
Adaptivity helps for 
testing juntas

Rocco Servedio, Li-Yang Tan, John Wright
Columbia CMUTTIC



Adaptivity helps for 
testing juntas

Rocco Servedio, Li-Yang Tan, John Wright
Columbia CMUTTIC

(work done while I was visiting Columbia)



Juntas

f : {0,1}n → {0,1}



Juntas

f :                                                     → {0,1}0 0 1 0 1 1 1 0 1 1



Juntas

f :                                                     → {0,1}

k-junta: f only depends on k bits

0 0 1 0 1 1 1 0 1 1



Juntas

f :                                                     → {0,1}

k-junta: f only depends on k bits

0 0 1 0 1 1 1 0 1 1



Juntas

f :                                                     → {0,1}

k-junta: f only depends on k bits

0 0 1 0 1 1 1 0 1 1

(a 3-junta)



Juntas

f :                                                     → {0,1}

k-junta: f only depends on k bits
(k = 1: f is a dictator)

0 0 1 0 1 1 1 0 1 1

(a 3-junta)



Juntas

f :                                                     → {0,1}

k-junta: f only depends on k bits
(k = 1: f is a dictator)
Key question: how to tell if f is a k-junta?

0 0 1 0 1 1 1 0 1 1

(a 3-junta)



Queries

Given: ability to make queries 
x → f(x) 



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
   x1, x2, … 



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
 x1, x2, … → f(x1), f(x2), ...

  



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
 x1, x2, … → f(x1), f(x2), ...

Adaptive: choose queries based on answers
  



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
 x1, x2, … → f(x1), f(x2), ...

Adaptive: choose queries based on answers
  x1 



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
 x1, x2, … → f(x1), f(x2), ...

Adaptive: choose queries based on answers
  x1 → f(x1)



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
 x1, x2, … → f(x1), f(x2), ...

Adaptive: choose queries based on answers
  x1 → f(x1), x2 



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
 x1, x2, … → f(x1), f(x2), ...

Adaptive: choose queries based on answers
  x1 → f(x1), x2 → f(x2)



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
 x1, x2, … → f(x1), f(x2), ...

Adaptive: choose queries based on answers
  x1 → f(x1), x2 → f(x2), x3 



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
 x1, x2, … → f(x1), f(x2), ...

Adaptive: choose queries based on answers
  x1 → f(x1), x2 → f(x2), x3 → f(x3)



Queries

Given: ability to make queries 
x → f(x) 

Nonadaptive: fix queries in advance
 x1, x2, … → f(x1), f(x2), ...

Adaptive: choose queries based on answers
  x1 → f(x1), x2 → f(x2), x3 → f(x3), ....



Property testing

Goal: distinguish whether (unknown) f is



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): not ɛ-close to a k-junta



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): not ɛ-close to a k-junta



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): not ɛ-close to a k-junta

f:



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): not ɛ-close to a k-junta

f:
(ɛ-fraction)



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): not ɛ-close to a k-junta

f:
(ɛ-fraction)



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): not ɛ-close to a k-junta

f:
(ɛ-fraction)

(k-junta)



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): not ɛ-close to a k-junta



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): not ɛ-close to a k-junta



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): ɛ-far from all k-juntas



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): ɛ-far from all k-juntas

Resources: Minimize query count q



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): ɛ-far from all k-juntas

Resources: Minimize query count q
in terms of k and ɛ 



Property testing

Goal: distinguish whether (unknown) f is 
● (Yes): a k-junta
● (No): ɛ-far from all k-juntas

Resources: Minimize query count q
in terms of k and ɛ (no dependence on n!)



Junta testing motivation

● Boolean function version of finding a low 
rank model for high dimensional data



Junta testing motivation

● Boolean function version of finding a low 
rank model for high dimensional data

● For k = 1, equivalent to dictatorship 
testing, a basic topic in hardness of 
approximation



Junta testing motivation

● Boolean function version of finding a low 
rank model for high dimensional data

● For k = 1, equivalent to dictatorship 
testing, a basic topic in hardness of 
approximation

● One of the most basic Boolean function 
properties.



