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1 Overview

1.1 Last time

• Proper learning for P implies property testing of P (generic, but quite ine�cient)

• Testing linearity (over GF[2]), i.e. P = {all parities}: (optimal) O
�
1

✏

�
-query

1-sided non-adaptive tester.

• Testing monotonicity (P = {all monotone functions}: an e�cient O
�
n
✏

�
-query

1-sided non-adaptive tester.

1.2 Today

• Finish testing monotonicity (P = {all monotone functions}): an e�cient O
�
n
✏

�
-

query 1-sided non-adaptive algorithm

• Lower bounds:

– For non-adaptive 1-sided testers, we will show a ⌦(
p
n) lower bound from

[FLN+02].

– Start the proof of ⌦
�
n1/5

�
by Chen–Servedio–Tan for non-adaptive, 2-sided

testers, using Yao’s minmax principle which converts the problem to
the problem of lower bound for deterministic algorithms (under suitable
distribution on inputs).

Relevant Readings:

• E. Fischer and E. Lehman and I. Newman and S. Raskhodnikova and R. Rubinfeld
and A. Samorodnitsky: Monotonicity Testing Over General Poset Domains.
[FLN+02]
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• O. Goldreich and S. Goldwasser and E. Lehman and D. Ron and A. Samordinsky:
Testing Monotonicity. [GGL+00]

2 Testing Monotonicity (contd. from last time)

Recall the set of violating edges V (f) ✓ E can be decomposed as

V (f) = V
1

(f) [ V
2

(f) [ · · · [ Vn(f)

where Vi(f) ✓ V (f) is the set of coordinate-i violating edges., and we defined the

quantity ⌘(f)
def

= |V (f)|
n2n�1 = |V (f)|

n2n�1 = Pr[EdgeTester outputs REJECT ].

Goal: prove ⌘(f) � dist(f,M)

n i.e.

n⌘(f) � dist(f,M). (1)

To do so, for any fixed f we will show how to construct a monotone function g such
that dist(f, g)  n⌘(f).
Finally, recall the definition of the shift operator Si:

Definition 1 (Shift Operator). Fix i 2 [n]. The shift operator Si acts on functions
h : {0, 1}n ! {0, 1}, by sorting h(xi 0), h(xi 1): Sih is a function from {0, 1}n to
{0, 1} defined by

Sih(x
i 0) = min

�
h(xi 0), h(xi 1)

�

Sih(x
i 1) = max

�
h(xi 0), h(xi 1)

�

In the following, we let Di(f)
def

= 2 |Vi(f)| be the number of vertices x such that
Si(f)(x) 6= f(x).

Definition 2. We say h : {0, 1}n ! {0, 1} is i-monotone if no x has h(xi 0) = 1 but
h(xi 1) = 0, that is if h has no violation in the ith coordinate. For A ✓ [n], we say h
is A-monotone if h is i-monotone for all i 2 A.

Claim 3 (2-part claim). 1. If h is A-monotone and j /2 A, then Sj(h) is (A [ j)-
monotone.
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2. For every i,j 2 [n], we have Di(Sj(h))  Di(h) (shifting does not increase
violations).

Before proving this claim, we show how it directly yields our goal:

Proof of Eq. (1) using Claim 3. Let g
def

= Sn(Sn�1(· · ·S1

(f)) · · · ) = Sn � Sn�1 � · · · �
S
1

(f). By the Part 1 of the claim, g is monotone (as it is [n]-monotone); hence, it is
su�cient to prove it is not too far from f – namely, that n⌘(f) � dist(f, g).

Let fi denote Si � Si�1 � · · · � S1

(f) (so in particular f = f
0

and g = fn). By the
triangle inequality,

dist(f, g)  dist(f
0

, f
1

) + · · ·+ dist(fn�1, fn)

Focusing on a fixed term of the sum, for i 2 [n]

dist(fi�1, fi) = dist(fi�1, Si(fi�1)) =
Di(fi�1)

2n

=
Di(Si�1 � · · · � S1

(f))

2n

 Di(Si�2 � · · · � S1

(f))

2n
(Claim 3, Part 2)

 Di(f0)

2n
=

|Vi(f)|
2n�1

(Repeating the inequality)

which, coming back to the sum, gives

dist(f, g)  |V
1

(f)|+ · · ·+ |Vn(f)|
2n�1

=
|V (f)|
2n�1

= n⌘(f)

as |V (f)| = |[n
i=1

Vi(f)| =
Pn

i=1

|Vi(f)| by disjointness; and finally by definition of ⌘(f).

It remains to prove the claim:

Proof of Claim3. First, observe that (2) ) (1): indeed, assume Part 2 holds, and
suppose h is A-monotone. Fix any j 62 A. Since Sj(h) is j-monotone by application
of the shift operator; we only have to show that Sj(h) is i-monotone as well, for any
i 2 A.

Fix such an i 2 A: the number of i-edges where Sj(h) violates monotonicity is

|Vi(Sj(h))| =
Di(Sj(h))

2


(Part 2)

Di(h)

2
= |Vi(h)| = 0
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as stated.

