A Polynomial Lower Bound for
Monotonicity Testing of Boolean Functions

Joint work with Xi Chen and Rocco Servedio
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Property Testing

Simplest question about a Boolean function: Does it have some property P?

All Boolean functions

f:10,13" = {0,1}
Property P Far from P

Unreasonable:
= Query access to unknown f on any input x Easy lower bound of Q(Q”)

= With as few queries as possible, decide if /

f has Property P vs. fdees-roethavePropertyP-
f is far from having Property P




Rules of the game

All Boolean functions

Property P Far from P

Query access to unknown f on any input x

1. If fhas Property P, accept w.p. > 2/3.
2. If fis e-far from having Property P, reject w.p. > 2/3.

3. Otherwise: doesn’t matter what we do.



Super-efficient algorithms

Sublinear Space Sublinear Time Sublinear Measurement

Streaming p . Sparse Recovery,
’ roperty Testin
Sketching Perty 8 Compressed Sensing

Two recurring messages:

1. Many properties P testable with surprisingly few queries.
2. Rich connections with many other areas:

= Learning theory
= Hardness of approximation
=  Communication complexity



This work: P = monotonicity

Qnotone Far from monotone

Well-studied problem:
[GGR98, GGL+98, DGL+99, FLN+02, HKO8, BCGM12, RRS+12, BBM12, BRY13, CS13, ...]

but still significant gaps in our understanding.




This talk

The natural tester and its analysis [Goldreich et al. 1998]

Our main result:

A polynomial lower bound on query complexity

Our main technical ingredient:
Multidimensional Central Limit Theorems

Generalizing our main result: Testing monotonicity on hypergrids



A quick reminder

Monotone Far from monotone
A monotone function is one that satisfies: For all monotone functions g:
Vo <y, f(z)<f(y) Pr [f(x) # g(x)] > €
N~— mE{O,l}”

xr; <y; Vi€ [n]

“Flipping an input bit from 0 to 1 cannot make f go from 1 to 0”
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First test that comes to mind

x=11110011101001

— I Pick random edge

y=11110010101001

If(x)=0 If(x)=1 If(x)=0 If(x)=1
fly)=1 N fly)=1 fly)=0 f(y)=0j

X Y
~

Reject!
Repeat

Call such an edge a
“violating edge”



An observation and a theorem

x)=0
fx) Call such an edge a
‘>
“violating edge”
fly)=1
Reject! &

Tester = Sample random edges, check for violations.
Simple observation: If fis monotone, tester never rejects.

Question: If fis e-far from monotone, how likely to catch violating edge?

Theorem [Goldreich et al. 1998, 2000]

If f is e-far from monotone, Q(g/n) fraction of edges are violations.
Therefore tester will reject within O(n/eg) queries.




An exponential gap

= Goldreich et al. [FOCS 1998, SICOMP 2000]
" |ntroduced problem, gave tester with O(n) query complexity.

= Fischer etal. [STOC 2002]

= Any non-adaptive tester must makueries.

= Therefore, any adaptive tester must make Q(log log n) queries.

[GGR98, DGL+99, HKO8, BCGM12, RRS+12, BRY13, CS13, ...]

= Chakrabarty-Seshadhri [STOC 2013]

0 uery non-adaptive tester!




Theorem [Chen-Servedio-T 2014]

Any non-adaptive tester must make Q(n'/®) queries.
Therefore, any adaptive tester must make €2(logn) queries.

Exponential improvements over Q(log n) and Q(log log n)
lower bounds of Fischer et al. (2002)

Theorem [Chen-Servedio-T 2014]

There is a non-adaptive tester that makes O(n®/%) queries.

Polynomial improvement over O(n’/8) upper bound of
Chakrabarty and Sheshadhri (2013)




Yao’'s minimax principle

Lower bound against <implies Tricky distribution over inputs
randomized algorithms to deterministic algorithms




Yao's principle in our setting

Monotone Far from Monotone
Distribution Dyes supported Distribution Dno supported on
on monotone functions far from monotone functions

Indistinguishability. For all T = deterministic tester that makes o(n'/?) queries,

= op(1)

Pr [’T accepts fyes] ~ Pr [7' accepts fno]

.fyesNDyes no™' ¥ no




Our D, and D, distributions

Both supported on Linear Threshold Functions (LTFs) over {-1,1}":

f(x) = sign 1+ ...+ wpxy) WeR /

Des:

Dn05 V; = -1 with prob 0.1, 7/3 with prob 0.9 / ><

Verify: Dyes LTFs are monotone, D LTFs far from monotone w.h.p.

O ; = uniform from {1,3}

Main Structural Result: Indistinguishability
Any deterministic tester that makes few queries cannot tell Dyes from Dno

Key property: E|o;| = E[v;], Var[o;] = Var[v;].




