Boolean Function Monotonicity Testing requires (almost) $\Omega(n^{1/2})$ queries

Xi Chen (Columbia), Anindya De (DIMACS and IAS), Rocco Servedio (Columbia), and **Li-Yang Tan** (TTI-Chicago)

STOC 2015 Portland, OR

Property Testing

Simplest question about a Boolean function: Does it have some property **P**?

Query access to unknown f on any input x

- 1. If f has Property P, accept w.p. > 2/3.
- 2. If f is ε -far from having Property P, reject w.p. > 2/3.
- 3. Otherwise: doesn't matter what we do.

Goal: minimize number of queries

This work: *P* = monotonicity

A monotone function is one that satisfies:

$$\forall x \leq y, \ f(x) \leq f(y)$$

For all monotone functions *g*:

$$\Pr_{\boldsymbol{x} \in \{0,1\}^n}[f(\boldsymbol{x}) \neq g(\boldsymbol{x})] \geq \varepsilon$$

Well-studied problem:

[GGR98, GGL+98, DGL+99, FLN+02, HK08, BCGM12, RRS+12, BBM12, BRY13, CS13, ...] but still significant gaps in our understanding till recently

Previous work on non-adaptive testers

- Goldreich et al. [FOCS 1998, SICOMP 2000]
 - Introduced problem, gave "edge tester" with O(n) query complexity
- Fischer et al. [STOC 2002]
 - Any tester must make $\Omega(\log n)$ queries
 - Also gave easy $\Omega(n^{1/2})$ lower bound for **one-sided** testers

11 years later...

Chakrabarty-Seshadhri [STOC 2013] $O(n^{7/8})$ -query tester

Chen-Servedio-T. [FOCS 2014] $\Omega(n^{1/5}) \text{ lower bound,}$ $O(n^{5/6}) \text{-query tester}$

Khot-Minzer-Safra 2015:

 $O(n^{1/2})$ -query tester

This work:

 $\Omega(n^{1/2-c})$ lower bound

Precise statement of lower bound

Theorem [Chen-De-Servedio-T. 2015]

For every c > 0 there is an $\varepsilon(c) > 0$ such that any non-adaptive algorithm for testing whether f is monotone or $\varepsilon(c)$ -far from monotone requires $\Omega(n^{1/2-c})$ many queries.

Outline of this talk

- Sketch of approach in toy setting: 1-query lower bound
- Key ingredient in both [Chen-Servedio-T. 14] and this work:
 Multidimensional Central Limit Theorems
- Going beyond [CST14]: New ideas and ingredients

Yao's minimax principle

Lower bound against randomized algorithms

Tricky distribution over inputs to **deterministic** algorithms

Yao's principle in our setting

Indistinguishability. For all $T = \text{deterministic tester that makes } o(n^{1/2})$ queries,

$$\left| \begin{array}{c} \mathbf{Pr} \\ \mathbf{f}_{yes} \sim \mathcal{D}_{yes} \end{array} \left[\mathcal{T} \ accepts \ \mathbf{f}_{yes}
ight] - \mathbf{Pr} \\ \mathbf{f}_{no} \sim \mathcal{D}_{no} \left[\mathcal{T} \ accepts \ \mathbf{f}_{no}
ight]
ight| = o_n(1)$$

Our D_{ves} and D_{no} distributions

Both supported on *Linear Threshold Functions* (LTFs) over $\{-1,1\}^n$:

$$f(x) = \operatorname{sign}(w_1)x_1 + \ldots + w_n x_n) \quad \vec{w} \in \mathbb{R}^n$$

 D_{ves} : σ_i = uniform from {1,3}

 D_{no} : $\nu_i = -1$ with prob 0.1, 7/3 with prob 0.9

Verify: D_{ves} LTFs are monotone, D_{no} LTFs far from monotone w.h.p.

Main Structural Result: Indistinguishability

Any deterministic tester that makes few queries cannot tell $D_{
m yes}$ from $D_{
m no}$

Key property:
$$\mathbb{E}[m{\sigma_i}] = \mathbb{E}[m{
u_i}]$$
 , $ext{Var}[m{\sigma}_i] = ext{Var}[m{
u}_i]$.

Indistinguishability: starting small

Claim. For all T = deterministic tester that makes 1 query,

$$\left| \begin{array}{l} \mathbf{Pr} \\ \mathbf{f}_{yes} \sim \mathcal{D}_{yes} \end{array} \left[\mathcal{T} \; accepts \; \mathbf{f}_{yes}
ight] - \mathbf{Pr} \\ \mathbf{f}_{no} \sim \mathcal{D}_{no} \left[\mathcal{T} \; accepts \; \mathbf{f}_{no}
ight]
ight| = o_n(1)$$

Non-trivial proof of a triviality

Claim. Let T = deterministic tester that makes 1 query **z**. Then:

Tester sees:

Central Limit Theorems. Sum of many independent "reasonable" random variables converges to Gaussian of same mean and variance.

