Adaptivity helps for
testing juntas

Rocco Servedio, Li-Yang Tan, John Wright
Columbia TTIC CMU

Adaptivity helps for
testing juntas

Rocco Servedio, Li-Yang Tan, John Wright
Columbia TTIC CMU

(work done while | was visiting Columbia)

Juntas

f:{0,1}" — {0,1}

Juntas

f:{olo|1|of[1]1|1]0o|1]|1]|—{0,1}

Juntas

f:lofol1]o0|1|1|[1|0]|1]1][—{0,1}

k-junta: f only depends on k bits

Juntas

f:lo0

1K

k-junta: f only depends on k bits

T

— {0,1}

Juntas

f:lo0

1K

k-junta: f only depends on k bits

T

(a 3-junta)

— {0,1}

Juntas

f:lo0 oo 10 11— {0,1}

(a 3-junta)

k-junta: f only depends on k bits
(k = 1: fis a dictator)

Juntas

f:]o0 oo 10 11— {0,1}

(a 3-junta)

k-junta: f only depends on k bits
(k = 1: fis a dictator)

Key question: how to tell if f is a k-junta?

Queries

Given: ability to make queries
X — f(x)

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,y

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,, ... — f(X), 1(X,), ...

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,, ... — f(X), 1(X,), ...
Adaptive: choose queries based on answers

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,, ... — f(X), 1(X,), ...
Adaptive: choose queries based on answers

X,

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,, ... — f(X), 1(X,), ...
Adaptive: choose queries based on answers
x, — f(x,)

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,, ... — f(X), 1(X,), ...
Adaptive: choose queries based on answers

x, — f(x,), X,

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,, ... — f(X), 1(X,), ...
Adaptive: choose queries based on answers
x, — f(x,), X, — f(x,)

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,, ... — f(X), 1(X,), ...
Adaptive: choose queries based on answers

x, — f(x,), X, — f(X,), X,

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,, ... — f(X), 1(X,), ...
Adaptive: choose queries based on answers
x, — f(x,), X, — f(X,), X; — f(x;)

Queries

Given: ability to make queries
X — f(x)
Nonadaptive: fix queries in advance
X, X,, ... — f(X), 1(X,), ...
Adaptive: choose queries based on answers
x, — f(x,), X, — f(X,), X; — f(x;), -...

Property testing

Goal: distinguish whether (unknown) f is

Property testing

Goal: distinguish whether (unknown) f is
e (Yes): a k-junta

Property testing

Goal: distinguish whether (unknown) f is
e (Yes): a k-junta
e (No): not e-close to a k-junta

Property testing

° e-close to a k-junta

Property testing

e-close to a k-junta

Bis

Property testing

° e-close to a k-junta

(e-fraction)

Property testing

° e-close to a k-junta

(e-fraction)

>

Property testing

° e-close to a k-junta (k-junta)

(e-fraction)

>

Property testing

° e-close to a k-junta

Property testing

Goal: distinguish whether (unknown) f is
e (Yes): a k-junta
e (No): not e-close to a k-junta

Property testing

Goal: distinguish whether (unknown) f is
e (Yes): a k-junta
e (No): e-far from all k-juntas

Property testing

Goal: distinguish whether (unknown) f is
e (Yes): a k-junta
e (No): e-far from all k-juntas

Resources: Minimize query count q

Property testing

Goal: distinguish whether (unknown) f is
e (Yes): a k-junta
e (No): e-far from all k-juntas

Resources: Minimize query count q
In terms of k and ¢

Property testing

Goal: distinguish whether (unknown) f is
e (Yes): a k-junta
e (No): e-far from all k-juntas

Resources: Minimize query count q
In terms of k and € (no dependence on n!)

Junta testing motivation

e Boolean function version of finding a low
rank model for high dimensional data

Junta testing motivation

e Boolean function version of finding a low
rank model for high dimensional data

e For k =1, equivalent to dictatorship
testing, a basic topic in hardness of
approximation

Junta testing motivation

e Boolean function version of finding a low
rank model for high dimensional data

e For k =1, equivalent to dictatorship
testing, a basic topic in hardness of
approximation

e One of the most basic Boolean function
properties.

