A Polynomial Lower Bound for Monotonicity Testing of Boolean Functions

Joint work with Xi Chen and Rocco Servedio

Property Testing

Simplest question about a Boolean function: Does it have some property **P**?

Easy lower bound of $\Omega(2^n)$

- Query access to unknown f on any input x
- With as few queries as possible, decide if

f has Property P vs. f does not have Property P

f is far from having Property P

Rules of the game

All Boolean functions

Query access to unknown f on any input x

- 1. If f has Property P, accept w.p. > 2/3.
- 2. If f is ε -far from having Property P, reject w.p. > 2/3.
- 3. Otherwise: doesn't matter what we do.

Super-efficient algorithms

Sublinear Space
Streaming,
Sketching

Sublinear Time Property Testing

Sublinear Measurement
Sparse Recovery,
Compressed Sensing

Two recurring messages:

- Many properties P testable with surprisingly few queries.
- 2. Rich connections with many other areas:
 - Learning theory
 - Hardness of approximation
 - Communication complexity
 - ...

This work: *P* = monotonicity

Well-studied problem:

[GGR98, GGL+98, DGL+99, FLN+02, HK08, BCGM12, RRS+12, BBM12, BRY13, CS13, ...] but still significant gaps in our understanding.

This talk

- The natural tester and its analysis [Goldreich et al. 1998]
- Our main result:

A **polynomial lower bound** on query complexity

Our main technical ingredient:

Multidimensional Central Limit Theorems

Generalizing our main result: Testing monotonicity on hypergrids

A quick reminder

A monotone function is one that satisfies:

For all monotone functions *g*:

$$\forall \underline{x} \leq \underline{y}, \ f(x) \leq f(y)$$

$$\Pr_{\mathbf{x} \in \{0,1\}^n} [f(\mathbf{x}) \neq g(\mathbf{x})] \geq \varepsilon$$

$$x_i \leq y_i \ \forall i \in [n]$$

"Flipping an input bit from ${\bf 0}$ to ${\bf 1}$ cannot make f go from ${\bf 1}$ to ${\bf 0}$ "

First test that comes to mind

Call such an edge a "violating edge"

An observation and a theorem

Call such an edge a "violating edge"

Tester = Sample random edges, check for violations.

Simple observation: If *f* is monotone, tester never rejects.

Question: If f is ε -far from monotone, how likely to catch violating edge?

Theorem [Goldreich *et al.* 1998, 2000]

If f is ε -far from monotone, $\Omega(\varepsilon/n)$ fraction of edges are violations. Therefore tester will reject within $O(n/\varepsilon)$ queries.

An exponential gap

- Goldreich et al. [FOCS 1998, SICOMP 2000]
 - Introduced problem, gave tester with O(n) query complexity.
- Fischer et al. [STOC 2002]
 - Any non-adaptive tester must make $\Omega(\log n)$ queries.
 - Therefore, any adaptive tester must make $\Omega(\log \log n)$ queries.

[GGR98, DGL+99, HK08, BCGM12, RRS+12, BRY13, CS13, ...]

- Chakrabarty-Seshadhri [STOC 2013]
 - $O(n^{7/8})$ -query non-adaptive tester!

Theorem [Chen-Servedio-T 2014]

Any non-adaptive tester must make $\widetilde{\Omega}(n^{1/5})$ queries. Therefore, any adaptive tester must make $\Omega(\log n)$ queries.

Exponential improvements over $\Omega(\log n)$ and $\Omega(\log \log n)$ lower bounds of Fischer *et al.* (2002)

Theorem [Chen-Servedio-T 2014]

There is a non-adaptive tester that makes $\widetilde{O}(n^{5/6})$ queries.

Polynomial improvement over $O(n^{7/8})$ upper bound of Chakrabarty and Sheshadhri (2013)

Yao's minimax principle

Lower bound against randomized algorithms

Tricky distribution over inputs to **deterministic** algorithms

Yao's principle in our setting

Indistinguishability. For all T = deterministic tester that makes $o(n^{1/5})$ queries,

$$\left| \frac{\mathbf{Pr}}{\mathbf{f}_{yes} \sim \mathcal{D}_{yes}} \left[\mathcal{T} \ accepts \ \mathbf{f}_{yes} \right] - \frac{\mathbf{Pr}}{\mathbf{f}_{no} \sim \mathcal{D}_{no}} \left[\mathcal{T} \ accepts \ \mathbf{f}_{no} \right] \right| = o_n(1)$$

Our D_{ves} and D_{no} distributions

Both supported on *Linear Threshold Functions* (LTFs) over $\{-1,1\}^n$:

$$f(x) = \operatorname{sign}(w_1)x_1 + \ldots + w_n x_n) \quad \vec{w} \in \mathbb{R}^n$$

 D_{ves} : σ_i = uniform from {1,3}

 D_{no} : $\nu_i = -1$ with prob 0.1, 7/3 with prob 0.9

Verify: D_{ves} LTFs are monotone, D_{no} LTFs far from monotone w.h.p.