Main analytic tool (Baby version):

Berry–Esséen CLT. Let $\mathbf{S} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$ where $\mathbf{X}_1, \ldots, \mathbf{X}_n$ are independent real-valued random variables satisfying $|\mathbf{X}_j - \mathbf{E}[\mathbf{X}_j]| \leq \tau$ with probability 1 for all $j \in [n]$. Let \mathcal{G} be a Gaussian with mean $\mathbf{E}[\mathbf{S}]$ and variance $\mathbf{Var}[\mathbf{S}]$. Then for all $\theta \in \mathbb{R}$,

Goal: Upper bound
$$\left| \mathbf{Pr}[\mathbf{S}_{yes} \geq 0] - \mathbf{Pr}[\mathbf{S}_{no} \geq 0] \right|$$

$$\mathbf{S}_{yes} = \boldsymbol{\sigma_1} z_1 + \dots + \boldsymbol{\sigma_n} z_n$$

$$\mathbf{S}_{no} = \boldsymbol{\nu_1} z_1 + \dots + \boldsymbol{\nu_n} z_n$$

$$\mathbf{S}_{yes} \overset{\circ}{\to} \mathcal{G}_1$$

$$\mathbf{S}_{no} \overset{\circ}{\to} \mathcal{G}_2$$

Recall key property:

$$egin{aligned} \mathbb{E}[oldsymbol{\sigma_i}] &= \mathbb{E}[oldsymbol{
u_i}] \ \mathbf{Var}[oldsymbol{\sigma_i}] &= \mathbf{Var}[oldsymbol{
u_i}] \end{aligned} egin{aligned} &= \mathbb{E}[\mathbf{S}_{no}] \ \mathbf{Var}[\mathbf{S}_{yes}] &= \mathbf{Var}[\mathbf{S}_{no}] \ \mathcal{G}_1 &= \mathcal{G}_2 \end{aligned}$$

We just proved:

Claim. Let T = deterministic tester that makes **1** query. Then:

$$egin{aligned} \left| egin{aligned} \mathbf{Pr} \\ oldsymbol{f}_{yes} \sim \mathcal{D}_{yes} \end{aligned} \left[\mathcal{T} \ accepts \ oldsymbol{f}_{yes}
ight] - \mathbf{Pr} \\ oldsymbol{f}_{no} \sim \mathcal{D}_{no} \end{aligned} \left[\mathcal{T} \ accepts \ oldsymbol{f}_{no}
ight] \right| = O(n^{-1/2}) \end{aligned}$$

q queries instead of 1

Main analytic tool (Grown-up version):

Multidimensional CLTs. Sum of many independent "reasonable" q-dimensional random variables converge to q-dimensional Gaussian of same mean and covariance.

Main technical work of [Chen-Servedio-T. 14]

Adapting multidimensional CLT for Earth Mover Distance (Valiant-Valiant) to get $\Omega(n^{1/5})$.

[VV]'s proof technique: Stein's method

This work:

Adapt and extend a different multidimensional CLT (Mossel, Gopalan-O'Donnell-Wu-Zuckerman) to get $\Omega(n^{1/2-c})$.

[M-GOWZ]'s proof technique: **Lindeberg's "replacement method"**Our approach requires **several new ideas** beyond [M-GOWZ].

Three new ideas

- Random variables that match arbitrarily many moments (rather than just two)
- 2. Careful construction of **mollifiers** in CLT analysis
- 3. **Pruning** a query set to make it "nice" (main technical work)

Lindeberg's "replacement method" in one slide

Goal is to bound:

$$\left|\mathbf{E}[\Phi(oldsymbol{X}_1+\cdots+oldsymbol{X}_n)]-\mathbf{E}[\Phi(oldsymbol{Y}_1+\cdots+oldsymbol{Y}_n)]
ight|$$
 "Mollifier"

In our case, smooth approximation to the indicator of the union of orthants:

Key Ideas:

- 1. Swap X_i's for Y_i's one by one
- 2. Bound difference via $\Phi's$ Taylor expansion

New Idea #1: Matching Higher Moments

Why? By matching *h* moments: only incur error term of order *h*+1 in Taylor expansion

But first of all, can we match higher moments?

Lemma. For every integer h there are two random real-valued random variables \mathbf{u} and \mathbf{v} satisfying:

- **1. u** is supported on *h* values, **all positive** ("yes"/mono LTFs)
- 2. \mathbf{v} is supported on h+1 values, and $\mathbf{Pr}[\mathbf{v} < \mathbf{0}] > \mathbf{0}$ ("no"/far-frommonotone LTFs)

Key Ingredient #2: Careful choice of mollifiers

Our mollifier: smooth approximation of indicator of union of orthants Must carefully control width of "error region" where 0 < mollifier < 1

Smooth mollifier (good),
But bad approximation to sign function

Good approximation to sign function, But high (h+1)st order derivatives (bad) Using these two ideas, we get $\Omega(n^{1/4})$ Already improves $\Omega(n^{1/5})$ from [Chen-Servedio-T. 14]

To get $\Omega(n^{1/2-c})$, need final new idea ... (main technical work of this paper)

New Idea #3: Pruning the query set

- A delicate CLT analysis yields $\Omega(n^{1/2-c})$ lower bound for "scattered" query sets: no two queries close together.
- Silly but instructive example: our analysis fails for testers that asks same query over and over again... but clearly this is equivalent to just 1 query.
- In general, close by queries are likely to take same value, so tester does not "benefit much" from them.

Key Reduction:

Every set Q of $O(n^{1/2-c})$ queries can be "pruned" to become Q' where

- 1. Q' is "scattered"
- 2. Lower bound against Q' yields lower bound against Q

Recap: Our main lower bound

Theorem.

For every c > 0 there is an $\varepsilon(c) > 0$ such that any non-adaptive algorithm for testing whether f is monotone or $\varepsilon(c)$ -far from monotone requires $\Omega(n^{1/2-c})$ many queries.