Prior work

nonadaptive adaptive

Prior work

nonadaptive adaptive

[Bla08] O(k*?log(k)*/¢)

Prior work

nonadaptive adaptive

[Bla08] O(k*?log(k)*/¢)

[Bla08] Q2(k/(g log(k/¢))

Prior work

nonadaptive

[Bla08] O(k*?log(k)*/¢)

[Bla08] Q(k/(e log(k/g))
[BGSMdW13] Q2(k log(k))

adaptive

Prior work

nonadaptive adaptive

[Bla08] O(k*?log(k)*/¢)

O(k log(k) + k/e) [Bla09]

[Bla08] Q(k/(e log(k/g))
[BGSMdW13] Q2(k log(k))

Prior work

nonadaptive adaptive

[Bla08] O(k*?log(k)*/¢)

O(k log(k) + k/e) [Bla09]

[Bla08] Q(k/(e log(k/g))
[BGSMdW13] Q2(k log(k))

[CG04] (k)

O(k log(k) + k/e) [Bla09]

[Bla08] Q(k/(e log(k/g))
[BGSMdW13] Q2(k log(k))

O(k log(k) + k/e) [Bla09]

[Bla08] Q2(k/(g log(k/¢))
[BGSMdW13] Q(k log(k))

Annoyance: adaptive UB = nonadaptive LB

O(k log(k) + k/e) [Bla09]

[Bla08] Q(k/(e log(k/g))
[BGSMdW13] Q2(k log(k))

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

O(k log(k) + k/e) [Bla09]

[Bla08] Q(k/(e log(k/g))
[BGSMdW13] Q2(k log(k))

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

It should: [BIa09]’s O(k log(k) + k/c) adaptive
algorithm uses binary search.

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

It should: [Bla09]’s O(k log(k) + k/e) adaptive
algorithm uses binary search.

Adaptivity also helps for testing signed
majority functions, read-once width-two
OBDDs.

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

It should: [BIa09]’s O(k log(k) + k/c) adaptive
algorithm uses binary search.

Adaptivity also helps for testing signed
majority functions, read-once width-two
OBDDs. Adaptive algos use binary search.

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?

O(k log(k) + k/e) [Bla09]

[Bla08] Q(k/(e log(k/g))
[BGSMdW13] Q2(k log(k))

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?
Our work: yes it does

O(k log(k) + k/e) [Bla09]

[Bla08] Q(k/(e log(k/g))
[BGSMdW13] Q2(k log(k))

Annoyance: adaptive UB = nonadaptive LB
[Bla09]: does adaptivity even help?
Our work: yes it does. new nonadaptive LB

/ O(k log(k) + k/g) [Bla09]

e —
[Bla08] Q2(k/(g log(k/¢))

[BGSMdW13] 2(k log(k))

—

Main result

Any nonadaptive algorithm requires
k log(k)

e® log(log(k)/e®)

q=

queries

Main result

Any nonadaptive algorithm requires
k log(k)

e® log(log(k)/e®)

queries (forany 0 <c < 1).

q=

Main result

Any nonadaptive algorithm requires
k log(k)

e® log(log(k)/e®)

queries (forany 0 <c < 1).