Turning to Part 2: rather disappointly, this is a “proof by inspection”, as there are
actually only 16 cases to consider: only 2 variables are really involved, i and j.
More precisely, without loss of generality, one can take i = 1 and j = 2; fixing
coordinates x

3

, · · · ,xn 2 {0, 1}n�2, h becomes a bivariate function h : {0, 1}2 ! {0, 1}.
Hence, it is su�cient to argue that for all h : {0, 1}2 ! {0, 1}, D

1

(S
2

(h))  D
1

(h) –
which can be done by enumerating all 16 cases.

Remark 1. This algorithm was analyzed in 2000; it is known that the analysis is tight,
that is that this “edge tester” needs ⌦(n) queries: a hard instance would be any dictator
function x 7! x̄i, anti-monotone.
In 2013, Chakrabarty and Seshadhri ([CS13]) broke the “linearity barrier” for testing
monotonicity by giving a O

�
n7/8/✏3/2

�
-query tester1 which combines the edge tester with

a “path tester” (which picks a random path in the hypercube, then queries two points
randomly on this path). This has (very) recently been improved to an n5/6 dependency,
by Chen–Servedio–Tan (2014).

3 ⌦(
p
n) lower bound for non-adaptive 1-sided testers

Theorem 4. There is an absolute constant ✏
0

> 0 such that any one-sided non-adaptive
✏
0

-tester for M must make at least
p
n
3

queries.

Observation 5. Suppose A is such a tester, and say A reveals a violation of f if it
queries x, y with x � y such that f(x) = 1, f(y) = 0. As it is one-sided, A can only
reject when it is “sure” beyond any doubt; that is, if A does not reveals a violation in
an execution, it must output ACCEPT. Therefore, if A is 1-sided non-adaptive tester
for monotonicity, it must be the case that for every f with dist(f,M) > ✏

0

, A must
reveal a violation of f with probability at least 2

3

.

Definition 6. For i 2 [n], define the truncated anti-dictator fi as

fi : {0, 1}n ! {0, 1}

x 7!

8
><

>:

1 if
Pn

j=1

xj � n
2

+
p
n

0 if
Pn

j=1

xj <
n
2

�
p
n

x̄i o.w.

1

Note that the quantity of interest in the query complexity is n, so this result is an improvement

even though the exponent of ✏ is now 3/2 > 1. More generally, compared to n the parameter ✏ is seen

as a constant, and in property testing 2

2

21/✏

will always be considered better than

log

⇤ n
✏ .
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Fact 7. There exists an absolute constant ✏
0

> 0 such that, for every i 2 [n],
dist(fi,M) > ✏

0

.

Proof. Indeed, there are at least c2n) (for some suitable constant c > 0) many x 2 {0, 1}n
having:

n

2
�

p
n <

nX

i=1

xi <
n

2
+
p
n

(in the “middle slice”). Without loss of generality, we consider the case i = 1: we can pair
up inputs of the form z = (1, z

2

, · · · , zn) for which f
1

(z) = 0 with z0 = (0, z
2

, · · · , zn),
for which f

1

(z0) = 1.
Any monotone function g disagrees with f

1

on at least 1 of these two inputs; so any

monotone function must disagree with f on at least c
2

· 2n points.

Lemma 8. Let A be any non-adaptive q-query algorithm. Then there exists i 2 [n]
such that A reveals a violation on fi with probability at most 2qp

n .

This implies the theorem: any one-sided non-adaptive testerA with query complexity
q <

p
n
3

will reveal a violation on some fi⇤ with probability < 2/3; but it only rejects on
such occasions, yet any successful tester should reject fi⇤ with probability at least 2/3.

Proof of Lemma 8. Fix A to be any q-query non-adaptive algorithm, and let Q be the
set of q queries it makes. We will show Q reveals violations of fi for at most 2(q� 1)

p
n

many i 2 [n]: this in turn implies that

nX

i=1

Pr[A reveals a violation of fi ] =
nX

i=1

E

1 A reveals a

violation of fi

�
= E

"
nX

i=1

1 A reveals a

violation of fi

#

= E[|{ i 2 [n] : A reveals a violation of fi }|]
 2(q � 1)

p
n

so there exists i 2 [n] such that Pr[A reveals a violation of fi ]  2(q�1)p
n .

Q is an arbitrary set of q strings in {0, 1}n; without loss of generality, one can further
assume every string z 2 Q has Hamming weight |z| 2 [n

2

�
p
n, n

2

+
p
n], as querying

any other cannot reveal any violation of fi. Q reveals violations for fi only if Q contains
2 comparable strings u � v such that ui 6= vi.

Accordingly, let GQ be a q-node unirected graph with vertex set V = Q and edge
set E containing only comparable pairs: (u, v) 2 E i↵ u � v or v � u.
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(1) |E| 
�
n
2

�
 q2 (pairs of comparable strings); and each pair reveals a violation of

at most 2
p
n fi’s (by the Hamming weight assumption: u, v 2 Q can di↵er in at

most that many coordinates). Therefore, the total number of i’s such that Q can
reveal a violation of fi is at most 2

p
n
�
n
2

�
 2q2

p
n. Almost what we need, but

with q2 instead of q.

