Adaptivity helps for testing juntas

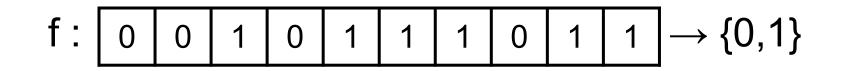
Rocco Servedio, Li-Yang Tan, John Wright Columbia TTIC CMU

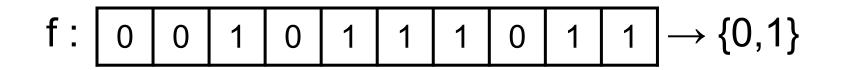
Adaptivity helps for testing juntas

Rocco Servedio, Li-Yang Tan, John Wright Columbia TTIC CMU

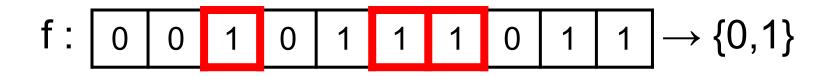
(work done while I was visiting Columbia)

$f:\{0,1\}^n \rightarrow \{0,1\}$

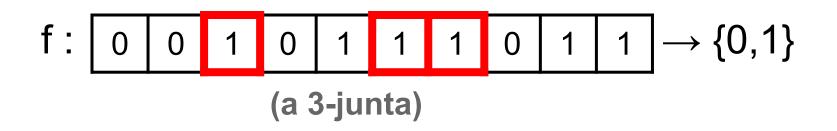




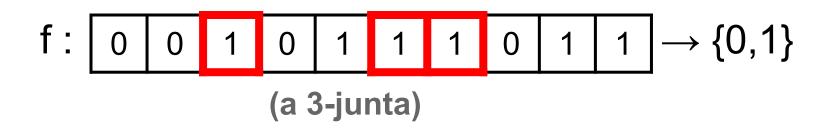
k-junta: f only depends on **k** bits



k-junta: f only depends on **k** bits



k-junta: f only depends on k bits



k-junta: f only depends on k bits (k = 1: f is a dictator)

f: 0 0 1 0 1 1 1 0 1 1
$$\rightarrow \{0,1\}$$

(a 3-junta)

k-junta: f only depends on **k** bits

(**k** = 1: f is a dictator)

Key question: how to tell if f is a k-junta?

Given: ability to make queries $\mathbf{x} \rightarrow f(\mathbf{x})$

Given: ability to make queries $\mathbf{X} \rightarrow f(\mathbf{X})$

Nonadaptive: fix queries in advance

Given: ability to make queries $\mathbf{x} \rightarrow f(\mathbf{x})$

Nonadaptive: fix queries in advance

Given: ability to make queries $\mathbf{X} \rightarrow f(\mathbf{X})$ Nonadaptive: fix queries in advance $\mathbf{X}_1, \mathbf{X}_2, \dots \rightarrow f(\mathbf{X}_1), f(\mathbf{X}_2), \dots$

Given: ability to make queries $\mathbf{x} \rightarrow f(\mathbf{x})$ Nonadaptive: fix queries in advance

$$\mathbf{X}_1, \mathbf{X}_2, \ldots \rightarrow f(\mathbf{X}_1), f(\mathbf{X}_2), \ldots$$

X

Given: ability to make queries $\mathbf{X} \rightarrow f(\mathbf{X})$

Nonadaptive: fix queries in advance

$$\mathbf{X}_1, \mathbf{X}_2, \ldots \rightarrow f(\mathbf{X}_1), f(\mathbf{X}_2), \ldots$$

Given: ability to make queries $\mathbf{X} \rightarrow f(\mathbf{X})$

Nonadaptive: fix queries in advance

$$\mathbf{X}_1, \mathbf{X}_2, \ldots \rightarrow f(\mathbf{X}_1), f(\mathbf{X}_2), \ldots$$

$$\mathbf{X}_1 \rightarrow f(\mathbf{X}_1)$$

Given: ability to make queries $\mathbf{X} \rightarrow f(\mathbf{X})$

Nonadaptive: fix queries in advance

$$\mathbf{X}_1, \mathbf{X}_2, \ldots \rightarrow f(\mathbf{X}_1), f(\mathbf{X}_2), \ldots$$

$$\mathbf{x}_{1} \rightarrow f(\mathbf{x}_{1}), \, \mathbf{x}_{2}$$

Given: ability to make queries $\mathbf{x} \rightarrow f(\mathbf{x})$

Nonadaptive: fix queries in advance

$$\mathbf{X}_1, \mathbf{X}_2, \ldots \rightarrow f(\mathbf{X}_1), f(\mathbf{X}_2), \ldots$$

$$\mathbf{X}_1 \rightarrow f(\mathbf{X}_1), \, \mathbf{X}_2 \rightarrow f(\mathbf{X}_2)$$

