does a random oracle A satisfy ⌃P,A

k�1 6=

⌃P,A
k for all k 2 ?

Question 1 also appears as the main open problem in [Cai86, Bab87]; as mentioned above, an
a�rmative answer to Question 1 would imply Cai and Babai’s result showing that PSPACEA

6= PHA

for a random oracle A. Further motivation for studying Question 1 comes from a surprising
result of Book, who proved that the unrelativized polynomial hierarchy collapses if it collapses
relative to a random oracle [Boo94]. Over the years Question 1 was discussed in a wide range of
surveys [Joh86, Ko89, Hem94, ST95, HRZ95, VW97, Aar], textbooks [DK00, HO02], and research
papers [Tar89, For99, Aar10a]. However, progress on the conjecture was almost glacially slow; the
k 2 {1, 2} cases were proved by Bennett and Gill in their paper initiating the study of random
oracles [BG81], but larger values of k stubbornly resisted attack. Before the results of [RST15],
the only progress that we are aware of subsequent to [BG81] was due to Aaronson; motivated by
the problem of obtaining relativized separations in quantum structural complexity, he showed that
a random oracle A separates ⇧P

2

from PNP [Aar10b, Aar10a], and he conjectured in [Aar10a] that
his techniques could be extended to resolve the k = 3 case of Question 1.

A resolution of Question 1. Recent work gives an average-case extension of H̊astad’s worst-case
depth hierarchy theorem (Theorem 2 from the previous subsection) for small-depth circuits:

Theorem 3 ([RST15]). For all k  c
p
logn

log logn where c > 0 is a universal constant, there exists an
n-variable Boolean function F computable by a linear-size depth-(k + 1) circuit which is such that
any depth-k circuit of size exp(nO(1/k)) agrees with F on at most a (1/2 + n�⌦(1/k)) fraction of
inputs.

As we show in the next section, Theorem 1 (an a�rmative answer to Question 1 for all k 2)
follows as a consequence of Theorem 3. We emphasize that the high-level approach of proving
Theorem 1 by establishing an average-case depth hierarchy theorem for Boolean circuits is certainly
not a new contribution of [RST15]. Indeed, already in 1986 H̊astad explicitly pointed to an average-
case extension of his depth hierarchy theorem as a possible approach towards Theorem 1 [H̊as86a].
Similarly, in the fifth edition of this Complexity Theory Column [Hem94], Lane Hemaspaandra
stated Question 1 (in the form of a conjecture), and commented that “The ‘obvious’ route to a
proof of the conjecture is to build on [Yao85, H̊as86a, Cai86, Bab87]. However, there are already a
number of bodies along that route.”

Since what is obvious to Lane may not be obvious to everyone, in the next section we describe the
connection between lower bounds against constant-depth circuits (in the worst-case and the average-
case) and proofs about the polynomial hierarchy (relative to some oracle and to random oracles).
Finally, in Section 4 we present the main ideas behind the circuit lower bound of Theorem 3,
and explain how the method of random projections — an extension of the classical method of
random restrictions — enabled the authors of [RST15] to avoid leaving their bodies on the route
to Theorem 1.

3 From constant-depth circuits to the polynomial hierarchy

The structure of this section is as follows: First, in Section 3.1 we give a simple proof that P 6= NP
relative to some oracle A. Our presentation highlights how a basic fact from circuit complexity —
namely, that polylog-depth decision trees cannot compute the “tribes” DNF— is at the heart of this
oracle result; indeed, the key intuition here is an analogy in which decision trees correspond to P and
DNF formulas correspond to NP. Next, in Section 3.2, we extend the circuit–oracle connection by
showing how an average-case version of this circuit complexity fact — more precisely, that polylog-
depth decision trees cannot even approximate the tribes DNF — yields a proof that P 6= NP relative
to a random oracle A. Finally, in Section 3.3 we sketch how these worst- and average-case oracle
separations extend to higher levels of the polynomial hierarchy. The key analogy here, extending
the analogy sketched above, is between depth-(k + 1) circuits and the k-th level of the polynomial
hierarchy.

We note that the proofs of P 6= NP relative to an oracle and a random oracle that we present in
this section are not the original ones [BGS75, BG81]; those were not based on circuit lower bounds.
We present alternative proofs based on the circuit-oracle connection because this framework extends
naturally to higher levels of the hierarchy; in particular, it is through this connection that we obtain
Theorem 1 as a consequence of Theorem 3. The circuit-oracle framework is due to Furst, Saxe,
and Sipser [FSS81], who originally stated the connection in the context of separating PH from
PSPACE relative to an oracle A (showing that such a separation follows from su�ciently strong
lower bounds against constant-depth circuits computing the parity function). Sipser noted in [Sip83]
that this connection extends to the context of showing that the relativized polynomial hierarchy is
infinite (i.e. that such a separation would follow from a su�ciently strong depth hierarchy theorem
for constant-depth circuits); a complete proof of this claim appears in Chapter §7 of H̊astad’s
thesis [H̊as86b]. Our presentation is based on H̊astad’s thesis and the survey of Ko [Ko89].

3.1 P 6= NP relative to some oracle A

For s, w 2 satisfying (1�2�w)s = 1

2

±o(1), the Tribess,w function [BOL90] is an s-term read-once
monotone DNF with all s terms having width exactly w. Therefore Tribess,w computes a Boolean
function over N := sw many variables, and we sometimes write TribesN instead of Tribess,w. Note
that w = ⇥(logN), s = ⇥(N/ logN), and Pr[TribesN (x) = 1] = (1� 2�w)s = 1

2

± o(1) where x is
a uniform random input from {0, 1}N .