Indistinguishability

q =1 query
Claim. For all T = deterministic tester that makes g=-e{n'2)-gueries;

= op(1)

Pr [T accepts fyes} ~ Pr [T accepts fno}

fyesNDyes no~no




Non-trivial proof of a triviality

Claim. Let T = deterministic tester that makes 1 query z. Then:

Pr [7' accepts fyes] ~ Pr [7' accepts fno]

= op(1
fyesNDyes no™~mno n( )

(. /
Y

(*) S dTV(Ry€S7 Rno)

Tester sees:

Ryes — Sigﬂ(0'121 + -+ U'nzn) VS. Rno = Sign(l/lzl + -+ l/nzn)
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Central Limit Theorems. Sum of many independent “reasonable”
random variables converges to Gaussian of same mean and variance.

Main analytic tool (Baby version):

Berry—Esséen CLT. Let S = X + ---+ X,, where X4,...,X,, are independent real-
valued random variables satisfying |X; — E[X;]| < 7 with probability 1 for all j € [n].
Let G be a Gaussian with mean E[S| and variance Var(S]. Then for all § € R,

O(7)
Var[S]1/2°

|Pr[S < 6] — Pr[g < 0]| <

4

AN




Goal: Upper bound drv (sign(Syes), sign(Sno))

Sy6320121—|—°"—|—0'n2n SnO:V121—|—"'—|—VnZn
Syes — gl Sno — gQ

Recall key property:
Elo;] = E[v;] E[Syes] = E[Sno]
Var|o;| = Var|v,]

’ G1= Go



We just proved:

Claim. Let T = deterministic tester that makes 1 query. Then:

Pr [T accepts _fyes] — Pr [T accepts _fno] = O(n—l/z)

fyes ~Dyes Fno~Dro /

Plenty of room to spare!
Would be happy with < 0.1




g queries instead of 1

Main analytic tool (Grown-up version):

Multidimensional CLTs. Sum of many independent “reasonable”
g-dimensional random variables converge to g-dimensional
Gaussian of same mean and variance.
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Multidimensional CLTs

Q(n1/12)
Lower bound

10]

Main technical work:

Adapting multidimensional CLT
for Earth Mover Distance to get

Q(n'/?)

[Valiant-Valiant 11]



Let’s prove the real thing:

Claim. For all T = deterministic tester that makes g = o(n'/?) queries,

= 0, (1)

Pr [T accepts fyes} ~ Pr [T accepts fno}

fyesNDy no™~tno




Setting things up

Arrange the g queries of tester Tina g xn matrixQ € {—1,1}%*"

Q1

@2 “n
Q3 Q < {_1,1}q

Qi — j-th query string

Qg

Recall: Tester’s goal is to distinguish

fyes — SigH(O'ZL‘) Versus an — Sign(ya?)



What does the tester see?

Tester sees:

fyes A Dyes
Frow = sign(oz) | |eRe | [e{-11
Qe {-1,1}7" Qo Ryes = sign(Qo)
’ (coordinate-wise sign)
Frno < Do e RY e {-1,1}7
Fro = sign(va)
QV Rno — sign(Ql/)

Goal: Upper bound drv (Ryes, Rno) = drv(sign(Qo), sign(Qv))



Goal: Upper bound drv (Ryes, Rno) = drv (sign(Qo), sign(Qv))
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R ,cs = orthant of R? that Qo falls in
R,, = orthant of R? that Qv falls in

y

Random variables supported on 29 orthants of RY

drv(Ryes: Roo) = 3 [PrQo € O] — PrlQu € O]

29 orthants
07; of Rq

= max | Pr[Qo € O] — Pr[Qu € O]

union of orthants —> O &R

“roughly equal weight on any union of orthants”



drv(Ryes, Rno) = max ‘ PriQo € O] — Pr|Qu € (QH

OCR¢
Qe Q2 .. Qn
Q1
Q2
- Qe {-1,1}*""
Qq

Fixed n
Qo = Z Quioi it QU =Y Qv

/ 1=1
from product
distribution over R” sum of n independent vectors mD

Elo; Q|
Var|o; COV Cov QU]




The final setup

Goal: Two sums of n independent vectors in R?are “close”
mn mn
Qo = E Qo QU = E QxiVi

where closeness = roughly equal weight on any union of orthants.

Furthermore, since

ElQo] = E[Qv]
Cov|Qo| = Cov|Qv/]

suffices to show each are close to g-dimensional Gaussian with
matching mean and covariance matrix.