Given: ability to make queries $\mathbf{x} \rightarrow f(\mathbf{x})$

Nonadaptive: fix queries in advance

$$\mathbf{X}_1, \mathbf{X}_2, \ldots \rightarrow f(\mathbf{X}_1), f(\mathbf{X}_2), \ldots$$

$$\mathbf{X}_{1} \rightarrow f(\mathbf{X}_{1}), \, \mathbf{X}_{2} \rightarrow f(\mathbf{X}_{2}), \, \mathbf{X}_{3}$$

Given: ability to make queries $\mathbf{x} \rightarrow f(\mathbf{x})$

Nonadaptive: fix queries in advance

$$\mathbf{X}_1, \mathbf{X}_2, \ldots \rightarrow f(\mathbf{X}_1), f(\mathbf{X}_2), \ldots$$

$$\boldsymbol{\textbf{x}_1} \rightarrow f(\boldsymbol{\textbf{x}_1}), \, \boldsymbol{\textbf{x}_2} \rightarrow f(\boldsymbol{\textbf{x}_2}), \, \boldsymbol{\textbf{x}_3} \rightarrow f(\boldsymbol{\textbf{x}_3})$$

Given: ability to make queries $\mathbf{x} \rightarrow f(\mathbf{x})$

Nonadaptive: fix queries in advance

$$\mathbf{X}_{1}, \mathbf{X}_{2}, \ldots \rightarrow f(\mathbf{X}_{1}), f(\mathbf{X}_{2}), \ldots$$

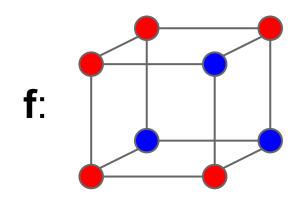
$$\mathbf{X}_1 \rightarrow f(\mathbf{X}_1), \, \mathbf{X}_2 \rightarrow f(\mathbf{X}_2), \, \mathbf{X}_3 \rightarrow f(\mathbf{X}_3), \, \dots$$

- Goal: distinguish whether (unknown) f is
- (Yes): a k-junta

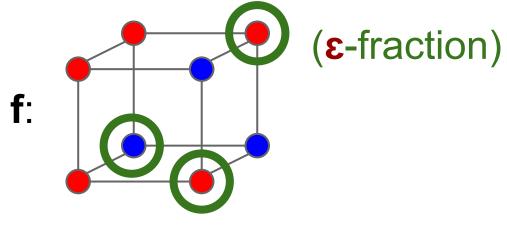
- Goal: distinguish whether (unknown) f is
- (Yes): a **k**-junta
- (No): not ε-close to a k-junta

- (Yes): a **k**-junta
- (No): not ε-close to a k-junta

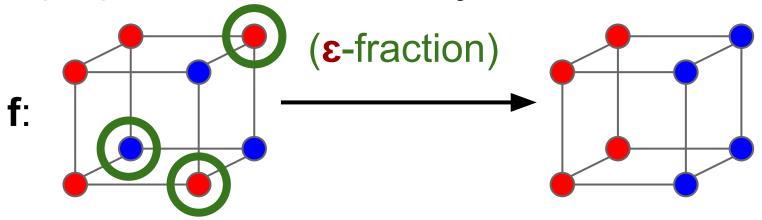
- (Yes): a **k**-junta
- (No): not ε-close to a k-junta