Somewhat surprisingly, the relativized separation of P from NP follows from an elementary fact
in circuit complexity:

Fact 3.1. TribesN cannot be computed by a polylog(N)-depth decision tree.

(In fact TribesN is evasive: any decision tree computing it must have depth N , as can be seen
from an easy adversary argument.) Given an oracle A ✓ {0, 1}⇤ and string y 2 {0, 1}⇤, we write
A(y) to denote the Boolean value 1[y 2 A] 2 {0, 1}; we can therefore denote an oracle call of an
oracle Turing machine MA by A(y) for some y 2 {0, 1}⇤. We begin by describing how the Tribes
function defines, for every oracle A, a language L(A) 2 NPA. Let A be an oracle and consider

L(A) := {1n : Tribes
2

n(A(y1,n), A(y2,n), . . . , A(y2
n,n)) = 1}, (1)

where yi,n is the lexicographically i-th string of length n. To see that L(A) 2 NPA, suppose
1n 2 L(A). Tribes

2

n(A(y1,n), . . . , A(y2
n,n)) = 1 i↵ at least one of the terms in the DNF is satisfied,

i.e. there exists an index i 2 [2n] which is an integer multiple of w and is such that

A(yi+1,n) = A(yi+2,n) = · · · = A(yi+w,n) = 1, where w = ⇥(log 2n) = ⇥(n).

Therefore L(A) 2 NPA since i 2 [2n] can be encoded with log 2n = n bits, and given i, the condition
above can be verified with w = ⇥(n) oracle calls to A.

It remains to argue the existence of an oracle A† such that L(A†) /2 PA†
; we construct such

an A† by diagonalizing against all polynomial-time oracle Turing machines {Mj}j2 . For each
machine Mj with running time at most pj(n) for some polynomial pj , input x 2 {0, 1}⇤ to Mj , and
oracle A, we have that MA

j either accepts or rejects x after making at most pj(|x|) many oracle
calls to A. It follows that there exists a decision tree Tj,x of depth at most pj(|x|), with internal
nodes branching on oracle queries, such that

8 oracles A, MA
j accepts x () Tj,x(A) = 1. (2)

Here Tj,x(A) 2 {0, 1} denotes the output of Tj,x when its oracle queries are answered according to
A. Since depth(Tj,1n)  pj(n)  polylog(2n), it follows from Fact 3.1 that there exists nj 2 such
that

8n � nj , 9 oracle Aj,n ✓ {0, 1}n s.t. Tribes
2

n(Aj,n(y
1,n), . . . , Aj,n(y

2

n,n)) 6= Tj,1n(Aj,n), (3)

We may assume that Aj,n only contains strings of length n since Tribes
2

n depends only on Aj,n(y)’s
where y has length n. Indeed, for the same reason, the above holds for all oracles A that agree
with Aj,n on all strings of length n:

8n � nj , 8 oracles A ✓ {0, 1}⇤ s.t. A(yi,n) = Aj,n(y
i,n) for all i 2 [2n],

Tribes
2

n(A(y1,n), . . . , A(y2
n,n)) 6= Tj,1n(A). (4)

We will use (3) and (4) to diagonalize against all polynomial-time oracle Turing machines
{Mj}j2 . At a high level, we begin with A† = ; and for each j 2 , we commit to including and
excluding in A† strings of a certain length mj (at least nj and greater than any length considered so
far) according to Aj,mj as defined in (3). By (4) this ensures that MA

j does not recognize L(A) for

any oracle A that agrees with A† on these strings. Since the mj ’s are distinct (i.e. the strings Aj,mj

that “defeat” Mj have di↵erent lengths than the strings Ak,mk
that defeat Mk), we conclude that

there exists A† such that MA†
j does not recognize L(A†) for all j 2 (and hence L(A†) /2 PA†

).
In more detail, we define

mj :=

(
nj if j = 1

max{nj ,mj�1 + 1} if j � 2

and consider
A† :=

[

j2
Aj,mj , (5)

where Aj,mj ✓ {0, 1}mj is the oracle defined in (3). Fix j 2 ; we claim that MA†
j does not

recognize L(A†). Since the mj ’s are distinct (indeed m
1

< m
2

< m
3

< · · ·), we have that for all j,
A† agrees with Aj,mj on all strings of length mj . Furthermore, since mj � nj , it follows from (4)
that

Tribes
2

mj (A†) 6= Tj,1mj (A†). (6)

Recalling the definition (1) of L(A†), we have that

1mj
2 L(A†)() Tribes

2

mj (A†(y1,mj), . . . , A†(y2
mj ,mj)) = 1. (7)

On the other hand, by the definition (2) of the decision tree Tj,1mj we have that

MA†
j accepts 1mj

() Tj,1mj (A†) = 1 (8)

Together (6), (7), and (8) imply that MA†
j does not recognize L(A†), and the proof is complete.

3.2 Random oracles and average-case hardness

This proof from Section 3.1 extends quite easily to show that a random oracle A separates P from
NP. The key di↵erence is that we need an average-case extension of the underlying circuit lower
bound (Fact 3.1):

Fact 3.2. Any polylog(N)-depth decision tree agrees with TribesN on at most a 0.9-fraction of
inputs.

Roughly speaking, the intuition behind Fact 3.2 is that almost all inputs in Tribes�1N (1) satisfy
much less than a 1/polylog(N) fraction of the ⇥(N/ logN) terms of the DNF, and conditioned on a
random input x not satisfying a given term, the distribution of x restricted to that term is identical
whether or not x satisfies TribesN . Hence a polylog(N)-depth decision tree, which commits to
an output after reading only polylog(N) many coordinates of any input x, can have only an o(1)
advantage over random guessing in predicting the value of TribesN (x). (Indeed, it can be shown
that any decision tree that has at least 51% agreement with TribesN must have exponentially many
nodes at depth ⌦(N/ logN).)