Valiant-Valiant Multidimensional CLT

Sum of many independent “reasonable” g-dimensional random variables

with respect to Earth Mover Distance:

Minimum amount of work necessary to
“get one PDF to look like the other”,
where work := mass x distance

Key technical lemma:

Closeness in EMD —— roughly equal
weight on any union of orthants




Valiant-Valiant Multidimensional CLT

Let S = X1 +--- + X, where the X;’s are independent [R%-valued random variables
satisfying || X; — E[X;]|[2 < 7 with probability 1 for all j € [n]. Let G be the g¢-
dimensional Gaussian with the same mean and covariance matrix as S. Then

demp (S, G) < O(rgqlogn).

-0 -10



Key technical lemma

Roughly equal weight on any
union of orthants
A

Closeness in EMD

devmp(S,G) small = | Pr|S € O] — Pr|G € O]| small



devmp (S, G) small = | Pr[S € O] — Pr|G € O]| small

Let’s consider the

i

for all unions of orthants O
contrapositive:

If we want to make S look like G,

Pr[S c (9] — 0.3 /7 > 0.1 unit of mass must be moved
Pr[G € O] = 0.2 outof O &

Recall:
work = mass x distance

Slight technical obstacle:
What if this 0.1 unit of mass only moves a tiny distance?

Solution:
Then G has > 0.1 weight on red boundary.

Not possible thanks to anti-concentration of G <%

==



In slightly more detail

Pr[S € O] — Pr[G € O] = A, has to be moved out of O

4 Forall r>0,
define B, := radius r boundary around O
-
Afar
<
A= Alflear -+ Afar
Anear
Bl’
— =
/ \ Anear S Pr[(] S Bfr]
r-Afer < dpvp(S,0)
O Therefore:
d S
Pr[S € O] — Pr[G € O] < enp(5,9) Pr[G € B,]

r



We just proved

Let S = X1 + --- + X,,, where the X;’s are independent R?-valued random variables.
Let G be the g-dimensional Gaussian with the same mean and covariance matrix as S.
Then for all unions of orthants O C R and for all » > 0,

d S
| Pr[S € O] — Pr[G € 0]] < EMDT( 9) L pig e B,
Valian;VaIiant Gal]rssian

CLT anti-concentration



Recap

Indistinguishability. For all T = deterministic tester that makes g = o(n*/>) queries,

= 0, (1)

Pr [T accepts fyes} ~ Pr [T accepts fno}

fyesNDyes no™’ & no

|

Theorem

Any non-adaptive tester must make Q(n'/%) queries.
Therefore, any adaptive tester must make 2(logn) queries.




ity of Boolean functions

over general hypergrid domains

IC

Testing monoton




Boolean functions over hypergrids

F:{1,2,...,m}" — {0,1}

Testing monotonicity of Boolean functions over hypergrids

All hypergrid functions
—Al Begleanfunethons

Qnomne Far from monotone




Theorem [Chen-Servedio-T 2014]

Any non-adaptive tester for testing monotonicity
of f:[m]® — {0, 1} must make Q(n'/%) queries.

Proof by reduction to m=2 case (Boolean hypercube)




A useful characterization

Theorem. [Dodis et al. 1999]
F:{1,2,....,m}" — {0, 1} is e-far from monotone

!

There exists €-m" vertex-disjoint pairs (z:,yi) € [m]
such tha€ z; < y; and f(x;) > f(y;).

n

“violating pair”

(Upward direction is easy)




Reducingtom =2
Givenany f: {0,1}" — {0, 1}, define F' : [m]™" — {0, 1} as follows:

Fzi,...,2,) = f(Q[z1 > F],..., 1z, > F))

numbers in [m] bits in {0,1}

Easy: If fis monotone then so is F.

Remains to argue:
If fis e-far from monotone then so is F.
(¢ v J —
Useful Useful

s ¥®  suffices to show:
Exists €2" vertex-disjoint pairs in = Exists £-m" vertex-disjoint pairs in

{0,1}" that are violations w.r.t. f [m]" that are violations w.r.t. F

Each violating pair - (m/2)" vertex-disjoint violating pairs



Each violating pair in {0,1}" — (7;) violating pairs in [m]"
p(0) ={0,1,..., 5} IS()| = 1S(y)] = (m/2)"
90(1) — {% +1,... 7m} Easy end game: exhibit order-preserving

bijection between S(x) and S(y)



Conclusion

= A polynomial lower bound for testing monotonicity of Boolean functions

Theorem

Any non-adaptive tester must make Q(n'/®) queries.
Therefore, any adaptive tester must make 2(logn) queries.

= Main technical ingredient: multidimensional central limit theorems

= Proof extends to testing monotonicity over general hypergrid domains

Open Problem: Polynomial lower bounds against adaptive testers?



Thank youl!