(2) A better bound can be achieved by considering a spanning forest FQ of GQ: FQ

has at most q � 1 edges. Furthermore, if Q has two comparable strings u, v with
ui 6= vi, u and v will be in the same tree and some edge in the path u ; v
has endpoints with di↵erent value on their ith coordinate, and hence presents a
violation of fi. As before, every 2 adjacent vertices in a tree di↵er by at most 2

p
n

coordinates, so the maximum number of i’s such that fi has a violation reveals in
FQ (and thus in GQ) is 2(q � 1)

p
n.

4 ⌦̃
�
n1/5

�
lower bound by Chen–Servedio–Tan for

non-adaptive, 2-sided testers

We will now (start to) prove the following lower bound:

Theorem 9. There exists ✏
0

> 0 such that any 2-sided non-adaptive tester for M must
make ⌦̃

�
n1/5

�
queries.

To do so, we start by describing a general approach and one of the key tools for
property testing lower bounds: “Yao’s Minmax Theorem”.

4.1 Yao’s Principle (easy direction)

Consider a decision problem (here, Property Testing) over a (finite) set X of possible
inputs (in our case, X = P [ { f : dist(f,P) > ✏ }, and the inputs are functions), and
a randomized non-adaptive decision algorithm A that makes q queries to its input f .
Such an algorithm is equivalent to a probability distribution µ = µA over deterministic
q-query decision algorithms. Letting Y be the set of all such determistic algorithms, we
consider the X ⇥ Y matrix M with Boolean entries, and

• rows indexed by functions f 2 X;
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• columns indexed by algorithms y 2 Y (or, equivalently, by sets Q of queries,
possibly with repetitions)

such that M(f, y) =

(
1 if y is right on input f

0 o.w.
.

Our randomized algorithm A is thus equivalent to a distribution µ over columns
(i.e., over Y ), non-negative function with

P
y2Y µ(y) = 1. Similarly, a distribution �

over inputs (f 2 X) satisfies
P

f2X �(f) = 1.
For A to be a successful q-query property testing algorithm, it must be such that

for every row f 2 X:

Pr[A outputs right answer on f ] � 2/3

that is Pry⇠µ [M(f, y) = 1 ] � 2/3.

Suppose there is a distribution � over X such that every y 2 Y has:

Pr
f⇠�

[M(f, y) = 1 ] < 2/3.

Then, for any distribution µ over Y :

Pr
f⇠�
y⇠µ

[M(f, y) = 1 ] < 2/3

so it cannot be the case that for every f 2 X, Pry⇠µ [M(f, y) = 1 ] � 2/3.
and in particular A (which is fully characterized by µ) is not a legit tester – since there
exists some f with Pr[A right on f ] < 2/3.

This is what Yao’s Principle states (at least, what its “easy direction” does): one
can reduce the problem of dealing with randomized (non-adaptive) algorithms over
arbitrary inputs to the one of deterministic algorithms over a (“suitably di�cult”)
distribution over inputs:

Theorem 10 (Yao’s Minmax Principle, easy direction). Suppose there is a distribution
� over functions (legitimate inputs: f 2 P [ { h : dist(h,P) > ✏ }) such that any
q-query deterministic algorithm is correct with probability < 2/3 when f ⇠ �.
Then, given any (non-adaptive) q-query randomized algorithm A, there exists fA 2 X,
such that

Pr[A is correct on fA ] < 2/3

Hence, any non-adaptive property testing algorithm for P must make at least q + 1
queries.
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Goal: find hard distribution over functions, for deterministic algorithms.

More precisely, to get a grip on what being a hard distribution is, recall the notion
of distance between probability distributions we introduced at the beginning of the
course:

Definition 11. Suppose D
1

, D
2

are both probability distributions over a finite set ⌦;
their total variation distance is defined2 as

d
TV

(D
1

, D
2

)
def

= max
S✓⌦

(D
1

(S)�D
2

(S)) =
1

2

X

!2⌦

|D
1

(!)�D
2

(!)| 2 [0, 1]

This will come in handy to prove our lower bounds, as (very hazily) two sequences
of queries/answers whose distribution are very close are impossible to distinguish with
high probability:

Exercise 12 (Homework problem). Let D
1

, D
2

be probability distributions over a
finite set ⌦, and fix A to be any algorithm (deterministic or randomized) which, on
input an element ! 2 ⌦, either outputs ACCEPT or REJECT. Prove that

���� Pr
!⇠D1

[A outputs ACCEPT ]� Pr
!⇠D1

[A outputs ACCEPT ]

����  d
TV

(D
1

, D
2

)
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The second equality is known as Sche↵é’s lemma.
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1 Overview
1.1 Last Time

• Finished analysis of O
1

n
‘

2
-query algorithm for monotonicity.

• Showed an �(
Ô

n) lower bound for one-sided non-adaptive monotonicity testers.

• Stated and proved (one direction of) Yao’s Principle: Suppose there exists a
distribution D over functions f : {≠1, 1}n æ {≠1, 1} (the inputs to the prop-
erty testing problem) such that any q-query deterministic algorithm gives the
right answer with probability at most c. Then, given any q-query non-adaptive
randomized testing algorithm A, there exists some function fA such that:

Pr[ A outputs correct answer onfA ] Æ c.