With Fact 3.2 in hand, the proof that a random oracle A separates P from NP proceeds almost
identically to the argument in Section 3.1. First, Fact 3.2 translates into the following strengthening
of (3): there exists an nj 2 such that

8n � nj , Pr
Aj,n {0,1}n

h
Tribes

2

n(Aj,n(y
1,n), . . . ,Aj,n(y

2

n,n)) 6= Tj,1n(Aj,n)
i
� 0.1, (9)

where Aj,n is a uniform random string in {0, 1}n. Next, we observe that although A† is defined
in (5) to be the union of Aj,mj ✓ {0, 1}mj for all j 2 , the essential property needed for the
argument to go through is that A† agrees with Aj,mj on all strings of length mj . In other words,
while we defined A† so that it does not include any string of length m where m /2 {mj}j2 , the
presence or absence of these strings is inconsequential: the same proof shows that L(A) /2 PA for

all oracles A such that A(y) = A†(y) for all y 2
S

j2 {0, 1}mj . This observation, together with (9)

and Kolmogorov’s zero-one law, implies that a random oracle A

† satisfies

Pr
A

† {0,1}⇤

h
L(A†) /2 PA

†
i
= 1, and hence Pr

A

† {0,1}⇤

h
PA

†
6= NPA

†
i
= 1.

3.3 Separating higher levels of the polynomial hierarchy

In this section we describe how the Furst–Saxe–Sipser framework, presented above for P versus NP,
extends to higher levels of the polynomial hierarchy. In particular, we describe how the arguments
from Sections 3.1 and 3.2 (establishing P 6= NP relative to an oracle A and a random oracle A

respectively) extend to show that a relativized separation of the hierarchy follows from a certain
depth hierarchy theorem for Boolean circuits, and a random oracle separation follows from an
average-case depth hierarchy theorem.

We follow the structure of the proof in Section 3.1 closely, highlighting the essential di↵erences.
First observe that the language L(A) defined in (1) remains in NPA if {TribesN}N2 is replaced
by any family {FN}N2 of Boolean functions where FN is computed by an N -variable DNF with
s = poly(N) terms of width w = polylog(N). (To certify that 1n 2 L(A), one provides the verifier
with log(s) = poly(n) bits encoding the index i 2 [s] of a satisfied term in FN , and given i,
the verifier checks that this i-th term is indeed satisfied with w = polylog(N) = poly(n) oracle
calls to A.) This connection extends easily to higher levels of the polynomial hierarchy: for each
level k 2 , let {F k+1

N }N2 be a family of Boolean functions such that F k+1

N is computed by an
N -variable depth-(k + 1) circuit with poly(N) many gates and bottom fan-in polylog(N). By a
straightforward extension of the argument above, the language

L(A) := {1n : F k+1

2

n (A(y1,n), A(y2,n), . . . , A(y2
n,n)) = 1} (10)

is in ⌃P,A
k for all oracles A. We again construct an oracle A† such that L(A†) /2 ⌃P,A†

k�1 (and hence

⌃P,A†

k�1 6= ⌃P,A†

k) by diagonalizing against all ⌃P

k�1 oracle Turing machines {Mj}j2 . Here we need
the analogue of the decision tree representation (2) of a polynomial-time oracle Turing machine:
for k � 2, for each ⌃P

k�1 oracle Turing machine Mj and input x 2 {0, 1}⇤, there exists a depth-k

circuit Ck
j,x of size 2pj(|x|) and bottom fan-in pj(|x|) for some polynomial pj , such that

8 oracles A, MA
j accepts x () Ck

j,x(A) = 1.

To apply the next step (3) of the argument, i.e. to assert the existence of nj 2 such that

8n � nj , 9 oracle Aj,n ✓ {0, 1}n s.t. F k+1

2

n (Aj,n(y
1,n), . . . , Aj,n(y

2

n,n)) 6= Ck
j,1n(Aj,n),

we need the analogue of Fact 3.1: F k+1

2

n cannot be computed by any depth-k circuit C of size
2poly(n) = quasipoly(2n) and bottom fan-in poly(n) = polylog(2n). We have arrived at the circuit
lower bound — a depth hierarchy theorem for Boolean circuits — that is the pith of Yao and
H̊astad’s separation of the relativized polynomial hierarchy:

Depth Hierarchy Theorem. For all constants k 2 there exists a family {F k+1

N }N2 of Boolean
functions such that

1. F k+1

N is an N -variable Boolean function computable in depth-(k + 1) AC0, and yet

2. No depth-k circuit C of quasipoly(N) size and bottom fan-in polylog(N) can compute F k+1

N .

Note that H̊astad obtained significantly stronger quantitative parameters (cf. Theorem 2 in
Section 2) than what is sought above: H̊astad showed that no depth-k circuit C of subexponential
size exp(NO(1/k)), regardless of bottom fan-in, can compute F k+1

N . Furthermore, his theorem holds

not just for constant values of k, but for all k up to ⇥(logN
log logN). With such a depth hierarchy

theorem in hand the remainder of the proof proceeds exactly as in Section 3.1 to yield the existence

of an oracle A† such that ⌃P,A†

k�1 6= ⌃P,A†

k .2

In sharp contrast with the elementary fact (Fact 3.1) underlying the oracle separation of P
from NP, H̊astad’s proof of Theorem 2 is a technical tour de force, culminating a long line of work
on the problem [FSS81, Ajt83, Sip83, KPPY84, Yao85]. At the heart of his proof is a delicate
application of the method of random restrictions, a common essential ingredient underlying many
of the landmark lower bounds in Boolean circuit complexity. We discuss H̊astad’s proof and the
method of random restrictions in detail in Section 4.1.