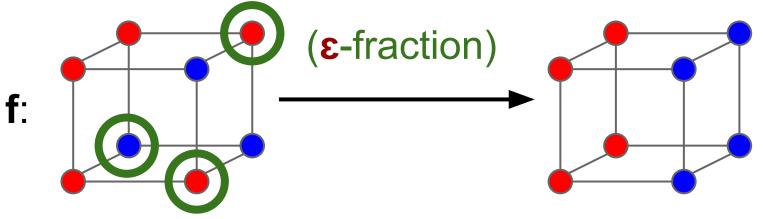
- (Yes): a **k**-junta
- (No): not ε-close to a k-junta



- (Yes): a **k**-junta
- (No): not ε-close to a k-junta



- (Yes): a **k**-junta
- (No): not ε-close to a k-junta



- (Yes): a **k**-junta
- (No): not ε-close to a k-junta

- Goal: distinguish whether (unknown) f is
- (Yes): a **k**-junta
- (No): not ε-close to a k-junta

- Goal: distinguish whether (unknown) f is
- (Yes): a **k**-junta
- (No): ε-far from all k-juntas

- Goal: distinguish whether (unknown) f is
- (Yes): a **k**-junta
- (No): ε-far from all k-juntas

Resources: Minimize query count **q**

- Goal: distinguish whether (unknown) f is
- (Yes): a **k**-junta
- (No): ε-far from all k-juntas

Resources: Minimize query count **q** in terms of **k** and **ε**

- Goal: distinguish whether (unknown) f is
- (Yes): a **k**-junta
- (No): ε-far from all k-juntas

Resources: Minimize query count **q** in terms of **k** and **ε** (no dependence on **n**!)

Junta testing motivation

 Boolean function version of finding a low rank model for high dimensional data

Junta testing motivation

- Boolean function version of finding a low rank model for high dimensional data
- For k = 1, equivalent to dictatorship testing, a basic topic in hardness of approximation

Junta testing motivation

- Boolean function version of finding a low rank model for high dimensional data
- For k = 1, equivalent to dictatorship testing, a basic topic in hardness of approximation
- One of the most basic Boolean function properties.

Prior work

nonadaptive

Prior work

nonadaptive

adaptive

[Bla08] $O(k^{3/2}\log(k)^{3}/\epsilon)$

Prior work

nonadaptive

adaptive

[Bla08] $O(k^{3/2}\log(k)^{3}/\epsilon)$

[Bla08] $\Omega(\mathbf{k}/(\varepsilon \log(\mathbf{k}/\varepsilon))$

[Bla08] $O(k^{3/2}\log(k)^{3}/\epsilon)$

nonadaptive

adaptive

O(k log(k) + k/ε) [Bla09]

[Bla08] $O(k^{3/2}\log(k)^{3}/\epsilon)$

nonadaptive

adaptive

[CG04] Ω(**k**)

[Bla08] $O(k^{3/2}\log(k)^{3}/\epsilon)$

O(k log(k) + k/ε) [Bla09]

nonadaptive

adaptive

[CG04] Ω(k)

O(k log(k) + k/ɛ) [Bla09]

adaptive

[Bla08] $O(k^{3/2}\log(k)^{3}/\epsilon)$

nonadaptive

[Bla08] $\Omega(k/(\epsilon \log(k/\epsilon)))$ [BGSMdW13] $\Omega(k \log(k))$

O(k log(k) + k/ε) [Bla09]

O(k log(k) + k/ε) [Bla09]

Annoyance: adaptive UB ≥ nonadaptive LB

O(k log(k) + k/ε) [Bla09]

Annoyance: adaptive UB ≥ nonadaptive LB [Bla09]: does adaptivity even help?

$\begin{array}{l} \mbox{[Bla08]} \ \varOmega(\mathbf{k}/(\mathbf{\epsilon} \log(\mathbf{k}/\mathbf{\epsilon})) \\ \mbox{[BGSMdW13]} \ \varOmega(\mathbf{k} \log(\mathbf{k})) \end{array}$

O(k log(k) + k/ε) [Bla09]

Annoyance: adaptive UB ≥ nonadaptive LB [Bla09]: does adaptivity even help?

It should: [Bla09]'s $O(k \log(k) + k/\epsilon)$ adaptive algorithm uses binary search.

It should: [Bla09]'s $O(k \log(k) + k/\epsilon)$ adaptive algorithm uses binary search.

Adaptivity also helps for testing **signed majority functions**, **read-once width-two OBDDs**.