1.2 Today: lower bound for two-sided non-adaptive mono-
tonicity testers.

We will use Yao’s Principle to show the following lower bound:
Theorem 1 (Chen–Servedio–Tan ’14). Any 2-sided non-adaptive property tester for
monotonicity, to ‘

0

-test, needs �̃
1
n1/5

2
queries (where ‘

0

> 0 is an absolute constant).

2 �̃
3
n1/5

4
lower bound: proving Theorem 1

2.1 Preliminaries
Recall the definition of total variation distance between two distributions over the same
set �:

d
TV

(D
1

, D
2

) = 1
2

ÿ

x

|D
1

(x) ≠ D
2

(x)| .

1
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As homework problem from last time, we have the lemma1 below, which relates the
probability of distinguishing between samples from two distributions to their total
variation distance:

Lemma 2 (HW problem). Let D
1

, D
2

be two distributions over some set �, and A be
any algorithm (possibly randomized) that takes x œ � as input and outputs Yes or No.
Then HW Problem

---- Pr
x≥D1

[ A(x) = Yes ] ≠ Pr
x≥D2

[ A(x) = Yes ]
---- Æ d

TV

(D
1

, D
2

)

where the probabilities are also taken over the possible randomness of A.

To apply this lemma, recall that given a deterministic algorithm’s set of queries
Q = {z(1), . . . , z(q)} ™ {≠1, 1}n, a distribution D over Boolean functions induces a
distribution D

---
Q

over {≠1, 1}q: x is drawn from D
---
Q

by

• drawing f ≥ D;
• outputting (f(z(1), . . . , f(z(q))) œ {≠1, 1}q.

With this observation and Yao’s principle in hand, we can state and prove a key tool in
proving lower bounds in property testing:

Lemma 3 (Key Tool). Fix any property P (a set of Boolean functions). Let D
Yes

be a
distribution over the Boolean functions that belong to P, and D

No

be a distribution over
Boolean functions that all have dist(f, P) > ‘.
Suppose that for all q-query sets Q, one has d

TV

3
D

Yes

---
Q

, D
No

---
Q

4
Æ 1

4

. Then any
(2-sided) non-adaptive ‘-tester for P must use at least q + 1 queries.

Proof. Let D be the mixture D def= 1

2

D
Yes

+ 1

2

D
No

(that is, a draw from D is obtained
by tossing a fair coin, and returning accordingly a sample drawn either from D

Yes

or
D

No

). Fix a q-query deterministic algorithm A. Let

pY
def= Pr

f≥D
Yes

[ A accepts on f ] , pN
def= Pr

f≥D
No

[ A accepts on f ]

That is, pY is the probability that a random “Yes” function is accepted, while pN is
the probability that a random “No” function is accepted. Via the assumption and the

1
This is sometimes referred to as a “data processing inequality” for the total variation distance.
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previous lemma, |pY ≠ pN | Æ 1

4

. However, this means that A cannot be a succesful
tester; as

Pr
f≥D

[ A gives wrong answer ] = 1
2(1 ≠ pY ) + 1

2pN = 1
2 + 1

2(pN ≠ pY ) Ø 3
8 >

1
3

So Yao’s Principle tells us that any randomized non-adaptive q-query algorithm is
wrong on some f in support of D with probability at least 3

8

; but a legit tester can only
be wrong on any such f with probability less than 1

3

.

Exercise 4 (Generalization of Lemma 3). Relax the previous lemma slightly. Prove
that the conclusion still holds even under the weaker assumptions HW Problem

Pr
f≥D

Yes

[ f œ P ] Ø 99
100 , Pr

f≥D
No

[ d
TV

(f, P) > ‘ ] Ø 99
100 .

For our lower bound, we need to come up with D
Yes

(resp. D
No

) to be over
monotone functions (resp. ‘

0

-far from monotone) such that ’Q ™ {≠1, 1}n with
|Q| = q, d

TV

3
D

Yes

---
Q

, D
No

---
Q

4
Æ 1

4

.
At a high-level, we need to argue that both distributions “look the same”. One may thus
think of the Central Limit Theorem – the sum of many independent, “nice” real-valued
random variables converges to a Gaussian in distribution (in cumulative distribution
function). For instance, a binomial distribution Bin

1
106, 1

2

2
has the same shape (“bell

curve”) as the corresponding Gaussian distribution N
1

1

2

, 1

4

106

2
. For our purpose,

however, the convergence guarantees stated by the Central Limit Theorem will not be
enough, as they do not give explicit bounds on the rate of convergence; we will use a
“quantitative version” of the CLT, the Berry–Esséen Theorem.
First, recall the definition a (real-valued) Gaussian random variable:

Definition 5 (One-dimensional Gaussian distribution). A real-valued random variable
is said to be Gaussian with mean µ and variance ‡ if it follows the distribution N (µ, ‡),
which has probability density function

fµ,‡(x) def= 1Ô
2fi‡

e≠ (x≠µ)2

2‡

2 , x œ R

Such a random variable has indeed expectation µ and variance ‡2; futhermore, the
distribution is fully specified by these two parameters. Extending to higher dimensions,
one can define similarly a d-dimensional Gaussian random variable:
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(a) Cumulative distribution function (CDF)
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(b) Probability density function (PDF)

Figure 1: Standard Gaussian N (0, 1).