3.3.1 Separating the hierarchy relative to a random oracle

Just as an average-case extension of Fact 3.1 underlies the separation of P from NP relative to a
random oracle (as outlined in Section 3.2), to show that a random oracle separates the polynomial
hierarchy using the above framework, we prove an average-case depth hierarchy theorem for Boolean
circuits:

Average-Case Depth Hierarchy Theorem. For all constants k 2 there exists a family
{F k+1

N }N2 of Boolean functions such that

1. F k+1

N is an N -variable Boolean function computable in depth-(k + 1) AC0, and yet

2. Any depth-k circuit C of quasipoly(N) size and bottom fan-in polylog(N) agrees with F k+1

N

on at most a 0.9-fraction of inputs.

Again we remark that the result in [RST15] achieves stronger quantitative parameters (cf. The-
orem 3 in Section 2) than what is sought above: we show that any depth-k circuit C of
sub-exponential size exp(NO(1/k)), regardless of bottom fan-in, agrees with F k+1

N on at most a
(1/2 + N�⌦(1/k)) fraction of inputs. Note that a constant function achieves 50% agreement with
F k+1

N ; we show that depth-k circuits of sub-exponential size can barely do any better. Furthermore,

the theorem holds for all values of k up to ⇥(
p
logN

log logN).3

A key component of our proof is an extension of the method of random restrictions, which we
call the method of random projections. While restrictions work by fixing variables to 0, to 1, or

2The alert reader will notice that the depth hierarchy theorem as stated above does not quite sync up perfectly
with the discussion that precedes it: in addition to being computable in depth-(k + 1) AC0, the hard function F k+1

N

must also have bottom fan-in polylog(N) in order for L(A) as defined in (10) to be in ⌃P,A
k . Indeed, H̊astad’s

variant of the Sipser function is computed by a depth-(k+1) circuit which has bottom fan-in N⇥(1/k) � polylog(N).
However, since every depth-(k + 1) circuit is certainly also a depth-(k + 2) circuit with bottom fan-in 1, the depth
hierarchy theorem as stated above (as well as H̊astad’s theorem) translates into the separation ⌃P,A

k�1 6= ⌃P,A
k+1 for some

oracle A, which in turn implies ⌃P,A
k�1 6= ⌃P,A

k .
3Regarding the technical issue mentioned in the previous footnote, we mention that the F k+1

N functions
that [RST15] considers do have bottom fan-in polylog(N) (unlike H̊astad’s variant of the Sipser functions). Therefore
the average-case depth hierarchy theorem translates directly into the separation ⌃P,A

k�1 6= ⌃P,A
k for a random oracle

A, without the need for the additional step described in the previous footnote.

leaving them unchanged, projections work by fixing variables to 0, to 1, or identifying groups of
many variables — “projecting” them all to the same new variable, so that they must all take the
same value. Very roughly speaking, we show that (like random restrictions) random projections
simplify Boolean circuits, but the identification of variables helps maintain “useful structure” that
we exploit in our lower bound arguments. We elaborate on this in the next section.

4 The [RST15] average-case depth hierarchy theorem

In this section we describe the high-level structure of the proof of Theorem 3 from [RST15]. To do
so, we first describe the general framework for proving worst- and average-case lower bounds against
small-depth circuits via the method of random restrictions in Section 4.1. Within this framework,
we sketch the now-standard proof of average-case lower bounds against the parity function based
on H̊astad’s Switching Lemma. We also recall why the lemma is not well-suited for proving a depth
hierarchy theorem for small-depth circuits, hence necessitating the “blockwise variant” of the lemma
that H̊astad developed and applied to prove Theorem 2, his (worst-case) depth hierarchy theorem.
In Section 4.2 we highlight the di�culties that arise in extending H̊astad’s depth hierarchy theorem
to the average-case, and explain how our techniques — specifically, the notion of random projections
— allow us to overcome these di�culties.

Before delving into the details of [RST15], we mention that the first progress towards an average-
case depth hierarchy theorem for small-depth circuits was made by Ryan O’Donnell and Karl
Wimmer [OW07]. They constructed a Boolean function F computable by a linear-size depth-3
circuit and proved that any depth-2 circuit that approximates F must have exponential size:

Theorem 4 ([OW07]). Let Tribes†N denote the Boolean dual of TribesN and consider the 2N -
variable Boolean function

F (x) := Tribes(x
1

, . . . , xN) _ Tribes†(xN+1

, . . . , x
2N).

Any depth-2 circuit C on 2N variables that has size exp (O(N/ logN)) agrees with F on at most a
0.9-fraction of the 22N many inputs.

With the [FSS81] circuit-oracle framework in mind, we note that Theorem 4 recovers Bennett
and Gill’s [BG81] separation of ⌃P

1

from ⌃P

2

relative to a random oracle A (though the authors
of [OW07] do not discuss this application in their paper). In Section 4.2.1 we highlight a key idea
from [OW07] that plays an important role in our proof.

4.1 Lower bounds via random restrictions

The method of random restrictions was originated by Subbotovskaya in the early 1960s [Sub61]
and continues to be an indispensable technique in circuit complexity. Focusing only on small-depth
circuits, we note that the random restriction method helped enable much of the rapid progress in the
1980s, and is the common essential ingredient underlying the landmark circuit lower bounds [FSS81,
Ajt83, Sip83, Yao85, H̊as86a, Cai86, Bab87] discussed in the previous sections. This technique has
also contributed directly to important advances in other areas including computational learning
theory, pseudorandomness, and proof complexity.