It should: [Bla09]'s $O(k \log(k) + k/\epsilon)$ adaptive algorithm uses binary search.

Adaptivity also helps for testing **signed majority functions**, **read-once width-two OBDDs**. Adaptive algos use **binary search**.

It should: [Bla09]'s $O(k \log(k) + k/\epsilon)$ adaptive algorithm uses binary search.

Adaptivity also helps for testing **signed majority functions**, **read-once width-two OBDDs**. Adaptive algos use **binary search**.

$\begin{array}{l} \mbox{[Bla08]} \ \varOmega(\mathbf{k}/(\mathbf{\epsilon} \log(\mathbf{k}/\mathbf{\epsilon})) \\ \mbox{[BGSMdW13]} \ \varOmega(\mathbf{k} \log(\mathbf{k})) \end{array}$

O(k log(k) + k/ε) [Bla09]

Annoyance: adaptive UB ≥ nonadaptive LB [Bla09]: does adaptivity even help?

O(k log(k) + k/ε) [Bla09]

Annoyance: adaptive UB ≥ nonadaptive LB [Bla09]: does adaptivity even help?

Annoyance: adaptive UB ≥ nonadaptive LB [Bla09]: does adaptivity even help? Our work: yes it does

 $O(k \log(k) + k/\epsilon)$ [Bla09]

[Bla08] $\Omega(\mathbf{k}/(\varepsilon \log(\mathbf{k}/\varepsilon)))$ [BGSMdW13] $\Omega(\mathbf{k} \log(\mathbf{k}))$

Our work: yes it does. new nonadaptive LB

O(k log(k) + k/ɛ) [Bla09]

[Bla08] $\Omega(\mathbf{k}/(\varepsilon \log(\mathbf{k}/\varepsilon)))$ [BGSMdW13] $\Omega(\mathbf{k} \log(\mathbf{k}))$

Main result

Any nonadaptive algorithm requires $q \ge \frac{k \log(k)}{\epsilon^c \log(\log(k)/\epsilon^c)}$

queries

Main result

Any nonadaptive algorithm requires $q \ge \frac{k \log(k)}{\epsilon^c \log(\log(k)/\epsilon^c)}$

queries (for any 0 < c < 1).

Main result

Any nonadaptive algorithm requires

 $q \ge \frac{k \log(k)}{\epsilon^{c} \log(\log(k)/\epsilon^{c})}$ queries (for any 0 < c < 1).

Set $\varepsilon = 1/\log(k)$.

Main result Any **nonadaptive** algorithm requires $q \geq \frac{k \log(k)}{\epsilon^{c} \log(\log(k)/\epsilon^{c})}$ queries (for any 0 < c < 1). Set $\varepsilon = 1/\log(k)$. Adaptive UB = $O(k \log(k) + k/\epsilon)$

Main result Any **nonadaptive** algorithm requires $q \geq \frac{k \log(k)}{\epsilon^{c} \log(\log(k)/\epsilon^{c})}$ queries (for any 0 < c < 1). Set $\varepsilon = 1/\log(k)$. Adaptive UB = $O(k \log(k) + k/\epsilon) = O(k \log(k))$

Main result Any **nonadaptive** algorithm requires $q \geq \frac{k \log(k)}{\epsilon^{c} \log(\log(k)/\epsilon^{c})}$ queries (for any 0 < c < 1). Set $\varepsilon = 1/\log(k)$. Adaptive UB = $O(k \log(k) + k/\epsilon) = O(k \log(k))$ Our nonadapt LB = $k \log(k)^{1+c}/\log(\log(k))$

 Basic ideas come from [CG04]'s Ω(k) adaptive lower bound

- Basic ideas come from [CG04]'s Ω(k) adaptive lower bound
- [Bla08]'s Ω(k/(ε log(k/ε)) nonadaptive lower bound based on [CG04]'s lower bound

- Basic ideas come from [CG04]'s Ω(k) adaptive lower bound
- [Bla08]'s Ω(k/(ε log(k/ε)) nonadaptive lower bound based on [CG04]'s lower bound
- We give a new analysis of [Bla08]'s LB.

- Basic ideas come from [CG04]'s Ω(k) adaptive lower bound
- [Bla08]'s Ω(k/(ε log(k/ε)) nonadaptive lower bound based on [CG04]'s lower bound
- We give a new analysis of [Bla08]'s LB.