Definition 6 (d-dimensional Gaussian distribution). Fix a vector µ œ Rd and a
symmetric non-negative definite matrix � œ Rd◊d. A random variable taking values in
Rd is said to be Gaussian with mean µ and covariance � if it follows the distribution
N (µ, �), which has probability density function

fµ,�(x) def= 1
Ò

(2fi)k det �
e≠ 1

2 (x≠µ)

T
�

≠1
(x≠µ), x œ Rd

As in the univariate case, µ and � uniquely define the distribution; further, one has
that for X ≥ N (µ, �),

�i,j = Cov(Xi, Xj) = E[(Xi ≠ EXi)(Xj ≠ EXj)] , i, j œ [d].

Theorem 7 (Berry–Esséen2). Let S
def= X

1

+ . . . + Xn be the sum of n independent
(real-valued) random variables X

1

, . . . , Xn satisfying

Pr[ |Xi ≠ E[Xi]| Æ · ] = 1.

that is every Xi is almost surely bounded. For i œ [n], define µi
def= E[Xi] and ‡i

def=Ô
Var Xi, so that ES = qn

i=1

µi and Var S = qn
i=1

‡2

i (the last equality by independence).
Finally, let G be a N

3qn
i=1

µi,
Òqn

i=1

‡2

i

4
Gaussian variable, matching the first two

moments of S. Then, for all ◊ œ R,

|Pr[ S Æ ◊ ] ≠ Pr[ G Æ ◊ ]| Æ O(·)
Òqn

i=1

‡2

i

.
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In other terms3, letting FS (resp. FG) denote the CDF of S (resp. G), one has
ÎFS ≠ FGÎŒ Æ O(·)Ôq

n

i=1 ‡2
i

.

Remark 1. The constant hidden in the O(·) notation is actually very reasonable – one
can take it to be equal to 1.

Application: baby step towards the lower bound. Fix any string z œ {≠1, 1}n,
and for i œ [n] let the (independent) random variables “i be defined as

“i
def=

Y
]

[
+1 w.p. 1

2

≠1 w.p. 1

2

Letting Xi
def= “izi, we have µi = EXi = 0, ‡i = Var Xi = 1; and can take · = 1 to

apply the Berry–Esséen theorem to X
def= X

1

+ . . . + Xn. This allows us to conclude
that

’◊ œ R, |Pr[ X Æ ◊ ] ≠ Pr[ G Æ ◊ ]| Æ O(1)Ô
n

for G ≥ N (0,
Ô

n).
Now, consider a slightly di�erent distribution than the ⁄i’s: for the same z œ

{≠1, 1}n, define the independent random variables ‹i by

‹i
def=

Y
]

[

1

3

w.p. 9

10

≠3 w.p. 1

10

and let Yi
def= ‹izi for i œ [n], Y

def= Y
1

+ · · · + Yn. By our choice of parameters,

EYi =
3 1

10 · (≠3) + 9
10 · 1

3

4
zi = 0 = EXi

Var Yi = E
Ë
Y 2

i

È
= 1

10 · 9 + 9
10 · 1

9 = 1 = Var Xi

So E[Y ] = E[Y ] = 0 and Var Y = Var X = n; by the Berry–Esséen theorem (with · set
to 3, and G as before)

’◊ œ R, |Pr[ Y Æ ◊ ] ≠ Pr[ G Æ ◊ ]| Æ O(1)Ô
n

3
This quantity ÎFS ≠ FGÎŒ is also referred to as the Kolmogorov distance between S and G.

3
There exist other versions of this theorem, with weaker assumptions or phrased in terms of the

third moments of the Xi’s; we only state here one tailored to our needs.
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and by the triangle inequality

’◊ œ R, |Pr[ X Æ ◊ ] ≠ Pr[ Y Æ ◊ ]| Æ O(1)Ô
n

(1)

We can now define D
Yes

and D
No

based on this (that is, based on respectively a random
draw of ⁄, ‹ œ Rn distributed as above): a function f⁄ ≥ D

Yes

is given by

’z œ {≠1, 1}n, f⁄(z) def= sign(⁄
1

z
1

+ . . . ⁄nzn).

and similarly for f‹ ≥ D
No

:

’z œ {≠1, 1}n, f‹(z) def= sign(‹
1

z
1

+ . . . ‹nzn)

With the notations above, X Æ 0 if and only if f“(z) = ≠1 and Y Æ 0 if and only if
f‹(z) = ≠1. This implies that for any fixed single query z,

d
TV

3
D

Yes

---
{z}

, D
No

---
{z}

4
= 1

2 (|Pr[ X Æ 0 ] ≠ Pr[ Y Æ 0 ]| + |Pr[ X > 0 ] ≠ Pr[ Y > 0 ]|) Æ O(1)Ô
n

.

This almost looks like what we were aiming at – so why aren’t we done? There are
two problems with what we did above:

1. This only deals the case q = 1; that is, would provide a lower bound against
one-query algorithms.
Fix: we will use a multidimensional version of the Berry–Esséen Theorem for
the sums of q-dimensional independent random variables (converging to a multi-
dimensional Gaussian).