Main Structural Result: Indistinguishability

Any deterministic tester that makes few queries cannot tell $D_{
m yes}$ from $D_{
m no}$

Key property:
$$\mathbb{E}[m{\sigma_i}] = \mathbb{E}[m{
u_i}]$$
 , $ext{Var}[m{\sigma}_i] = ext{Var}[m{
u}_i]$.

Indistinguishability

$$q = 1$$
 query

Claim. For all T = deterministic tester that makes $q = o(n^{1/5})$ queries,

$$\left| \frac{\mathbf{Pr}}{\mathbf{f}_{yes} \sim \mathcal{D}_{yes}} \left[\mathcal{T} \ accepts \ \mathbf{f}_{yes} \right] - \frac{\mathbf{Pr}}{\mathbf{f}_{no} \sim \mathcal{D}_{no}} \left[\mathcal{T} \ accepts \ \mathbf{f}_{no} \right] \right| = o_n(1)$$

Non-trivial proof of a triviality

Claim. Let T = deterministic tester that makes 1 query **z**. Then:

$$\left| \frac{\mathbf{Pr}}{\mathbf{f}_{yes} \sim \mathcal{D}_{yes}} \left[\mathcal{T} \ accepts \ \mathbf{f}_{yes} \right] - \frac{\mathbf{Pr}}{\mathbf{f}_{no} \sim \mathcal{D}_{no}} \left[\mathcal{T} \ accepts \ \mathbf{f}_{no} \right] \right| = o_n(1)$$

$$(*) \leq d_{\mathrm{TV}}(\mathbf{R}_{yes}, \mathbf{R}_{no})$$

Tester sees:

$$\mathbf{R}_{yes} = \operatorname{sign}(\boldsymbol{\sigma}_1 z_1 + \dots + \boldsymbol{\sigma}_n z_n) \quad \text{vs.} \quad \mathbf{R}_{no} = \operatorname{sign}(\boldsymbol{\nu}_1 z_1 + \dots + \boldsymbol{\nu}_n z_n)$$

Central Limit Theorems. Sum of many independent "reasonable" random variables converges to Gaussian of same mean and variance.

Main analytic tool (Baby version):

Berry–Esséen CLT. Let $\mathbf{S} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$ where $\mathbf{X}_1, \ldots, \mathbf{X}_n$ are independent real-valued random variables satisfying $|\mathbf{X}_j - \mathbf{E}[\mathbf{X}_j]| \leq \tau$ with probability 1 for all $j \in [n]$. Let \mathcal{G} be a Gaussian with mean $\mathbf{E}[\mathbf{S}]$ and variance $\mathbf{Var}[\mathbf{S}]$. Then for all $\theta \in \mathbb{R}$,

Goal: Upper bound $d_{\text{TV}}(\text{sign}(\mathbf{S}_{yes}), \text{sign}(\mathbf{S}_{no}))$

$$\mathbf{S}_{yes} = \boldsymbol{\sigma_1} z_1 + \dots + \boldsymbol{\sigma_n} z_n$$
 $\mathbf{S}_{no} = \boldsymbol{\nu_1} z_1 + \dots + \boldsymbol{\nu_n} z_n$ $\mathbf{S}_{yes} \rightarrow \mathcal{G}_1$ $\mathbf{S}_{no} \rightarrow \mathcal{G}_2$

Recall key property:

$$egin{aligned} \mathbb{E}[oldsymbol{\sigma_i}] &= \mathbb{E}[oldsymbol{
u_i}] \ \mathbf{Var}[oldsymbol{\sigma}_i] &= \mathbf{Var}[oldsymbol{
u_i}] \end{aligned} egin{aligned} &\mathbb{E}[\mathbf{S}_{yes}] &= \mathbb{E}[\mathbf{S}_{no}] \ \mathbf{Var}[\mathbf{S}_{yes}] &= \mathbf{Var}[\mathbf{S}_{no}] \ \mathcal{G}_1 &= \mathcal{G}_2 \end{aligned}$$