Prior work
adaptivenonadaptive



Prior work
adaptivenonadaptive

[Bla08] O(k3/2log(k)3/ɛ)



Prior work
adaptivenonadaptive

[Bla08] O(k3/2log(k)3/ɛ)

[Bla08] ᶑ(k/(ɛ log(k/ɛ))



Prior work
adaptivenonadaptive

[Bla08] O(k3/2log(k)3/ɛ)

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))



Prior work
adaptivenonadaptive

[Bla08] O(k3/2log(k)3/ɛ)
O(k log(k) + k/ɛ) [Bla09] 

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))



Prior work
adaptivenonadaptive

[Bla08] O(k3/2log(k)3/ɛ)

[CG04] ᶑ(k)

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



Prior work
adaptivenonadaptive

[Bla08] O(k3/2log(k)3/ɛ)

[CG04] ᶑ(k)

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



Annoyance: adaptive UB ≥ nonadaptive LB

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?

It should: [Bla09]’s O(k log(k) + k/ɛ) adaptive 
algorithm uses binary search.



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?

It should: [Bla09]’s O(k log(k) + k/ɛ) adaptive 
algorithm uses binary search.

Adaptivity also helps for testing signed 
majority functions, read-once width-two 
OBDDs.



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?

It should: [Bla09]’s O(k log(k) + k/ɛ) adaptive 
algorithm uses binary search.

Adaptivity also helps for testing signed 
majority functions, read-once width-two 
OBDDs.  Adaptive algos use binary search.



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?

It should: [Bla09]’s O(k log(k) + k/ɛ) adaptive 
algorithm uses binary search.

Adaptivity also helps for testing signed 
majority functions, read-once width-two 
OBDDs.  Adaptive algos use binary search.



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?
Our work: yes it does

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



Annoyance: adaptive UB ≥ nonadaptive LB
[Bla09]: does adaptivity even help?
Our work: yes it does. new nonadaptive LB

[Bla08] ᶑ(k/(ɛ log(k/ɛ))
[BGSMdW13] ᶑ(k log(k))

O(k log(k) + k/ɛ) [Bla09] 



Main result
Any nonadaptive algorithm requires

k log(k)
ɛc log(log(k)/ɛc)

queries

q ≥ 



Main result
Any nonadaptive algorithm requires

k log(k)
ɛc log(log(k)/ɛc)

queries (for any 0 < c < 1).

q ≥ 



Main result
Any nonadaptive algorithm requires

k log(k)
ɛc log(log(k)/ɛc)

queries (for any 0 < c < 1).
Set ɛ = 1/log(k).

q ≥ 



Main result
Any nonadaptive algorithm requires

k log(k)
ɛc log(log(k)/ɛc)

queries (for any 0 < c < 1).
Set ɛ = 1/log(k).

Adaptive UB = O(k log(k) + k/ɛ)

q ≥ 



Main result
Any nonadaptive algorithm requires

k log(k)
ɛc log(log(k)/ɛc)

queries (for any 0 < c < 1).

q ≥ 

Set ɛ = 1/log(k).
Adaptive UB = O(k log(k) + k/ɛ) = O(k log(k))



Main result
Any nonadaptive algorithm requires

k log(k)
ɛc log(log(k)/ɛc)

queries (for any 0 < c < 1).
Set ɛ = 1/log(k).

Adaptive UB = O(k log(k) + k/ɛ) = O(k log(k))
Our nonadapt LB = k log(k)1+c/log(log(k))

q ≥ 



Our techniques

● Basic ideas come from [CG04]’s ᶑ(k) 
adaptive lower bound



Our techniques

● Basic ideas come from [CG04]’s ᶑ(k) 
adaptive lower bound

● [Bla08]’s ᶑ(k/(ɛ log(k/ɛ)) nonadaptive lower 
bound based on [CG04]’s lower bound



Our techniques

● Basic ideas come from [CG04]’s ᶑ(k) 
adaptive lower bound

● [Bla08]’s ᶑ(k/(ɛ log(k/ɛ)) nonadaptive lower 
bound based on [CG04]’s lower bound

● We give a new analysis of [Bla08]’s LB.