2. f“, f‹ are not monotone (indeed, both the “i’s and ‹i’s can be negative).
Fix: shift everything by 2:

- “i œ {1, 3}: f“ is monotone;
- ‹i œ {≠1, 7

3

}: f‹ will be far from monotone with high probability (will show
this).

2.2 The lower bound construction
Up until this point, everything has been a warmup; we are now ready to go into more
detail.
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D
Yes

and D
No

. As we mentioned in the previous section, we need to (re)define the
distributions D

Yes

and D
No

(that is, of “ and ‹) to solve the second issue:

D
Yes

Draw f ≥ D
Yes

by independently drawing, for i œ [n],

“i
def=

Y
]

[
+3 w.p. 1

2

+1 w.p. 1

2

and setting f : x œ {≠1, 1}n ‘æ sign(qn
i=1

“ixi). Any such f is monotone, as the
weights are all positive.

D
No

Similarly, draw f ≥ D
No

by independently drawing, for i œ [n],

‹i
def=

Y
]

[
+7

3

w.p. 9

10

≠1 w.p. 1

10

and setting f : x œ {≠1, 1}n ‘æ sign(qn
i=1

‹ixi). f is not always far from monotone
– actually, one of the functions in the support of D

No

(the one with all weights
set to 7/3) is even monotone. However, we shall argue that f ≥ D

No

is far from
monotone with overwhelming probability, and then apply the relaxation of the
key tool (HW Problem 4) to conclude.

The theorem will stem from the following two lemmas, that states respectively that
(†) No-functions are almost all far from monotone, and (‡) that the two distributions
are hard to distinguish:

Lemma 8 (Lemma †). There exists a universal constant ‘
0

> 0 such that

Pr
f≥D

No

[ dist(f, M) > ‘
0

] Ø 1 ≠ 1
2�(n)

.

(note that this 1 ≠ o(1) probability is actually stronger than what the relaxation from
Problem 4 requires.)

Lemma 9 (Lemma ‡). Let A be any deterministic q-query algorithm. Then
---- Pr
f

Yes

≥D
Yes

[ A accepts ] ≠ Pr
f

No

≥D
No

[ A accepts ]
---- Æ O

A
q5/4(log n)1/2

n1/4

B

so that if q = Õ
1
n1/5

2
the RHS is at most 0.01, which implies with the earlier lemmas

and discussion that at least q + 1 queries are needed for any 2-sided, non-adaptive
randomized tester.
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Proof of Lemma 8. By an additive Cherno� bound, with probability at least 1 ≠ 1

2

�(n)

the random variables ‹i satisfy

m
def= |{ i œ [n] : ‹i = ≠1 }| œ [0.09n, 0.11n]. (ı)

Say that any linear threshold function for which (ı) holds is nice. Fix any nice f in the
support of D

No

, and rename the variables so that the negative weights correspond to
the first variables:

f(x) = sign
3

≠(x
1

+ · · · + xm) + 7
3(xm+1

+ · · · + xn)
4

, x œ {≠1, 1}n

It is not di�cult to show that for this f (remembering that m = �(n)), these first
variables have high influence – roughly of the same order as for the MAJ function:
Claim 10 (HW Problem). For i œ [m], Inf i[f ] = �

1
1Ô
n

2
. HW Problem

Observe further that f is unate (i.e., monotone increasing in some coordinates, and
monotone decreasing in the others). Indeed, any LTF g : x ‘æ sign(w · x) is unate:

- non-decreasing in coordinate xi if and only if wi Ø 0;
- non-increasing in coordinate xi if and only if wi Æ 0.

We saw in previous lectures that, for g monotone, ĝ(i) = Inf i[g]; it turns out the same
proof generalizes to unate g, yielding

ĝ(i) = ±Inf i[g]

where the sign depends on whether g is non-decreasing or non-increasing in xi. Back to
our function f , this means that

Inf i[f ] =
Y
]

[
+f̂(i) if ‹i = 7

3

≠f̂(i) if ‹i = ≠1

and thus for all i œ [m] f̂(i) = ≠�
1

1Ô
n

2
.

Fix any monotone Boolean function g: we will show that dist(f, g) Ø ‘
0

, for some
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choice of ‘
0

> 0 independent of f and g.

4 · dist(f, g) = Ex≥U{≠1,1}n

Ë
(f(x) ≠ g(x))2

È
=

(Parseval)

ÿ

S™[n]

(f̂(S) ≠ ĝ(S))2

Ø
nÿ

i=1

(f̂(i) ≠ ĝ(i))2 Ø
mÿ

i=1

(f̂(i) ≠ ĝ(i))2 =
(g mon.)

mÿ

i=1

(≠Inf i[f ] ≠ Inf i[g])2

=
mÿ

i=1

(Inf i[f ] + Inf i[g])2 Ø
mÿ

i=1

(Inf i[f ])2

=
mÿ

i=1

A

�
A

1Ô
n

BB
2

= �
3

m

n

4

= �(1).