We just proved:

Claim. Let T = deterministic tester that makes 1 query. Then:

$$igg| egin{aligned} & \mathbf{Pr} \\ oldsymbol{f}_{yes} \sim \mathcal{D}_{yes} \end{aligned} igg[\mathcal{T} \ accepts \ oldsymbol{f}_{yes} igg] - oldsymbol{Pr} \\ oldsymbol{f}_{no} \sim \mathcal{D}_{no} \end{aligned} igg[\mathcal{T} \ accepts \ oldsymbol{f}_{no} igg] igg| = O(n^{-1/2})$$

Plenty of room to spare!
Would be happy with < 0.1

q queries instead of 1

Main analytic tool (Grown-up version):

Multidimensional CLTs. Sum of many independent "reasonable" q-dimensional random variables converge to q-dimensional Gaussian of same mean and variance.

Multidimensional CLTs

[Mossel 08, Gopalan-O'Donnell-Wu-Zuckerman 10]

[Valiant-Valiant 11]

Main technical work:

Adapting multidimensional CLT for Earth Mover Distance to get

$$\widetilde{\Omega}(n^{1/5})$$

Let's prove the real thing:

Claim. For all T = deterministic tester that makes $q = o(n^{1/5})$ queries,

$$\left| \begin{array}{l} \mathbf{Pr} \\ \mathbf{f}_{yes} \sim \mathcal{D}_{yes} \end{array} \right[\mathcal{T} \ accepts \ \mathbf{f}_{yes} \right] - \left| \begin{array}{l} \mathbf{Pr} \\ \mathbf{f}_{no} \sim \mathcal{D}_{no} \end{array} \right[\mathcal{T} \ accepts \ \mathbf{f}_{no} \right] \right| = o_n(1)$$

Setting things up

Arrange the q queries of tester T in a q x n matrix $\mathbf{Q} \in \{-1,1\}^{q \times n}$

$$egin{array}{c} Q_1 \ Q_2 \ Q_3 \ & Q \in \{-1,1\}^{q imes n} \ & Q_i = \emph{i-} ext{th query string} \ & Q_q \ & & & & & & & & \end{array}$$

Recall: Tester's goal is to distinguish

$$oldsymbol{f}_{yes} = ext{sign}(oldsymbol{\sigma} x) ext{ versus } oldsymbol{f}_{no} = ext{sign}(oldsymbol{
u} x)$$

What does the tester see?

Goal: Upper bound $d_{\mathrm{TV}}(\mathbf{R}_{yes}, \mathbf{R}_{no}) = d_{\mathrm{TV}}(\mathrm{sign}(Q\boldsymbol{\sigma}), \mathrm{sign}(Q\boldsymbol{\nu}))$

Goal: Upper bound
$$d_{\mathrm{TV}}(\mathbf{R}_{yes}, \mathbf{R}_{no}) = d_{\mathrm{TV}}(\mathrm{sign}(Q\boldsymbol{\sigma}), \mathrm{sign}(Q\boldsymbol{\nu}))$$

$$\{\pm 1\}^q$$

 $\mathbf{R}_{yes} \equiv \text{orthant of } \mathbb{R}^q \text{ that } Q\boldsymbol{\sigma} \text{ falls in } \mathbf{R}_{no} \equiv \text{orthant of } \mathbb{R}^q \text{ that } Q\boldsymbol{\nu} \text{ falls in }$

Random variables supported on 2^q orthants of R^q

$$d_{\text{TV}}(\mathbf{R}_{yes}, \mathbf{R}_{no}) = \sum_{\substack{2^q \text{ orthants} \\ O_i \text{ of } \mathbb{R}^q}} \left| \Pr[Q\boldsymbol{\sigma} \in O_i] - \Pr[Q\boldsymbol{\nu} \in O_i] \right|$$

 $= \max_{\mathcal{O} \subseteq \mathbb{R}^q} \big| \Pr[Q \sigma \in \mathcal{O}] - \Pr[Q \nu \in \mathcal{O}] \big|$ union of orthants