Our techniques

● Basic ideas come from [CG04]’s ᶑ(k) 
adaptive lower bound

● [Bla08]’s ᶑ(k/(ɛ log(k/ɛ)) nonadaptive lower 
bound based on [CG04]’s lower bound

● We give a new analysis of [Bla08]’s LB.



[CG04] considers two distributions on
n = (k+1)-variable functions:



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.

fyes(x1,...,0,…,xk+1) = fyes(x1,...,1,…,xk+1) 
i i



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.

fyes(x1,...,0,…,xk+1) = fyes(x1,...,1,…,xk+1) = random {0,1}
i i



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.

fyes(x1,...,0,…,xk+1) = fyes(x1,...,1,…,xk+1) = random {0,1}
i i (for all x1,...,xk+1)



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.

fyes(x1,...,0,…,xk+1) = fyes(x1,...,1,…,xk+1) = random {0,1}
i i (for all x1,...,xk+1)



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.

Dno: ● Set fno:{0,1}k+1→ {0,1} uar.



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.
(a k-junta)

Dno: ● Set fno:{0,1}k+1→ {0,1} uar.



● Set fno:{0,1}k+1→ {0,1} uar.

[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.
(a k-junta)

(usually far from a k-junta)

Dno:



● Set fno:{0,1}k+1→ {0,1} uar.

[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.
(a k-junta)

(usually far from a k-junta)

Dno:



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.

Dno: ● Set fno:{0,1}k+1→ {0,1} uar.



[CG04] considers two distributions on
n = (k+1)-variable functions:

Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} uar subject to 

not depending on coordinate i.

Dno: ● Set fno:{0,1}k+1→ {0,1} uar.
[CG04 THM]: Need ᶑ(k) queries to distinguish 
these distributions



Given f, how to tell if from Dyes or Dno?



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i:



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.
● Query f on x and x⊕i.



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.
● Query f on x and x⊕i.

Differ only on coord i.



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.
● Query f on x and x⊕i.

Differ only on coord i.
Def: x and x⊕i form an i-twin.



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.
● Query f on x and x⊕i.

Differ only on coord i.
Def: x and x⊕i form an i-twin.



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.
● Query f on x and x⊕i.



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.
● Query f on x and x⊕i.
● If f(x) ≠ f(x⊕i), output relevant.



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.
● Query f on x and x⊕i.
● If f(x) ≠ f(x⊕i), output relevant.
● Repeat 10 log(k) times.



Given f, how to tell if from Dyes or Dno?
Idea: See if it has any irrelevant coords.

For coord i: ● Pick x uar.
● Query f on x and x⊕i.
● If f(x) ≠ f(x⊕i), output relevant.
● Repeat 10 log(k) times.
● Output irrelevant.



If i is relevant:



If i is relevant: f(x)    f(x⊕i)



If i is relevant: f(x)    f(x⊕i)

uar {0,1}



If i is relevant: f(x)    f(x⊕i)

uar {0,1}
uar {0,1}



If i is relevant: f(x)    f(x⊕i)

uar {0,1}
uar {0,1}



If i is relevant: f(x)    f(x⊕i)



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2

∴ will conclude relevant after O(1) i-twins 



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2

∴ will conclude relevant after O(1) i-twins 

If i is irrelevant:



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2

∴ will conclude relevant after O(1) i-twins 

If i is irrelevant: f(x)    f(x⊕i)= always



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2

∴ will conclude relevant after O(1) i-twins 

If i is irrelevant: f(x)    f(x⊕i)= always
∴ will query O(log(k)) i-twins 



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2

∴ will conclude relevant after O(1) i-twins 

If i is irrelevant: f(x)    f(x⊕i)= always
∴ will query O(log(k)) i-twins 

Query cost:



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2

∴ will conclude relevant after O(1) i-twins 

If i is irrelevant: f(x)    f(x⊕i)= always
∴ will query O(log(k)) i-twins 

Query cost: (k+1) * O(1) 



