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(a 3-junta)

k-junta: f only depends on k bits
(k = 1: fis a dictator)

Key question: how to tell if f is a k-junta?
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Goal: distinguish whether (unknown) f is
e (Yes): a k-junta
e (No): e-far from all k-juntas

Resources: Minimize query count q
In terms of k and € (no dependence on n!)
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Junta testing motivation

e Boolean function version of finding a low
rank model for high dimensional data

e For k =1, equivalent to dictatorship
testing, a basic topic in hardness of
approximation

e One of the most basic Boolean function
properties.
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Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?
Our work: yes it does. new nonadaptive LB

/ O(k log(k) + k/g) [Bla09]

e —
[Bla08] Q2(k/(g log(k/¢))

[BGSMdW13] 2(k log(k))
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Main result
Any nonadaptive algorithm requires
k log(k)
e® log(log(k)/e®)
queries (forany 0 <c < 1).
Set € = 1/log(k).
Adaptive UB = O(k log(k) + k/e) = O(k log(k))
Our nonadapt LB = k log(k)'**/log(log(k))

q=
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e [Bla08]'s Q(k/(e log(k/e)) nonadaptive lower
bound based on [CG04]’s lower bound

e \We give a new analysis of [Bla08]'s LB.
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n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
Y°* o Set fyeS:{O,1}k+1—> {0,1} uar subject to
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D : e Setf :{0,1}*'— {0,1} uar.

[CG04 THM]: Need 2(k) queries to distinguish
these distributions
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Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i: @ Pick x uar.

e Query fon x and x®i.
If f(x) # f(x®i), output relevant.
Repeat 10 log(k) times.
Output irrelevant.
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f(x) # f(x®i) w/prob 1/2

.. Will conclude relevant after O(1) i-twins

If i is irrelevant. f(x) = f(x®i) always
.. will query O(log(k)) i-twins

Query cost: (k+1) * O(1) + O(log(k)) = O(k)
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[CG04]’s £2(k) lower bound

Key idea: e Suppose you query f on SR
e \Want to test: is coord i relevant?
e Then SR must have an

I-twin

LB: g points can have i-twins for < q-1 coords.
e q = (k).
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Algorithm was adaptive:

e for relevant coords i, query O(1) i-twins
e forirrelevant coords i, query O(log(k))

Can’t plan this in advance: X Xg need
O(log(k)) i-twins in all k+1 directions.

.. g = Q(k log(k)) nonadaptive LB?
(not quite)
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coordinate i. (a k-junta)

D, Sk*b (0,1} random ¢-
b| =7

' (usually e-far from a k-junta)
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e Only about total # of i-twins.
e Could be few directions have lots of i-twins.
e \Want edge-iso ineq. about most directions.
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Our main tool: New edge-iso inequality

Suppose XX have m i-twins in d directions.
Then q 2 md / log(m).

e m = |og(k) and d = k gives
g 2 k log(k)/log(log(k))

e (Generalization of [Fra83]
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Other ideas

e Proofs are quite technical
e Answer you get for single query f(x;) is not
too important
e Analyze a specific martingale w/r/t
f(x,), f(x,), ..., f(xq)
e Use McDiarmid’'s inequality (with bad events)



Open problem

Prove a separation between adapative and
nonadaptive when ¢ = const.