We begin by describing the general framework for proving worst- and average-case lower bounds
against small-depth circuits via the random restriction method. Suppose we would like to show that

a target function F : {0, 1}N ! {0, 1} has small correlation with any size-S depth-k approximating
circuit C under the uniform distribution U over {0, 1}N . A standard approach is to construct a
series of random restrictions {R`}`2{2,...,k} satisfying three properties:

• Property 1: Approximator C simplifies. The randomly-restricted circuit C � ⇢(k)
· · ·⇢

(2),
where ⇢

(`)
 R` for 2  `  k, should “collapse to a simple function” with high probability.

This is typically shown via iterative applications of an appropriate “Switching Lemma for the
R`’s ”, which shows that each random restriction ⇢

(`) decreases the depth of the circuit C �
⇢

(k)
· · ·⇢

(`�1) by one with high probability. The upshot is that while C is a depth-k size-S
circuit, C � ⇢

(k)
· · ·⇢

(2) will be a small-depth decision tree, a “simple function”, with high
probability.

• Property 2: Target F retains structure. In contrast with the approximating circuit C,
the target function F should (roughly speaking) be resilient against the random restrictions
⇢

(`)
 R`. While the precise meaning of “resilient” depends on the specific application, the

key property we need is that F � ⇢

(k)
· · ·⇢

(2) will with high probability be a “well-structured”
function that is uncorrelated with any small-depth decision tree.

Together, these two properties imply that random restrictions of F and C are uncorrelated
with high probability. Note that this already yields worst-case lower bounds, showing that F :
{0, 1}N ! {0, 1} cannot be computed exactly by C. To obtain average-case lower bounds, we need
to translate such a statement into the fact that F and C themselves are uncorrelated. For this we
need the third key property of the random restrictions:

• Property 3: Composition of R`’s completes to the uniform distribution U . Evaluating
a Boolean function G : {0, 1}N ! {0, 1} on a random input X U is equivalent to first applying
random restrictions ⇢

(k), . . . ,⇢(2) to G, and then evaluating the randomly-restricted function
G � ⇢(k)

· · ·⇢

(2) on X0 U .

Average-case lower bounds for parity. For uniform-distribution average-case lower bounds
against constant-depth circuits computing the parity function, the random restrictions are all drawn
from R(p), the “standard” random restriction which independently sets each free variable to 0 with
probability 1

2

(1� p), to 1 with probability 1

2

(1� p), and keeps it free with probability p. The main
technical challenge arises in proving that Property 1 holds — this is precisely H̊astad’s Switching
Lemma — whereas Properties 2 and 3 are straightforward to show. For the second property, we
note that

Parityn � ⇢ ⌘ ±Parity(⇢�1(⇤)) for all restrictions ⇢ 2 {0, 1, ⇤}N ,

and so Parityn � ⇢(k)
· · ·⇢

(2) computes the parity of a random subset S ✓ [N] of coordinates (or its
negation). With an appropriate choice of the ⇤-probability p we have that |S| is large with high
probability; recall that ±Parityt (the t-variable parity function or its negation) has zero correlation
with any decision tree of depth at most t � 1. For the third property, we note that for all values
of p 2 (0, 1), a random restriction ⇢ R(p) specifies a uniform random subcube of {0, 1}N (of
dimension |⇢

�1(⇤)|). Therefore, the third property is a consequence of the simple fact that a uniform
random point within a uniform random subcube is itself a uniform random point from {0, 1}N .

H̊astad’s blockwise random restrictions. With the above framework in mind, we notice a
conceptual challenge in proving an AC0 depth hierarchy theorem via the random restriction method:
even focusing only on the worst-case (i.e. ignoring Property 3), the random restrictions R` will
have to satisfy Properties 1 and 2 with the target function F being computable in AC0. This is
a significantly more delicate task than (say) proving Parity /2 AC0 since, roughly speaking, in the
latter case the target function F ⌘ Parity is “much more complex” than the circuit C 2 AC0 to
begin with. In an AC0 depth hierarchy theorem, both the target F and the approximating circuit C
are constant-depth circuits; the target F is “more complex” than C in the sense that it has larger
circuit depth, but this is o↵set by the fact that the circuit size of C is allowed to be exponentially
larger than that of F (as is the case in both H̊astad’s and our depth hierarchy theorems). We refer
the reader to Chapter §6.2 of Hastad’s thesis [H̊as86b] which contains a discussion of this very issue.

H̊astad overcomes this di�culty by replacing the “standard” random restrictions R(p) with
random restrictions specifically suited to Sipser functions being the target : his “blockwise” random
restrictions are designed so that (1) they reduce the depth of the formula computing the Sipser
function by one, but otherwise essentially preserve the rest of its structure, and yet (2) a switching
lemma still holds for any circuit with su�ciently small bottom fan-in. These correspond to Prop-
erties 2 and 1 respectively. However, unlike R(p), H̊astad’s blockwise random restrictions are not
independent across coordinates and do not satisfy Property 3: their composition does not complete
to the uniform distribution U (and indeed it does not complete to any product distribution). This
is why H̊astad’s construction establishes a worst-case rather than average-case depth hierarchy
theorem.

4.2 The main technique of [RST15]: random projections

The crux of the di�culty in proving an average-case AC0 depth hierarchy theorem therefore lies in
designing random restrictions that satisfy Properties 1, 2, and 3 simultaneously, for a target f in
AC0 and an arbitrary approximating circuit C of smaller depth but possibly exponentially larger
size. To recall, the “standard” random restrictions R(p) satisfy Properties 1 and 3 but not 2, and
H̊astad’s blockwise variant satisfies Properties 1 and 2 but not 3.