"roughly equal weight on any union of orthants"

$$d_{\text{TV}}(\mathbf{R}_{yes}, \mathbf{R}_{no}) = \max_{\mathcal{O} \subseteq \mathbb{R}^q} \left| \Pr[Q\boldsymbol{\sigma} \in \mathcal{O}] - \Pr[Q\boldsymbol{\nu} \in \mathcal{O}] \right|$$

$$Q_{\star 1}$$
 $Q_{\star 2}$ \dots $Q_{\star n}$ Q_{1} Q_{2} Q_{2} Q_{3} Q_{4} Q_{4} Q_{4} Q_{4} Q_{4} Q_{4} Q_{4} Q_{5} Q_{7} Q_{8} Q_{8} Q_{8} Q_{8} Q_{8} Q_{8}

Fixed
$$Q {m \sigma} = \sum_{i=1}^n Q_{\star i} {m \sigma}_i$$
 Ditto: $Q {m \nu} = \sum_{i=1}^n Q_{\star i} {m \nu}_i$ from product

distribution over R^n sum of n independent vectors in R^q

$$\mathbb{E}[oldsymbol{\sigma_i}] = \mathbb{E}[oldsymbol{
u_i}] \ \mathbf{Var}[oldsymbol{\sigma_i}] = \mathbf{Var}[oldsymbol{
u_i}] \ \mathbf{Cov}[Qoldsymbol{\sigma}] = \mathbf{Cov}[Qoldsymbol{
u}] \ \mathbf{Cov}[Qoldsymbol{\sigma}] = \mathbf{Cov}[Qoldsymbol{
u}] \ \mathbf{Cov}[Qoldsymbol{
u}]$$

The final setup

Goal: Two sums of *n* independent vectors in R^q are "close"

$$Q\boldsymbol{\sigma} = \sum_{i=1}^{n} Q_{\star i} \boldsymbol{\sigma_i} \qquad Q\boldsymbol{\nu} = \sum_{i=1}^{n} Q_{\star i} \boldsymbol{\nu_i}$$

where closeness = roughly equal weight on any union of orthants.

Furthermore, since

$$\mathbb{E}[Qoldsymbol{\sigma}] = \mathbb{E}[Qoldsymbol{
u}]$$

 $\mathbf{Cov}[Qoldsymbol{\sigma}] = \mathbf{Cov}[Qoldsymbol{
u}]$

suffices to show each are close to *q*-dimensional Gaussian with matching mean and covariance matrix.

Valiant-Valiant Multidimensional CLT

Sum of many independent "reasonable" **q-dimensional** random variables is close to **q-dimensional** Gaussian of same mean and variance.

with respect to **Earth Mover Distance**:

Minimum amount of work necessary to "get one PDF to look like the other", where work := mass x distance

Key technical lemma:

Closeness in EMD —— roughly equal weight on any union of orthants

Valiant-Valiant Multidimensional CLT

Let $\mathbf{S} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$, where the \mathbf{X}_j 's are independent \mathbb{R}^q -valued random variables satisfying $\|\mathbf{X}_j - \mathbf{E}[\mathbf{X}_j]\|_2 \leq \tau$ with probability 1 for all $j \in [n]$. Let \mathcal{G} be the q-dimensional Gaussian with the same mean and covariance matrix as \mathbf{S} . Then

$$d_{\text{EMD}}(\mathbf{S}, \mathcal{G}) \le O(\tau q \log n).$$

Key technical lemma

$$d_{\text{EMD}}(\mathbf{S}, \mathcal{G}) \text{ small } \Longrightarrow |\Pr[\mathbf{S} \in \mathcal{O}] - \Pr[\mathcal{G} \in \mathcal{O}]| \text{ small}$$

$d_{\mathrm{EMD}}(\mathbf{S}, \mathcal{G}) \text{ small } \Longrightarrow |\Pr[\mathbf{S} \in \mathcal{O}] - \Pr[\mathcal{G} \in \mathcal{O}]| \text{ small}$ for all unions of orthants \mathcal{O}

Let's consider the contrapositive:

In slightly more detail

$$\Pr[\mathbf{S} \in \mathcal{O}] - \Pr[\mathcal{G} \in \mathcal{O}] = \Delta$$
 , has to be moved out of \mathcal{O}

For all r > 0, define $B_r := \text{radius } r \text{ boundary around } \mathcal{O}$

$$\Delta = \Delta_{\rm near} + \Delta_{\rm far}$$

$$\Delta_{near} \le \Pr[\mathcal{G} \in B_r]$$

$$r \cdot \Delta_{far} \le d_{\text{EMD}}(\mathbf{S}, \mathcal{G})$$

$$\Pr[\mathbf{S} \in \mathcal{O}] - \Pr[\mathcal{G} \in \mathcal{O}] \le \frac{d_{\text{EMD}}(\mathbf{S}, \mathcal{G})}{r} + \Pr[\mathcal{G} \in B_r]$$

