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Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): ɛ-far from all k-juntas

Resources: Minimize query count q
in terms of k and ɛ (no dependence on n!)
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Junta testing motivation

● Boolean function version of finding a low 
rank model for high dimensional data

● For k = 1, equivalent to dictatorship 
testing, a basic topic in hardness of 
approximation

● One of the most basic Boolean function 
properties.
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Main result
Any nonadaptive algorithm requires

k log(k)
ɛc log(log(k)/ɛc)

queries (for any 0 < c < 1).
Set ɛ = 1/log(k).

Adaptive UB = O(k log(k) + k/ɛ) = O(k log(k))
Our nonadapt LB = k log(k)1+c/log(log(k))

q ≥ 
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[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.

Dno: ● Set fno:{0,1}k+1→ {0,1} uar.
[CG04 THM]: Need ᶑ(k) queries to distinguish 
these distributions
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Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.
● Query f on x and x⊕i.
● If f(x) ≠ f(x⊕i), output relevant.
● Repeat 10 log(k) times.
● Output irrelevant.
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If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2

∴ will conclude relevant after O(1) i-twins 

If i is irrelevant: f(x)    f(x⊕i)= always
∴ will query O(log(k)) i-twins 

Query cost: (k+1) * O(1) +  O(log(k)) = O(k)
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O(log(k)) i-twins in all k+1 directions.

∴ q = ᶑ(k log(k)) nonadaptive LB?
(not quite)
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● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} random ɛ-

biased subject to not depending on 
coordinate i.

Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.

(a k-junta)

Dno:
(usually ɛ-far from a k-junta)
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Distributions studied in [Bla08].
His LB: ᶑ(k/(ɛ log(k/ɛ))

Main tool: Edge-isoperimetric inequality:
points x1,...,xq can only have O(q log(q)) i-twins

● Only about total # of i-twins.
● Could be few directions have lots of i-twins.
● Want edge-iso ineq. about most directions.
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Our main tool: New edge-iso inequality

Suppose x1,...,xq have m i-twins in d directions.  
Then q ≥ md / log(m).

● m = log(k) and d = k gives 

● Generalization of [Fra83]

q ≥ k log(k)/log(log(k))
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Other ideas
● Proofs are quite technical
● Answer you get for single query f(xj) is not

too important
● Analyze a specific martingale w/r/t

f(x1), f(x2), …, f(xq)
● Use McDiarmid’s inequality (with bad events)



Open problem
Prove a separation between adapative and 
nonadaptive when ɛ = const.



Thanks!