[CG04] considers two distributions on n = (k+1)-variable functions:

[CG04] considers two distributions on n = (k+1)-variable functions:

$$D_{yes}$$
: • Pick i ~ {1,...,k+1} uar.

[CG04] considers two distributions on n = (k+1)-variable functions:

D_{yes}: • Pick i ~ {1,...,k+1} uar. • Set f_{yes} :{0,1}^{k+1}→ {0,1} uar subject to not depending on coordinate i.

D_{yes}: • Pick i ~ {1,...,k+1} uar.
• Set
$$f_{yes}$$
:{0,1}^{k+1}→ {0,1} uar subject to **not** depending on coordinate **i**.

$$f_{yes}(x_1,...,0,...,x_{k+1}) = f_{yes}(x_1,...,1,...,x_{k+1})$$

D_{yes}: • Pick i ~ {1,...,k+1} uar.
• Set
$$f_{yes}$$
:{0,1}^{k+1}→ {0,1} uar subject to **not** depending on coordinate **i**.

$$f_{yes}(x_1,...,0,...,x_{k+1}) = f_{yes}(x_1,...,1,...,x_{k+1}) = random \{0,1\}$$

D_{yes}: • Pick i ~ {1,...,k+1} uar.
• Set
$$f_{yes}$$
:{0,1}^{k+1}→ {0,1} uar subject to **not** depending on coordinate **i**.

$$f_{yes}(x_1,...,0,...,x_{k+1}) = f_{yes}(x_1,...,1,...,x_{k+1}) = random \{0,1\}$$

i (for all $x_1,...,x_{k+1}$)

D_{yes}: • Pick i ~ {1,...,k+1} uar.
• Set
$$f_{yes}$$
:{0,1}^{k+1}→ {0,1} uar subject to
not depending on coordinate i.

$$f_{yes}(x_1,...,0,...,x_{k+1}) = f_{yes}(x_1,...,1,...,x_{k+1}) = random \{0,1\}$$

i (for all $x_1,...,x_{k+1}$)

D_{yes}: • Pick i ~ {1,...,k+1} uar. • Set f_{yes} :{0,1}^{k+1}→ {0,1} uar subject to not depending on coordinate i.

D_{yes}: • Pick i ~ {1,...,k+1} uar. • Set f_{yes} :{0,1}^{k+1}→ {0,1} uar subject to not depending on coordinate i.

 D_{no} : • Set f_{no} : {0,1}^{k+1} \rightarrow {0,1} uar.

$$D_{yes}: \bullet \text{Pick i} ~ \{1, ..., k+1\} \text{ uar.}$$

• Set $f_{yes}: \{0, 1\}^{k+1} \rightarrow \{0, 1\}$ uar subject to
not depending on coordinate i.
(a k-junta)

 D_{no} : • Set f_{no} : {0,1}^{k+1} \rightarrow {0,1} uar.

D_{yes}: Pick i ~ {1,...,k+1} uar. • Set f_{yes} : {0,1}^{k+1}→ {0,1} uar subject to not depending on coordinate i. (a **k**-junta) D_{no} : • Set f_{no} : $\{0,1\}^{k+1} \rightarrow \{0,1\}$ uar. (usually far from a k-junta)

 $D_{yes}: \bullet \text{Pick} : ~ \{1, ..., k+1\} \text{ uar.}$ • Set $f_{yes}: \{0, 1\}^{k+1} \rightarrow \{0, 1\}$ uar subject to not depending on coordinate i. (a k-junta)

 D_{no} : • Set f_{no} : [0,1]^{k+1} \rightarrow {0,1} uar.

(usually far from a k-junta)

D_{yes}: • Pick i ~ {1,...,k+1} uar. • Set f_{yes} :{0,1}^{k+1}→ {0,1} uar subject to not depending on coordinate i.

 D_{no} : • Set f_{no} : {0,1}^{k+1} \rightarrow {0,1} uar.

D_{yes}: • Pick i ~ {1,...,k+1} uar. • Set f_{yes} :{0,1}^{k+1}→ {0,1} uar subject to not depending on coordinate i.