We just proved

Let $\mathbf{S} = \mathbf{X}_1 + \cdots + \mathbf{X}_n$, where the \mathbf{X}_j 's are independent \mathbb{R}^q -valued random variables. Let \mathcal{G} be the q-dimensional Gaussian with the same mean and covariance matrix as \mathbf{S} . Then for all unions of orthants $\mathcal{O} \subseteq \mathbb{R}^q$ and for all r > 0,

$$\left|\Pr[\mathbf{S} \in \mathcal{O}] - \Pr[\mathcal{G} \in \mathcal{O}]\right| \leq \frac{d_{\mathrm{EMD}}(\mathbf{S}, \mathcal{G})}{r} + \Pr[\mathcal{G} \in B_r]$$
Valiant-Valiant Gaussian anti-concentration

Recap

Indistinguishability. For all $T = \text{deterministic tester that makes } q = o(n^{1/5}) \text{ queries,}$

$$\left| \begin{array}{l} \mathbf{Pr} \\ \mathbf{f}_{yes} \sim \mathcal{D}_{yes} \end{array} \left[\mathcal{T} \ accepts \ \mathbf{f}_{yes}
ight] - \mathbf{Pr} \\ \mathbf{f}_{no} \sim \mathcal{D}_{no} \end{array} \left[\mathcal{T} \ accepts \ \mathbf{f}_{no}
ight]
ight| = o_n(1)$$

Theorem

Any non-adaptive tester must make $\,\widetilde{\Omega}(n^{1/5})$ queries. Therefore, any adaptive tester must make $\,\Omega(\log n)$ queries.

Testing monotonicity of Boolean functions over general hypergrid domains

Boolean functions over hypergrids

$$F: \{1, 2, \dots, m\}^n \to \{0, 1\}$$

Testing monotonicity of Boolean functions over hypergrids

All hypergrid functions

All Boolean functions

Theorem [Chen-Servedio-T 2014]

Any non-adaptive tester for testing monotonicity of $f:[m]^n \to \{0,1\}$ must make $\widetilde{\Omega}(n^{1/5})$ queries.

Proof by reduction to m=2 case (Boolean hypercube)

A useful characterization

Theorem. [Dodis et al. 1999]

 $F:\{1,2,\ldots,m\}^n o \{0,1\}$ is $\emph{arepsilon}$ -far from monotone

There exists $\varepsilon \cdot m^n$ vertex-disjoint pairs $(x_i, y_i) \in [m]^n$ such that $x_i \leq y_i$ and $f(x_i) > f(y_i)$.

"violating pair"

(Upward direction is easy)

Reducing to m = 2

Given any $f:\{0,1\}^n \to \{0,1\}$, define $F:[m]^n \to \{0,1\}$ as follows:

$$F(\underline{x_1,\ldots,x_n}) = f(\underline{\mathbf{1}}[x_1 > \frac{m}{2}],\ldots,\underline{\mathbf{1}}[x_n > \frac{m}{2}])$$
 numbers in [m] bits in {0,1}

Easy: If f is monotone then so is F.

Remains to argue:

If f is ε -far from monotone then so is F.

Exists $\varepsilon 2^n$ vertex-disjoint pairs in $\{0,1\}^n$ that are violations w.r.t. f

Each violating pair

 $(m/2)^n$ vertex-disjoint violating pairs

 $[m]^n$ that are violations w.r.t. F

Each violating pair in $\{0,1\}^n \implies \left(\frac{m}{2}\right)^n$ violating pairs in $[m]^n$

$$\varphi(0) = \{0, 1, \dots, \frac{m}{2}\}$$

$$\varphi(1) = \{\frac{m}{2} + 1, \dots, m\}$$

$$|S(x)| = |S(y)| = (m/2)^n$$

Easy end game: exhibit order-preserving bijection between S(x) and S(y)

Conclusion

A polynomial lower bound for testing monotonicity of Boolean functions

Theorem

Any non-adaptive tester must make $\widetilde{\Omega}(n^{1/5})$ queries. Therefore, any adaptive tester must make $\Omega(\log n)$ queries.

- Main technical ingredient: multidimensional central limit theorems
- Proof extends to testing monotonicity over general hypergrid domains

Open Problem: Polynomial lower bounds against *adaptive* testers?

Thank you!