Set € = 1/log(k).

q=

Main result
Any nonadaptive algorithm requires
k log(k)
e® log(log(k)/e®)
queries (forany 0 <c < 1).
Set € = 1/log(k).
Adaptive UB = O(k log(k) + k/¢)

q=

Main result
Any nonadaptive algorithm requires
k log(k)
e® log(log(k)/e®)
queries (forany 0 <c < 1).
Set € = 1/log(k).
Adaptive UB = O(k log(k) + k/e) = O(k log(k))

q=

Main result
Any nonadaptive algorithm requires
k log(k)
e® log(log(k)/e®)
queries (forany 0 <c < 1).
Set € = 1/log(k).
Adaptive UB = O(k log(k) + k/e) = O(k log(k))
Our nonadapt LB = k log(k)'**/log(log(k))

q=

Our techniques

e Basic ideas come from [CG04]'s Q(k)
adaptive lower bound

Our techniques

e Basic ideas come from [CGO04]'s 2(k)
adaptive lower bound

e [Bla08]'s Q(k/(e log(k/e)) nonadaptive lower
bound based on [CG04]’s lower bound

Our techniques

e Basic ideas come from [CGO04]'s 2(k)
adaptive lower bound

e [Bla08]'s Q(k/(e log(k/e)) nonadaptive lower
bound based on [CG04]’s lower bound

e \We give a new analysis of [Bla08]'s LB.

e Basic ideas come from [CG04]'s Q(k)
adaptive lower bound

[CGO04] considers two distributions on
n = (k+1)-variable functions:

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,...,k+1} uar.

yes’

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
° o Setf :{0,1}'— {0,1} uar subject to
yes
not depending on coordinate I.

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
° o Setf :{0,1}'— {0,1} uar subject to
yes
not depending on coordinate I.

f (x1,...,0,...,x

Jos k+1) fyes(x1,...,1,...,xk+1)

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
oS o Setf {0, 1}¥*1— {0,1} uar subject to
not dependlng on coordinate I.

fyes(x1,...,.1 X, 1) = random {0,1}

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
oS o Setf {0, 1}¥*1— {0,1} uar subject to
not dependlng on coordinate I.

fyes(x1,...,.1 X, 1) = random {0,1}

(for all x,,....x, ,)

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
° o Setf :{0,1}'— {0,1} uar subject to
yes
not depending on coordinate I.

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
° o Setf :{0,1}'— {0,1} uar subject to
yes
not depending on coordinate I.

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
° o Setf :{0,1}'— {0,1} uar subject to
yes : : -
not depending on coordinate I.

D : e Setf :{0,1}*'— {0,1} uar.

[CGO04] considers two distributions on
n = (k+1)-variable functions:

{1,....,k+1} uar.

Q111 {0,1} uar subject to
oordinate I.

(a k-junta)

D : e Setf :{0,1}*'— {0,1} uar.

:Q P|C]

[CGO04] considers two distributions on
n = (k+1)-variable functions:

{1,....,k+1} uar.

Q. 13%*1 {0,1} uar subject to
iIng e coordinate I.

(a k-junta)

D : e Sg O1}k+1—>{01}uar

(usually far from a k-junta)

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,.. k+1}uar.
YeS o Setfyesz{0,1}k”—> {0,1} uar subject to
not ucpending cn coordinate |.

D : e Setf :0,1)*' {0,1} uar.

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
° o Setf :{0,1}'— {0,1} uar subject to
yes : : -
not depending on coordinate I.

D : e Setf :{0,1}*'— {0,1} uar.

[CGO04] considers two distributions on
n = (k+1)-variable functions:

. o Picki~{1,..k+1}uar.
Y°* o Set fyeS:{O,1}k+1—> {0,1} uar subject to
not depending on coordinate I.

D : e Setf :{0,1}*'— {0,1} uar.

[CG04 THM]: Need 2(k) queries to distinguish
these distributions

Given f, how totelliffrom D orD_ ?
yes no

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i:

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i: e Pick x uar.

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i: ® Pick x uar.
e Query fon x and x®i.

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i: e Pick x uar.
e Query fon x and x@i.

/4'

Differ only on coord i.

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i: e Pick x uar.
e Query fon x and x@i.

/ —P>
Differ only on coord i.
Def: x and x@i form an i-twin.

Given f, how to tell if from DyeS orD 7
Idea: See if it has any irrelevant coords.

For coord i: ® Pick x uar.
e Query fon x and x@i.

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i: ® Pick x uar.
e Query fon x and x®i.

