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Property Testing

Simplest question about a Boolean function: Does it have some property P?

All Boolean functions

f:10,1}" = 10,1}
Property P Far from P

Query access to unknown f on any input x

1. If fhas Property P, accept w.p. > 2/3.
2. |If fis e-far from having Property P, reject w.p. > 2/3.

3. Otherwise: doesn’t matter what we do.

Goal: minimize number of queries



This work: P = monotonicity

Monotone Far from monotone
A monotone function is one that satisfies: For all monotone functions g:
Pr T x)| > ¢
Ve <y, f(z) < f(y) mE{O,l}n[f( ) # g(x)] >

Well-studied problem:
[GGRI98, GGL+98, DGL+99, FLN+02, HKO8, BCGM12, RRS+12, BBM12, BRY13, CS13, ...]

but still significant gaps in our understanding till recently



Previous work on non-adaptive testers

= Goldreich et al. [FOCS 1998, SICOMP 2000]

= |ntroduced problem, gave “edge tester” with O(n) query complexity

= Fischer et al. [STOC 2002]

= Any tester must make Q(log n) queries

= Also gave easy Q(n'/2) lower bound for one-sided testers
11 years later...

Chakrabarty-Seshadhri [STOC 2013] Chen-Servedio-T. [FOCS 2014]

O(n7/8)-query tester Q(n'/3) lower bound,
O(n>/%)-query tester

Khot-Minzer-Safra 2015: This work:
O(n/2)-query tester Q(n/2<) lower bound




Precise statement of lower bound

Theorem [Chen-De-Servedio-T. 2015]

For every ¢ > 0 there is an g(c) > 0 such that any non-adaptive
algorithm for testing whether fis monotone or €(c)-far from
monotone requires Q(n'/2<) many queries.




Outline of this talk

= Sketch of approach in toy setting: 1-query lower bound

= Key ingredient in both [Chen-Servedio-T. 14] and this work:

Multidimensional Central Limit Theorems

" Going beyond [CST14]: New ideas and ingredients



Yao’'s minimax principle

Lower bound against <implies Tricky distribution over inputs
randomized algorithms to deterministic algorithms




Yao's principle in our setting

Monotone Far from Monotone
Distribution Dyes supported Distribution Dno supported on
on monotone functions far from monotone functions

Indistinguishability. For all T = deterministic tester that makes o(n'/2) queries,

= op(1)

Pr [’T accepts fyes] ~ Pr [7' accepts fno]

.fyesNDyes no™' ¥ no




Our D, and D, distributions

Both supported on Linear Threshold Functions (LTFs) over {-1,1}":

f(x) = sign 1+ ...+ wpxy) WeR /

Des:

Dn05 V; = -1 with prob 0.1, 7/3 with prob 0.9 /o ><

Verify: Dyes LTFs are monotone, D LTFs far from monotone w.h.p.

O ; = uniform from {1,3}

Main Structural Result: Indistinguishability
Any deterministic tester that makes few queries cannot tell DyeS from Dno

Key property: E|o;| = E[v;], Var[o;] = Var[v;].




Indistinguishability: starting small

Claim. For all T = deterministic tester that makes 1 query,

Pr [T accepts fyes} - Pr [T accepts fno} = op(1)

fyesNDye3 no™Fno




Non-trivial proof of a triviality

Claim. Let T = deterministic tester that makes 1 query z. Then:

Pr [7' accepts fyes] ~ Pr [T accepts f no]

= op(1
fyesNDyes no™'¥mno n( )

A\ J
Y

(*) S dTV(Ry637 Rno)

Tester sees:
Rycs =sign(o12z1 + -+ 0onz,) Vs R, = sign(viz1 + -+ vnzp)

=1[o121 + -+ Opnz, > 0] = 1121+ -+ vpzy > 0]
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Central Limit Theorems. Sum of many independent “reasonable”
random variables converges to Gaussian of same mean and variance.