Proof (sketch) of Lemma 9. Fix any deterministic, non-adaptive q-query algorithm A;
and view its q queries z(1), . . . , z(q) œ {≠1, 1}n as a q ◊ n matrix Q œ {≠1, 1}q◊n, where
z(i) corresponds to the ith row of Q.

q

Y
_____]

_____[

Q

ccccca

n˙ ˝¸ ˚
z

(1)

1

z
(1)

2

z
(1)

3

· · · · · · · · · z(1)

n

z
(2)

1

z
(2)

2

z
(2)

3

· · · · · · · · · z(2)

n
... ... ... . . . ...

z
(q)

1

z
(q)

2

z
(q)

3

· · · · · · · · · z(q)

n

R

dddddb

Define the “Yes-response vector” RY , random variable over {≠1, 1}q, by the process
of

(i) drawing f
Yes

≥ D
Yes

, where f
Yes

(x) = sign(“
1

x
1

+ · · · + “nxn);
(ii) setting the ith coordinate of RY to f

Yes

(Qi,·) (f
Yes

on the ith row of Q, i.e. z(i)).
Similarly, define the “No-response vector” RN over {≠1, 1}q. Via Lemma 2 (the
homework problem on total variation distance),

(LHS of Lemma 9) Æ d
TV

(RY , RN).

(abusing the notation of total variation distance, by identifying the random variables
with their distribution.) Hence, our new goal is to show that:

d
TV

(RY , RN) Æ
?

(RHS of Lemma 9).
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Multidimensional Berry–Esséen setup. For fixed Q as above, define two random
variables S, T œ Rq as

• S = Q“, with “ ≥ U{1,3}n ;
• T = Q‹, with

‹i =
Y
]

[
+7

3

w.p. 9

10

≠1 w.p. 1

10

for each i œ [n] (independently).

We will also need the following geometric notion:
Definition 11. An orthant in Rq is the analogue in q-dimensional Euclidean space of
a quadrant in the plane R2; that is, it is a set of the form

O = O
1

◊ O
2

◊ · · · ◊ Oq

where each Oi is either R
+

or R≠. There are 2q di�erent orthants in Rq.
The random variable RY is fully determined by the orthant S lies in: the ith

coordinate of RY is the sign of the ith coordinate of S, as Si = (Q“)i = Qi,· ·“. Likewise,
RN is determined by the orthant T lies in. Abusing slightly the notation, we will write
RY = sign(S) for ’i œ [q], RY,i = sign(Si) (and similarly, RT = sign(T )).
Now, it is enough to show that for any union O of orthants,

|Pr[ S œ O ] ≠ Pr[ T œ O ]| Æ O

A
q5/4(log n)1/2

n1/4

B

. (ù)

as this is equivalent to proving that, for any subset U ™ {≠1, 1}q, |Pr[ RS œ U ] ≠ Pr[ RT œ U ]| Æ
O

1
q5/4

(log n)

1/2

n1/4

2
(and the LHS is by definition equal to d

TV

(RY , RN)).
Note that for q = 1 we get back to the “regular” Berry–Esséen Theorem; for q > 1,

we will need a “multidimensional Berry–Esséen”. The key will be to have random
variables with matching means and covariances (instead of means and variances for the
one-dimensional case).

(Rest of the proof during next lecture.)



COMS 6998-3: Sub-Linear Algorithms in Learn-
ing and Testing

Spring 2014

Lecture 10: 03/04/2014
Lecturer: Rocco Servedio Scribes: Ting-Chu Lin

1 Administrative

• Sign up for project presentation slot (Doodle)

• Final projects (due May 7)

• New homework problem (due April 30)

2 Overview

2.1 Last Time

Started ⌦̃
�
n1/5

�
lower bound non-adaptive monotonicity testers (introducing Yao’s

principle; Berry–Esséen Theorem, D
Yes

, D
No

; multidimensional Berry–Esséen Theorem).

2.2 Today

Finish this lower bound (using a multidimensional analogue of the Berry–Esséen
Theorem); start testing juntas.

3 Monotonicity testing lower bound: wrapping up

Recall the definitions of D
Yes

and D
No

: f ⇠ D
Yes

is a linear threshold function (LTF)
drawn by choosing independently

�
i

def

=

(
+3 w.p. 1

2

+1 w.p. 1

2

1
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and setting f : x 2 {�1, 1}n 7! sign(� · x); similarly, for f ⇠ D
No

,

⌫
i

def

=

(
+7

3

w.p. 9

10

�1 w.p. 1

10

and f : x 2 {�1, 1}n 7! sign(⌫ · x). The set of queries Q of any q-query non-adaptive
tester will be seen as a q ⇥ n Boolean matrix

Q = q

8
>>>><

>>>>:

0

BBBB@

nz }| {

±1

1

CCCCA

where the ith row q(i) is the ith query string. We also defined the random variables
R

Y

, R
N

2 {�1, 1}q by
(R

Y

)
i

= f(q(i)) for f ⇠ D
Yes

(R
N

)
i

= f(q(i)) for f ⇠ D
No

so that by setting S
def

= Q� 2 Rq and T
def

= Q⌫ 2 Rq, we get R
Y

= sign(S) and
R

N

= sign(T ).