 D_{no} : • Set f_{no} :{0,1}^{k+1}→ {0,1} uar. [CG04 THM]: Need $\Omega(\mathbf{k})$ queries to distinguish these distributions

Given f, how to tell if from D_{yes} or D_{no} ?

For coord i:

For coord i: ● Pick x uar. Query f on x and x⊕i.

For coord i: ● Pick x uar. Query f on x and x⊕i.

Differ only on coord i.

For coord i: ● Pick x uar. Query f on x and x⊕i.

Differ only on coord i.

Def: x and x⊕i form an i-twin.

For coord i: • Pick x uar. • Query f on x and x*i.

Differ only on coord i.

Def: x and x[®] form an i-twin.

For coord i: ● Pick x uar. Query f on x and x⊕i.

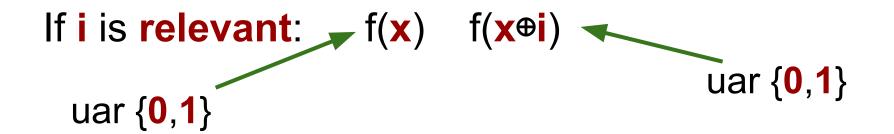
- Query f on **x** and **x**.
- If $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i})$, output **relevant**.

- Query f on **x** and **x**.
- If $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i})$, output **relevant**.
- Repeat 10 log(k) times.

- Query f on **x** and **x**.
- If $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i})$, output **relevant**.
- Repeat 10 log(k) times.
- Output irrelevant.

If i is relevant: f(x) f(x⊕i)

If i is relevant: $f(x) = f(x \oplus i)$ uar {0,1}



If i is relevant: f(x) = f(x)uar $\{0,1\}$

If i is relevant: f(x) f(x⊕i)

If i is relevant: $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2

 $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i}) \quad \text{w/prob } 1/2$ $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i}) \quad \text{w/prob } 1/2$

 $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i}) \quad \text{w/prob } 1/2$ $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i}) \quad \text{w/prob } 1/2$

. will conclude relevant after O(1) i-twins

 $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i}) \quad \text{w/prob } 1/2$ $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i}) \quad \text{w/prob } 1/2$

- . will conclude **relevant** after O(1) **i**-twins
- If **i** is **irrelevant**:

 $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i}) \quad \text{w/prob } 1/2$ $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i}) \quad \text{w/prob } 1/2$

- . will conclude **relevant** after O(1) **i**-twins
- If i is irrelevant: $f(x) = f(x \oplus i)$ always

If i is relevant: $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2 $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2

- . will conclude **relevant** after O(1) **i**-twins
- If i is irrelevant: $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i})$ always
- \therefore will query O(log(k)) i-twins

If i is relevant: $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2 $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2

- . will conclude **relevant** after O(1) **i**-twins
- If i is irrelevant: $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i})$ always
- \therefore will query O(log(k)) i-twins

Query cost:

If i is relevant: $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2 $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2

- . will conclude **relevant** after O(1) **i**-twins
- If i is irrelevant: $f(x) = f(x \oplus i)$ always . will query O(log(k)) i-twins

Query cost: (**k+1**) * O(1)

If i is relevant: $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2 $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2

- . will conclude **relevant** after O(1) **i**-twins
- If i is irrelevant: $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i})$ always . will query O(log(k)) i-twins

Query cost: $(\mathbf{k+1}) * O(1) + O(\log(\mathbf{k}))$

If i is relevant: $f(\mathbf{x}) = f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2 $f(\mathbf{x}) \neq f(\mathbf{x} \oplus \mathbf{i})$ w/prob 1/2

- . will conclude **relevant** after O(1) **i**-twins
- If i is irrelevant: $f(x) = f(x \oplus i)$ always \therefore will query O(log(k)) i-twins

Query cost: (k+1) * O(1) + O(log(k)) = O(k)

[CG04]'s Ω(k) lower bound

[CG04]'s Ω(k) lower bound

Key idea: • Suppose you query f on $\mathbf{x}_1, \dots, \mathbf{x}_q$

Key idea: • Suppose you query f on x₁,...,x_q • Want to test: is coord i relevant?

Key idea: • Suppose you query f on x₁,...,x_q • Want to test: is coord i relevant?