Main analytic tool (Baby version):

Berry—Esséen CLT. Let S = X + ---+ X,, where X4,...,X,, are independent real-
valued random variables satisfying |X; — E[X;]| < 7 with probability 1 for all j € [n].
Let G be a Gaussian with mean E[S| and variance Var(S]. Then for all § € R,

O(7)
Var[S]1/2°

|Pr[S < 6] — Pr[g < 0]| <
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Goal: Upper bound ‘Pr[Syes > 0] — Pr[S,,, > OH

Sy6320121—|—°"—|—0'n2n SnO:V121—|—"'—|—VnZn
0 0
Syes — gl Sno — g2

Recall key property:
Elo;] = E[v;] E[Syes] = E[Sno]
Var|o;| = Var|v,]

’ G1= Go



We just proved:
Claim. Let T = deterministic tester that makes 1 query. Then:

= O(n~1/?)

Pr [T accepts fyes} — Pr [T accepts fno]

f’yesNDyes fnoN no




g queries instead of 1

Main analytic tool (Grown-up version):

Multidimensional CLTs. Sum of many independent “reasonable”
g-dimensional random variables converge to g-dimensional
Gaussian of same mean and covariance.
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Main technical work of [Chen-Servedio-T. 14]

Adapting multidimensional CLT for Earth Mover Distance
(Valiant-Valiant) to get Q(n/3).

[VV]’s proof technique: Stein’s method

This work:

Adapt and extend a different multidimensional CLT

(Mossel, Gopalan-O’Donnell-Wu-Zuckerman) to get Q(n/2<),

[M-GOWZ]’s proof technique: Lindeberg’s “replacement method”
Our approach requires several new ideas beyond [M-GOWZ].



Three new ideas

1. Random variables that match arbitrarily many moments
(rather than just two)

2. Careful construction of mollifiers in CLT analysis

3. Pruning a query set to make it “nice” (main technical work)



Lindeberg’s “replacement method” in one slide

\

“Mollifier”

Goal is to bound:
E®(X,+ - +X,)]-E®Y;+--+Y,)]

In our case, smooth approximation to
the indicator of the union of orthants:

Ve

4

Key Ideas:

1. Swap X/s for Y,'s one by one

2. Bound difference via ®’s
Taylor expansion



New Idea #1: Matching Higher Moments

Why? By matching h moments: only incur error
term of order h+1 in Taylor expansion

But first of all, can we match higher moments?

Lemma. For every integer h there are two random real-valued
random variables u and v satisfying:

1. uissupported on h values, all positive (“yes”/mono LTFs)

2. vissupported on h+1 values, and Pr[v< 0] >0 (“no” /far-from-
monotone LTFs)

3. uand v match first h moments

(in fact, they match those of a Gaussian)

O
O

2




Key Ingredient #2: Careful choice of mollifiers

Our mollifier: smooth approximation of indicator of union of orthants

Must carefully control width of “error region” where 0 < mollifier < 1

Smooth mollifier (good), Good approximation to sign function,
But bad approximation to sign function But high (h+1)t order derivatives (bad)



Using these two ideas, we get Q(n'/4)
Already improves Q(n'/>) from [Chen-Servedio-T. 14]

To get Q(n/2€), need final new idea ...
(main technical work of this paper)



New ldea #3: Pruning the query set

= Adelicate CLT analysis yields Q(n%/2<) lower bound for
“scattered” query sets: no two queries close together.

= Silly but instructive example: our analysis fails for testers that
asks same query over and over again... but clearly this is
equivalent to just 1 query.

" |n general, close by queries are likely to take same value, so
tester does not “benefit much” from them.

Key Reduction:
Every set Q of O(n'/2€) queries can be “pruned” to become Q' where

1. Q' is “scattered”

2. Lower bound against Q' yields lower bound against Q




Recap: Our main lower bound

Theorem.

For every ¢ > 0 there is an g(c) > 0 such that any non-adaptive
algorithm for testing whether fis monotone or €(c)-far from
monotone requires Q(n'/2<) many queries.
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