We overcome this di�culty with projections, a generalization of restrictions. Given a set of
formal variables X = {x

1

, . . . , xN}, a restriction ⇢ either fixes a variable xi (i.e. ⇢(xi) 2 {0, 1}) or
keeps it alive (i.e. ⇢(xi) = xi, often denoted by ⇤). A projection, on the other hand, either fixes xi
or maps it to a variable yj from a possibly di↵erent space of formal variables Y = {y

1

, . . . , yM}.
Restrictions are therefore a special case of projections where Y ⌘ X , and each xi can only be fixed
or mapped to itself. Our arguments crucially employ projections in which Y is smaller than X , and
where moreover each xi is only mapped to a specific element yj where j depends on i in a carefully
designed way that depends on the structure of the formula computing the target function. Such
“collisions”, where blocks of distinct formal variables in X are mapped to the same new formal
variable yj 2 Y, play a crucial role in the approach.

At a high level, our overall approach is structured around a sequence of random projections
satisfying Properties 1, 2, and 3 simultaneously, with the target being a function they denote Sipser,
which is a slight variant of the Sipser function. We briefly outline how each of the three properties
is established:

• Property 1: Approximator C simplifies. We first prove that depth-k approximating circuits
C of size exp(NO(1/k)) “collapse to a simple function” with high probability under the sequence

of random projections. Following the standard “bottom-up” approach to proving lower bounds
against small-depth circuits, this is established by arguing that each of the individual random
projections comprising “contributes to the simplification” of C by reducing its depth by (at
least) one.

More precisely, we prove a projection switching lemma, showing that a small-width DNF or CNF
“switches” to a small-depth decision tree with high probability under our random projections.
(The depth reduction of C follows by applying this lemma to every one of its bottom-level
depth-2 subcircuits.) Recall that the random projection of a depth-2 circuit over a set of formal
variables X yields a function over a new set of formal variables Y, and in our case Y is significantly
smaller than X . In addition to the structural simplification that results from setting variables to
constants (as in H̊astad’s Switching Lemma for random restrictions), the proof of our projection
switching lemma also crucially exploits the additional structural simplification that results from
distinct variables in X being mapped to the same variable in Y. For example, consider an AND
gate (OR gate, respectively) in C that accesses xi and xj , and suppose both xi and xj are
projected to the same variable y 2 Y. This gate accesses both y and y in the projection of C
and hence can be replaced by the constant 0 (1, respectively).

• Property 2: Target Sipser retains structure. Like H̊astad’s blockwise random restrictions,
our random projections are defined with the target function Sipser in mind; in particular, they
are carefully designed so as to ensure that Sipser “retains structure” with high probability under
their composition .

Very roughly speaking, we show that with high probability, each of the individual random
projections comprising have a “limited and well-controlled” e↵ect on the structure of Sipser;
equivalently, Sipser is resilient against these random projections. The high-level idea is that
the variable identifications that take place under a random projection are engineered so as to
reduce a Sipser function of depth d to a Sipser function of depth d � 1. Combining this with
Property 1 above we have that Sipser reduces under to a “well-structured” formula (more
precisely, an OR of large fan-in), whereas the approximator C “collapses to a simple function”
(more precisely, a decision tree of small depth), where both are high probability statements with
respect to the randomness of .

• Property 3: completes to the uniform distribution. Like H̊astad’s blockwise random
restrictions (and unlike the “standard” random restrictions R(p)), the distributions of our ran-
dom projections are not independent across coordinates: they are carefully correlated in a way
that depends on the structure of the formula computing Sipser. As discussed in the previous
subsection, there is an inherent tension between the need for such correlations on one hand (to
ensure that Sipser “retains structure”), and the requirement that their composition completes
to the uniform distribution on the other hand (to yield average-case lower bounds with respect
to the uniform distribution). We overcome this di�culty with projections: we prove that the
composition of our sequence of random projections completes to the uniform distribution,
despite the fact that every one of the individual random projections comprising is correlated
among coordinates.

4.2.1 Completion to uniform via the O’Donnell–Wimmer trick

Establishing each of the three properties above requires significant work, and the notion of random
projections plays an important role in the proofs of all three. Since Property 3 is the one that
distinguishes our average-case lower bound from H̊astad’s worst-case lower bound, in the remainder
of this section we elaborate on the third bullet above. We give a concrete example of a random
projection (a simplified version of the ones employed in [RST15]), and we use this example to
illustrate a key fact that underlies the proof of Property 3.

For p 2 (0, 1) and symbols •, �, we write {•

1�p, �p} to denote the distribution over {•, �}
which outputs � with probability p and • with probability 1�p. We write {•

1�p, �p}
w to denote the

product distribution over {•, �}w in which each coordinate is distributed independently according to
{•

1�p, �p}, and {•

1�p, �p}
w
\{�}

w to denote the product distribution conditioned on not outputting
{�}

w. (Note that {•

1�p, �p}
w
\ {�}

w is not a product distribution.) The following fact, implicit
in [OW07]’s proof of Theorem 4, is key for us:

Fact 4.1 (the O’Donnell–Wimmer trick). Let ⇢ {⇤

1/2, 11/2}
w
\ {1}w and y {0

1�2�w , 1
2

�w}.
The random string x 2 {0, 1}w where

xj :=

(
y if ⇢j = ⇤

⇢j otherwise
for all j 2 [w]

is a uniform random string in {0, 1}w.