- Then $\mathbf{x}_1, \dots, \mathbf{x}_q$ must have an i-twin

Key idea: • Suppose you query f on x₁,...,x_q • Want to test: is coord i relevant?

- Then $\mathbf{x}_1, \dots, \mathbf{x}_q$ must have an i-twin

LB: q points can have **i**-twins for \leq **q-1** coords.

Key idea: • Suppose you query f on x₁,...,x_q • Want to test: is coord i relevant?

- Then x₁,...,x_a must have an i-twin

LB: q points can have **i**-twins for \leq **q-1** coords. $\mathbf{I} \mathbf{q} = \Omega(\mathbf{k}).$

Algorithm was **adaptive**:

- Algorithm was **adaptive**:
- for **relevant** coords **i**, query O(1) **i**-twins

Algorithm was **adaptive**:

- for **relevant** coords **i**, query O(1) **i**-twins
- for **irrelevant** coords **i**, query O(log(**k**))

Algorithm was **adaptive**:

- for **relevant** coords **i**, query O(1) **i**-twins
- for **irrelevant** coords **i**, query O(log(**k**))

Can't plan this in advance:

Algorithm was **adaptive**:

- for relevant coords i, query O(1) i-twins
- for irrelevant coords i, query O(log(k))

Can't plan this in advance: $x_1, ..., x_q$ need O(log(k)) i-twins in all k+1 directions.

Algorithm was **adaptive**:

- for **relevant** coords **i**, query O(1) **i**-twins
- for **irrelevant** coords **i**, query O(log(**k**))

Can't plan this in advance: x₁,...,x_q need O(log(k)) i-twins in all k+1 directions.

 \therefore q = $\Omega(k \log(k))$ nonadaptive LB?

Algorithm was **adaptive**:

- for **relevant** coords **i**, query O(1) **i**-twins
- for **irrelevant** coords **i**, query O(log(**k**))

Can't plan this in advance: **x**₁,...,**x**_q need O(log(**k**)) **i**-twins in **all k+1** directions.

. q = Ω(k log(k)) nonadaptive LB? (not quite)

[Fra83]: there are $q = O(k \log(k) / \log \log(k))$ points $x_1, ..., x_q$ with $\log(k)$ i-twins for each i.

[Fra83]: there are $\mathbf{q} = O(\mathbf{k} \log(\mathbf{k}) / \log \log(\mathbf{k}))$ points $\mathbf{x}_1, ..., \mathbf{x}_q$ with $\log(\mathbf{k})$ i-twins for each i. Recall our LB: $\mathbf{q} \ge \frac{\mathbf{k} \log(\mathbf{k})}{\mathbf{\epsilon}^c \log(\log(\mathbf{k})/\mathbf{\epsilon}^c)}$

[Fra83]: there are $\mathbf{q} = O(\mathbf{k} \log(\mathbf{k}) / \log \log(\mathbf{k}))$ points $\mathbf{x}_1, ..., \mathbf{x}_q$ with $\log(\mathbf{k})$ i-twins for each i. Recall our LB: $\mathbf{q} \ge \frac{\mathbf{k} \log(\mathbf{k})}{\mathbf{\epsilon}^c \log(\log(\mathbf{k})/\mathbf{\epsilon}^c)}$

Goal: • show [Fra83] is optimal

[Fra83]: there are $\mathbf{q} = O(\mathbf{k} \log(\mathbf{k}) / \log \log(\mathbf{k}))$ points $\mathbf{x}_1, \dots, \mathbf{x}_q$ with $\log(\mathbf{k})$ i-twins for each i.

Recall our LB:
$$q \ge \frac{k \log(k)}{\epsilon^{c} \log(\log(k)/\epsilon^{c})}$$

- Goal: show [Fra83] is optimal
 - extend to general **ɛ**

[Fra83]: there are $q = O(k \log(k) / \log \log(k))$ points x_1, \dots, x_q with $\log(k)$ i-twins for each i.

Recall our LB:
$$q \ge \frac{k \log(k)}{\epsilon^{c} \log(\log(k)/\epsilon^{c})}$$

Goal: • show [Fra83] is optimal

• extend to general **ɛ**

$f(\mathbf{x})$ is independent from all other $f(\mathbf{x}')$,

$f(\mathbf{x})$ is independent from all other $f(\mathbf{x}')$, satisfies $Pr[f(\mathbf{x}) = 1] = \varepsilon$

f(x) is independent from all other f(x'), satisfies $Pr[f(x) = 1] = \varepsilon$

$$D_{yes}$$
: • Pick i ~ {1,...,k+1} uar.