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2

∴ will conclude relevant after O(1) i-twins 

If i is irrelevant: f(x)    f(x⊕i)= always
∴ will query O(log(k)) i-twins 

Query cost: (k+1) * O(1) +  O(log(k))



If i is relevant: f(x)    f(x⊕i)= w/prob 1/2
f(x)    f(x⊕i)≠ w/prob 1/2

∴ will conclude relevant after O(1) i-twins 

If i is irrelevant: f(x)    f(x⊕i)= always
∴ will query O(log(k)) i-twins 

Query cost: (k+1) * O(1) +  O(log(k)) = O(k)



[CG04]’s ᶑ(k) lower bound



[CG04]’s ᶑ(k) lower bound

Key idea: ● Suppose you query f on x1,...,xq



[CG04]’s ᶑ(k) lower bound

Key idea: ● Suppose you query f on x1,...,xq
● Want to test: is coord i relevant?



[CG04]’s ᶑ(k) lower bound

Key idea: ● Suppose you query f on x1,...,xq
● Want to test: is coord i relevant?
● Then x1,...,xq must have an

i-twin



[CG04]’s ᶑ(k) lower bound

Key idea: ● Suppose you query f on x1,...,xq
● Want to test: is coord i relevant?
● Then x1,...,xq must have an

i-twin

LB: q points can have i-twins for ≤ q-1 coords.



[CG04]’s ᶑ(k) lower bound

Key idea: ● Suppose you query f on x1,...,xq
● Want to test: is coord i relevant?
● Then x1,...,xq must have an

i-twin

LB: q points can have i-twins for ≤ q-1 coords.
∴ q = ᶑ(k).



Matching upper and lower bounds?



Matching upper and lower bounds?
Algorithm was adaptive:



Matching upper and lower bounds?
Algorithm was adaptive:
● for relevant coords i, query O(1) i-twins



Matching upper and lower bounds?
Algorithm was adaptive:
● for relevant coords i, query O(1) i-twins
● for irrelevant coords i, query O(log(k))



Matching upper and lower bounds?
Algorithm was adaptive:
● for relevant coords i, query O(1) i-twins
● for irrelevant coords i, query O(log(k))

Can’t plan this in advance:



Matching upper and lower bounds?
Algorithm was adaptive:
● for relevant coords i, query O(1) i-twins
● for irrelevant coords i, query O(log(k))

Can’t plan this in advance: x1,...,xq need
O(log(k)) i-twins in all k+1 directions.



Matching upper and lower bounds?
Algorithm was adaptive:
● for relevant coords i, query O(1) i-twins
● for irrelevant coords i, query O(log(k))

Can’t plan this in advance: x1,...,xq need
O(log(k)) i-twins in all k+1 directions.

∴ q = ᶑ(k log(k)) nonadaptive LB?



Matching upper and lower bounds?
Algorithm was adaptive:
● for relevant coords i, query O(1) i-twins
● for irrelevant coords i, query O(log(k))

Can’t plan this in advance: x1,...,xq need
O(log(k)) i-twins in all k+1 directions.

∴ q = ᶑ(k log(k)) nonadaptive LB?
(not quite)



A nonadaptive algorithm.
[Fra83]: there are q = O(k log(k) / log log(k)) 
points x1,...,xq with log(k) i-twins for each i.



A nonadaptive algorithm.
[Fra83]: there are q = O(k log(k) / log log(k)) 
points x1,...,xq with log(k) i-twins for each i.

k log(k)
ɛc log(log(k)/ɛc)

q ≥ Recall our LB:



A nonadaptive algorithm.
[Fra83]: there are q = O(k log(k) / log log(k)) 
points x1,...,xq with log(k) i-twins for each i.

k log(k)
ɛc log(log(k)/ɛc)

q ≥ Recall our LB:

Goal: ● show [Fra83] is optimal



A nonadaptive algorithm.
[Fra83]: there are q = O(k log(k) / log log(k)) 
points x1,...,xq with log(k) i-twins for each i.

k log(k)
ɛc log(log(k)/ɛc)

q ≥ Recall our LB:

Goal: ● show [Fra83] is optimal
● extend to general ɛ



A nonadaptive algorithm.
[Fra83]: there are q = O(k log(k) / log log(k)) 
points x1,...,xq with log(k) i-twins for each i.

k log(k)
ɛc log(log(k)/ɛc)

q ≥ Recall our LB:

Goal: ● show [Fra83] is optimal
● extend to general ɛ



New distributions.



Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.



Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.

f(x) is independent from all other f(x’),



Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.

f(x) is independent from all other f(x’),
satisfies Pr[f(x) = 1] = ɛ



Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.

f(x) is independent from all other f(x’),
satisfies Pr[f(x) = 1] = ɛ



Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.



Dyes:
● Pick i ~ {1,...,k+1} uar.

Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.



Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} random ɛ-

biased subject to not depending on 
coordinate i.

Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.



Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} random ɛ-

biased subject to not depending on 
coordinate i.

Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.

(a k-junta)

Dno:



Dyes:
● Pick i ~ {1,...,k+1} uar.
● Set fyes:{0,1}k+1→ {0,1} random ɛ-

biased subject to not depending on 
coordinate i.

Dno: ● Set fno:{0,1}k+1→ {0,1} random ɛ-
biased.

New distributions.

(a k-junta)

Dno:
(usually ɛ-far from a k-junta)



Distributions studied in [Bla08].



Distributions studied in [Bla08].
His LB: ᶑ(k/(ɛ log(k/ɛ))



Distributions studied in [Bla08].
His LB: ᶑ(k/(ɛ log(k/ɛ))

Main tool: Edge-isoperimetric inequality



Distributions studied in [Bla08].
His LB: ᶑ(k/(ɛ log(k/ɛ))

Main tool: Edge-isoperimetric inequality:
points x1,...,xq can only have O(q log(q)) i-twins



Distributions studied in [Bla08].
His LB: ᶑ(k/(ɛ log(k/ɛ))

Main tool: Edge-isoperimetric inequality:
points x1,...,xq can only have O(q log(q)) i-twins

● Only about total # of i-twins.



Distributions studied in [Bla08].
His LB: ᶑ(k/(ɛ log(k/ɛ))

Main tool: Edge-isoperimetric inequality:
points x1,...,xq can only have O(q log(q)) i-twins

● Only about total # of i-twins.
● Could be few directions have lots of i-twins.



Distributions studied in [Bla08].
His LB: ᶑ(k/(ɛ log(k/ɛ))

Main tool: Edge-isoperimetric inequality:
points x1,...,xq can only have O(q log(q)) i-twins

● Only about total # of i-twins.
● Could be few directions have lots of i-twins.
● Want edge-iso ineq. about most directions.



Our main tool: New edge-iso inequality



Our main tool: New edge-iso inequality

Suppose x1,...,xq have m i-twins in d directions.  
Then q ≥ md / log(m).



Our main tool: New edge-iso inequality

Suppose x1,...,xq have m i-twins in d directions.  
Then q ≥ md / log(m).

● m = log(k) and d = k gives 



Our main tool: New edge-iso inequality

Suppose x1,...,xq have m i-twins in d directions.  
Then q ≥ md / log(m).

● m = log(k) and d = k gives 

q ≥ k log(k)/log(log(k))



Our main tool: New edge-iso inequality

Suppose x1,...,xq have m i-twins in d directions.  
Then q ≥ md / log(m).

● m = log(k) and d = k gives 

● Generalization of [Fra83]

q ≥ k log(k)/log(log(k))



Other ideas
● Proofs are quite technical



Other ideas
● Proofs are quite technical
● Answer you get for single query f(xj) is not

too important



Other ideas
● Proofs are quite technical
● Answer you get for single query f(xj) is not

too important
● Analyze a specific martingale w/r/t

f(x1), f(x2), …, f(xq)



Other ideas
● Proofs are quite technical
● Answer you get for single query f(xj) is not

too important
● Analyze a specific martingale w/r/t

f(x1), f(x2), …, f(xq)
● Use McDiarmid’s inequality (with bad events)



Open problem
Prove a separation between adapative and 
nonadaptive when ɛ = const.



Thanks!