Need to show: For S, T as above, for O any union of orthants in Rq, one has

|Pr[S 2 O ]� Pr[T 2 O ]|  O

✓
q5/4(log n)1/2

n1/4

◆
(†)

as this would imply an ⌦
⇣

n

1/5

log

4/5
n

⌘
lower bound on q for the RHS to be less than 0.01.

Theorem 1 (Original (unidimensional) Berry–Esséen Theorem). Let X
1

, X
2

, . . . , X
n

be n independent real-valued random variables such that |X
i

� E[X
i

]|  ⌧ almost
surely (with probability 1); and let G be Gaussian with mean and variance matching

S
def

=
P

n

i=1

X
i

. Then

8✓ 2 R, |Pr[S  ✓ ]� Pr[G  ✓ ]|  O(⌧)p
VarS

.
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Theorem 2 (Multidimensional Berry–Esséen Theorem1). Let S
def

= X(1) + · · ·+X(n),

where the X(i)’s are independent random variables in Rq with kX(i)

j

� E
h
X

(i)

j

i
k
1

 ⌧

a.s.; and let G be a q-dimensional Gaussian with mean and covariance matrix matching
those of S. Then, for any O union of orthants and any r > 0,

|Pr[S 2 O ]� Pr[G 2 O ]|  O

0

@⌧q3/2 log n

r
+

qX

i=1

r + ⌧qP
n

j=1

VarX(j)

i

1

A (‡)

Proof of (†) using (‡). Note that in (†), S = Q� is the sum of the �
i

·(ith column of Q)’s,
which are independent q-dimensional vector-valued random variables (likewise for
T = Q⌫). �

i

· (ith column of Q) is a q-dim independent vector-valued random variables.
So

S ⇠= G
S

, T ⇠= G
T

by our multidimensional Berry–Esséen theorem. But as the means and covariance
matrices of these two Gaussians match (because – as we will prove momentarily –
ES = ET and Cov S = Cov T ), we get G

S

⌘ G
T

and by the triangle inequality

8O, 8r > 0, |Pr[S 2 O ]� Pr[G 2 O ]|  2 · (RHS of (‡)) .
Hence, it only remains to check the expectations and covariance matrices of S and T
do match: we have

S = Q� = X(1) + · · ·+X(n), where X(j)

def

= �
j

·Q⇤,j

T = Q⌫ = Y (1) + · · ·+ Y (n), where Y (j)

def

= ⌫
j

·Q⇤,j

(Q⇤,j 2 Rq denoting the jth column of Q); and it is not hard to see that the expectations
are equal termwise, i.e. EX(j) = EY (j) for all j 2 [n]:

EX(j) =
1

2
· 1 ·Q⇤,j +

1

2
· 3 ·Q⇤,j = 2Q⇤,j

EY (j) =
1

10
· (�1) ·Q⇤,j +

9

10
· 7
3
·Q⇤,j = 2Q⇤,j

so ES = ET . As for the covariance matrices, as for any random variable Z 2 Rq by
definition

(CovZ)
k,`

= E[(Z
k

� EZ
k

) (Z
`

� EZ
`

)] = E[Z
k

Z
`

]� E[Z
k

] · E[Z
`

]

1From [Chen–Servedio–Tan’14], building upon a Central Limit Theorem for Earthmover distance
of [?]
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for all k, ` 2 [q], one can check that, using the independence of the X(j)’s (resp. Y (j)’s),

8j 2 [n], (CovX(j))
k,`

= (Cov Y (j))
k,`

= Q
k,j

Q
`,j

and hence CovX(j) = Cov Y (j); so that (again by independence) Cov S =
P

n

j=1

CovX(j) =P
n

j=1

Cov Y (j) = Cov T .

This finally results in

8r > 0, |Pr[S 2 O ]� Pr[G 2 O ]|  O

✓
⌧q3/2 log n

r
+ q · r + ⌧p

n

◆

(as VarX(j)

i

= VarY (j)

i

= 1) which holds for any r. Taking r = (qn)1/4
p
log n, the RHS

becomes O
⇣

q

5/4
(logn)

1/2

n

1/4

⌘
.

4 Testing Juntas

We will now describe and analyze an algorithm for testing juntas (recall that a k-junta
is a Boolean function with at most k relevant variables).
Let us write J

k

for the class of all k-juntas over {�1, 1}n (where k can depend on n);
from earlier lectures, we know that one can learn J

k

with 2k log n (membership) queries.
As we shall see, however, testing is significantly more query-e�cient:

Theorem 3. There is an O
�
k log k + k

✏

�
-query (one-sided) algorithm for testing J

k

.

Remark 1. Next time, we will prove an ⌦(k) lower bound for this problem, which
shows this theorem is roughly optimal.

4.1 Setup

Let S ✓ [n] be a set of variables, and S̄ = [n] \ S. For x, y 2 {�1, 1}n, we write y
S

x
¯

S

for the string in {�1, 1}n which has for ith coordinate

(y
S

x
¯

S

)
i

def

=

(
x
i

if i /2 S

y
i

if i 2 S
.

Definition 4. Given f : {�1, 1}n ! {�1, 1} and S ✓ [n], then Inf
f

(S) is defined as

Inf
f

(S) = 2 Pr
x,y⇠U{�1,1}n

[ f(y
S

x
¯

S

) 6= f(x) ] .