In words, Fact 4.1 says that one can generate a uniformly random string in {0, 1}w via the
following two-stage process: First set each coordinate to 1 independently with probability 1/2,
conditioned on not setting all of them to 1. For the coordinates that remain unset (there is at least
one such coordinate), collectively set all of them to 1 with probability 2�w and all of them to 0
otherwise; equivalently, we “project” all the coordinates that remain unset to a single fresh formal
variable, which we then set according to a 2�w-biased random bit y.

Though elementary, Fact 4.1 is at the heart of our proof that the composition of our random
projections complete to the uniform distribution. For a sense of how this works, let X = {xi,j : i 2
[u], j 2 [w]} and Y = {yi : i 2 [u]} be two sets of formal variables, and consider the distribution
D over random restrictions ⇢ 2 {1, ⇤}X where ⇢i {⇤

1/2, 11/2}
w
\ {1}w independently for each

i 2 [u]. For a function F over the variables in X and ⇢ D, the ⇢-random projection of F is the
function over the variables in Y defined by

(proj
⇢

F)(y) := F (x) where xi,j =

(
yi if ⇢i,j = ⇤

⇢i,j otherwise.

By Fact 4.1, for any two functions F and G over the variables in X , we have that

Pr
x {01/2,11/2}uw

[F (x) 6= G(x)] = Pr
⇢ D

y {01�2�w ,12�w}u

[(proj
⇢

F)(y) 6= (proj
⇢

G)(y)]. (11)

In words, the correlation between F and G under the uniform distribution is equal to the correlation
between their ⇢-random projections proj

⇢

F and proj
⇢

G under the 2�w-biased product distribution.
Intuitively, (11) is useful since proj

⇢

F and proj
⇢

G are “simpler” Boolean functions that are easier

to reason about (for one, they are over |Y| = u many variables whereas F and G are over |X | = uw
many variables).

Though the random projections employed in [RST15] are significantly more complicated than
the ones considered above — necessarily so because they have to also satisfy Properties 1 and 2 —
the proof that their composition completes to the uniform distribution is essentially based on
iterated applications of (a generalization of) Fact 4.1.

5 Conclusion

As discussed in this column, the 1980s witnessed tremendous advances in our understanding of
Boolean circuit lower bounds, the structure of relativized complexity classes, and the relationship
between these two topics. In recent years there has been a resurgence of research activity in circuit
complexity, with exciting progress on both old problems and new ones. It will be interesting to see
whether, via the circuit-oracle connection (or new connections that we do not yet know about),
this progress leads to corresponding progress in relativized complexity.

References

[Aar] Scott Aaronson. The Complexity Zoo. Available at http://cse.unl.edu/
~

cbourke/

latex/ComplexityZoo.pdf. 2.1

[Aar10a] Scott Aaronson. A counterexample to the generalized Linial-Nisan conjecture. Electronic
Colloquium on Computational Complexity, 17:109, 2010. 2.1

[Aar10b] Scott Aaronson. BQP and the polynomial hierarchy. In Proceedings of the 42nd ACM
Symposium on Theory of Computing, pages 141–150, 2010. 2.1

[Ajt83] Miklós Ajtai. ⌃1

1

-formulae on finite structures. Annals of Pure and Applied Logic,
24(1):1–48, 1983. 2, 3.3, 4.1

[Bab87] László Babai. Random oracles separate PSPACE from the polynomial-time hierarchy.
Information Processing Letters, 26(1):51–53, 1987. 2, 2.1, 2.1, 2.1, 4.1

[BG81] Charles Bennett and John Gill. Relative to a random oracle A, PA
6= NPA

6= coNPA

with probability 1. SIAM Journal on Computing, 10(1):96–113, 1981. 1.1, 2.1, 3, 4

[BGS75] Theodore Baker, John Gill, and Robert Solovay. Relativizations of the P=?NP question.
SIAM Journal on computing, 4(4):431–442, 1975. 1.1, 2, 3

[BHZ87] Ravi Boppana, Johan H̊astad, and Stathis Zachos. Does co-NP have short interactive
proofs? Information Processing Letters, 25(2):127–132, 1987. 1

[BOL90] Michael Ben-Or and Nati Linial. Collective coin flipping. In S. Micali, editor, Random-
ness and Computation, pages 91–115. Academic Press, 1990. 3.1

[Boo94] Ronald Book. On collapsing the polynomial-time hierarchy. Information Processing
Letters, 52(5):235–237, 1994. 2.1

[BS79] Theodore Baker and Alan Selman. A second step toward the polynomial hierarchy.
Theoretical Computer Science, 8(2):177–187, 1979. 1.1, 2

[BU11] David Buchfuhrer and Christopher Umans. The complexity of Boolean formula mini-
mization. Journal of Computer and System Sciences, 77(1):142–153, 2011. 1

[Cai86] Jin-Yi Cai. With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy. In Proceedings of the 18th Annual ACM Symposium on
Theory of Computing, pages 21–29, 1986. 2, 2.1, 2.1, 2.1, 4.1

[DK00] Ding-Zhu Du and Ker-I Ko. Theory of Computational Complexity. John Wiley & Sons,
Inc., 2000. 2.1

[For99] Lance Fortnow. Relativized worlds with an infinite hierarchy. Information Processing
Letters, 69(6):309–313, 1999. 2.1

[FSS81] Merrick Furst, James Saxe, and Michael Sipser. Parity, circuits, and the polynomial-
time hierarchy. In Proceedings of the 22nd IEEE Annual Symposium on Foundations of
Computer Science, pages 260–270, 1981. 1.2, 2, 2.1, 3, 3.3, 4, 4.1