- D_{yes}: Pick i ~ {1,...,k+1} uar. Set f_{yes}:{0,1}^{k+1}→ {0,1} random ε-biased subject to **not** depending on coordinate i.

D_{yes}: Pick i ~ {1,...,k+1} uar. • Set f_{yes} {0,1}^{k+1}→ {0,1} random εbiased subject to **not** depending on coordinate i. (a k-junta)

$$D_{no}$$
: ● Set f_{no} :{0,1}^{k+1}→ {0,1} random ε-
biased.

D_{yes}: Pick i ~ {1,...,k+1} uar. • Set f_{yes} {0,1}^{k+1}→ {0,1} random ε-biased subject to **not** depending on coordinate i. (a **k**-junta) D_{no} : • Set f_{no}: (0,1)^{k+1}→ {0,1} random ε-biased. (usually ε-far from a k-junta)

Distributions studied in [Bla08].

Distributions studied in [Bla08]. His LB: $\Omega(k/(\epsilon \log(k/\epsilon))$

Distributions studied in [Bla08]. His LB: $\Omega(k/(\epsilon \log(k/\epsilon))$

Main tool: Edge-isoperimetric inequality

Distributions studied in [Bla08]. His LB: $\Omega(k/(\epsilon \log(k/\epsilon)))$

Main tool: Edge-isoperimetric inequality: points $\mathbf{x}_1,...,\mathbf{x}_q$ can only have $O(\mathbf{q} \log(\mathbf{q}))$ i-twins

Distributions studied in [Bla08]. His LB: $\Omega(k/(\epsilon \log(k/\epsilon))$

Main tool: **Edge-isoperimetric inequality:** points $\mathbf{x}_1, ..., \mathbf{x}_q$ can only have $O(\mathbf{q} \log(\mathbf{q}))$ **i**-twins

• Only about total # of i-twins.

Distributions studied in [Bla08]. His LB: $\Omega(k/(\epsilon \log(k/\epsilon))$

Main tool: **Edge-isoperimetric inequality:** points $\mathbf{x}_1, ..., \mathbf{x}_q$ can only have $O(\mathbf{q} \log(\mathbf{q}))$ **i**-twins

- Only about total # of i-twins.
- Could be **few** directions have lots of **i**-twins.

Distributions studied in [Bla08]. His LB: $\Omega(k/(\epsilon \log(k/\epsilon))$

Main tool: **Edge-isoperimetric inequality:** points $\mathbf{x}_1, ..., \mathbf{x}_q$ can only have $O(\mathbf{q} \log(\mathbf{q}))$ **i**-twins

- Only about **total** # of **i**-twins.
- Could be few directions have lots of i-twins.
- Want edge-iso ineq. about **most** directions.

Suppose $x_1, ..., x_q$ have **m** i-twins in **d** directions. Then $q \ge md / log(m)$.

Suppose $x_1, ..., x_q$ have **m** i-twins in **d** directions. Then $q \ge md / log(m)$.

Suppose $x_1, ..., x_q$ have **m** i-twins in **d** directions. Then $q \ge md / log(m)$.

Suppose $x_1, ..., x_q$ have **m** i-twins in **d** directions. Then $q \ge md / log(m)$.

 $q \ge k \log(k)/\log(\log(k))$

• Generalization of [Fra83]

• Proofs are quite technical

- Proofs are quite technical
- Answer you get for single query f(x_j) is not too important

- Proofs are quite technical
- Answer you get for single query f(x_j) is not too important
- Analyze a specific martingale w/r/t

$$f(\mathbf{X}_1), f(\mathbf{X}_2), \dots, f(\mathbf{X}_q)$$

- Proofs are quite technical
- Answer you get for single query f(x_j) is not too important
- Analyze a specific martingale w/r/t

$$f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_q)$$

• Use McDiarmid's inequality (with bad events)

Open problem

Prove a separation between **adapative** and **nonadaptive** when $\varepsilon = const$.

Thanks!