[H̊as86a] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986. 1.1, 1.2,
2, 2, 2.1, 2.1, 1, 2.1, 4.1

[H̊as86b] Johan H̊astad. Computational Limitations for Small Depth Circuits. MIT Press, Cam-
bridge, MA, 1986. 1.1, 2, 2.1, 1, 3, 4.1

[H̊as89] Johan H̊astad. Almost optimal lower bounds for small depth circuits, pages 143–170.
Advances in Computing Research, Vol. 5. JAI Press, 1989. 1.1, 2, 2.1, 1

[Hem94] Lane Hemaspaandra. Complexity Theory Column 5: The not-ready-for-prime-time
conjectures. ACM SIGACT News, 25(2):5–10, 1994. 2.1, 2.1

[HO02] Lane Hemaspaandra and Mitsunori Ogihara. The Complexity Theory Companion.
Springer, 2002. 2.1

[HRZ95] Lane Hemaspaandra, Ajit Ramachandran, and Marius Zimand. Complexity Theory
Column 11: Worlds to die for. ACM SIGACT News, 26(4):5–15, 1995. 2.1

[Joh86] David Johnson. The NP-completeness column: An ongoing guide. Journal of Algo-
rithms, 7(2):289–305, 1986. 2.1

[KL80] Richard Karp and Richard Lipton. Some connections between nonuniform and uniform
complexity classes. In Proceedings of the 12th Annual ACM Symposium on Theory of
Computing, pages 302–309, 1980. 1

[Ko89] Ker-I Ko. Constructing oracles by lower bound techniques for circuits. In Combina-
torics, computing and complexity (Tianjing and Beijing, 1988), volume 1 of Math. Appl.
(Chinese Ser.), pages 30–76. Kluwer Acad. Publ., Dordrecht, 1989. 2.1, 3

[Kol85] Gina Kolata. Must “Hard Problems” Be Hard? Science, 228(4698):479–81, 1985. 1.1

[KPPY84] Maria Klawe, Wolfgang Paul, Nicholas Pippenger, and Mihalis Yannakakis. On mono-
tone formulae with restricted depth. In Proceedings of the 16th Annual ACM Symposium
on Theory of Computing, pages 480–487, 1984. 3.3

[MS72] Albert Meyer and Larry Stockmeyer. The equivalence problem for regular expressions
with squaring requires exponential space. In Proceedings of the 13th IEEE Symposium
on Switching and Automata Theory, pages 125–129, 1972. 1

[OW07] Ryan O’Donnell and Karl Wimmer. Approximation by DNF: examples and counterex-
amples. In 34th International Colloquium on Automata, Languages and Programming,
pages 195–206, 2007. 4, 4, 4.2.1

[Raz87] Alexander Razborov. Lower bounds on the size of bounded depth circuits over a com-
plete basis with logical addition. Mathematical Notes of the Academy of Sciences of the
USSR, 41(4):333–338, 1987. 2

[RST15] Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hier-
archy theorem for Boolean circuits. In Proceedings of the 56th Annual Symposium on
Foundations of Computer Science, 2015. To appear. (document), 1, 1.2, 2.1, 1, 2.1, 3,
2.1, 3.3.1, 3, 4, 4.2, 4.2.1, 4.2.1

[Sch88] Uwe Schöning. Graph isomorphism is in the low hierarchy. Journal of Computer and
System Sciences, 37(3):312–323, 1988. 1

[Sch99] Marcus Schäefer. Deciding the Vapnik–Červonenkis dimension is ⌃P

3

-complete. Journal
of Computer and System Sciences, 58:177–182, 1999. 1

[Sip83] Michael Sipser. Borel sets and circuit complexity. In Proceedings of the 15th Annual
ACM Symposium on Theory of Computing, pages 61–69, 1983. 2, 2.1, 3, 3.3, 4.1

[Smo87] Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean cir-
cuit complexity. In Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pages 77–82, 1987. 2

[ST95] David Shmoys and Éva Tardos. Computational Complexity. In Handbook of Combina-
torics (Ronald Graham, Martin Grötschel, and Lászlo Lovász, eds.), volume 2. North-
Holland, 1995. 2.1

[Sto76] Larry Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science,
3(1):1–22, 1976. 1

[SU02a] Marcus Schäefer and Chris Umans. Complexity Theory Column 37: Completeness in
the Polynomial-Time Hierarchy: A Compendium. ACM SIGACT News, 33(3):32–49,
2002. 1

[SU02b] Marcus Schäefer and Chris Umans. Complexity Theory Column 38: Completeness in
the Polynomial-Time Hierarchy: Part II. ACM SIGACT News, 33(4):22–36, 2002. 1

[Sub61] Bella Subbotovskaya. Realizations of linear functions by formulas using _, &, . Doklady
Akademii Nauk SSSR, 136(3):553–555, 1961. 4.1

[Tar89] Gábor Tardos. Query complexity, or why is it di�cult to separate NPA
\ coNPA from

PA by random oracles A? Combinatorica, 9(4):385–392, 1989. 2.1

[VW97] Heribert Vollmer and Klaus Wagner. Measure One Results in Computational Complexity
Theory, pages 285–312. Advances in Algorithms, Languages, and Complexity. Springer,
1997. 2.1

[Wra76] Celia Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer
Science, 3(1):23–33, 1976. 1

[Yao85] Andrew Yao. Separating the polynomial-time hierarchy by oracles. In Proceedings of
the 26th Annual Symposium on Foundations of Computer Science, pages 1–10, 1985.
1.1, 1.2, 2, 2.1, 2.1, 3.3, 4.1