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i: @ Pick x uar.
e Query fon x and x®i.
o |[f f(x) # f(x®i), output relevant.

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i: @ Pick x uar.
e Query fon x and x®i.
o |[f f(x) # f(x®i), output relevant.
e Repeat 10 log(k) times.

Given f, how to tell if from Dyes orD 7
Idea: See if it has any irrelevant coords.

For coord i: @ Pick x uar.

e Query fon x and x®i.
If f(x) # f(x®i), output relevant.
Repeat 10 log(k) times.
Output irrelevant.

If 1is relevant:

Ifiis relevant. f(x) f(xei)

If i is relevant. , f(x) f(xei)
/

uar {0,1}

Ifiis relevant:_, f(x) f(xei) -
/ uar {0,1}
uar {0,1}

Ifiis relevant. _ f(x) f(xei)

Ifiis relevant. f(x) f(xei)

Ifiis relevant. f(x) = f(x®i) w/prob 1/2

Ifiis relevant. f(x) = f(x®i) w/prob 1/2
f(x) # f(x®i) w/prob 1/2

Ifiis relevant. f(x) = f(x®i) w/prob 1/2
f(x) # f(x®i) w/prob 1/2

.. Will conclude relevant after O(1) i-twins

Ifiis relevant. f(x) = f(x®i) w/prob 1/2
f(x) # f(x®i) w/prob 1/2

.. Will conclude relevant after O(1) i-twins

If 1is irrelevant:

Ifiis relevant. f(x) = f(x®i) w/prob 1/2
f(x) # f(x®i) w/prob 1/2

.. Will conclude relevant after O(1) i-twins

If i is irrelevant. f(x) = f(x®i) always

Ifiis relevant. f(x) = f(x®i) w/prob 1/2
f(x) # f(x®i) w/prob 1/2

.. Will conclude relevant after O(1) i-twins

If i is irrelevant. f(x) = f(x®i) always
.. will query O(log(k)) i-twins

Ifiis relevant. f(x) = f(x®i) w/prob 1/2
f(x) # f(x®i) w/prob 1/2

.. Will conclude relevant after O(1) i-twins

If i is irrelevant. f(x) = f(x®i) always
.. will query O(log(k)) i-twins

Query cost:

Ifiis relevant. f(x) = f(x®i) w/prob 1/2
f(x) # f(x®i) w/prob 1/2

.. Will conclude relevant after O(1) i-twins

If i is irrelevant. f(x) = f(x®i) always
.. will query O(log(k)) i-twins

Query cost: (k+1) * O(1)

Ifiis relevant. f(x) = f(x®i) w/prob 1/2
f(x) # f(x®i) w/prob 1/2

.. Will conclude relevant after O(1) i-twins

If i is irrelevant. f(x) = f(x®i) always
.. will query O(log(k)) i-twins

Query cost: (k+1) * O(1) + O(log(k))

Ifiis relevant. f(x) = f(x®i) w/prob 1/2
f(x) # f(x®i) w/prob 1/2

.. Will conclude relevant after O(1) i-twins

If i is irrelevant. f(x) = f(x®i) always
.. will query O(log(k)) i-twins

Query cost: (k+1) * O(1) + O(log(k)) = O(k)

[CG04]’s £2(k) lower bound

[CG04]’s £2(k) lower bound

Key idea: e Suppose you query f on SR

[CG04]’s £2(k) lower bound

Key idea: e Suppose you query f on SR
e \Want to test: is coord i relevant?

[CG04]’s £2(k) lower bound

Key idea: e Suppose you query f on SR
e \Want to test: is coord i relevant?
e Then SR must have an

I-twin

[CG04]’s £2(k) lower bound

Key idea: e Suppose you query f on SR
e \Want to test: is coord i relevant?
e Then SR must have an

I-twin

LB: g points can have i-twins for < q-1 coords.

[CG04]’s £2(k) lower bound

Key idea: e Suppose you query f on SR
e \Want to test: is coord i relevant?
e Then SR must have an

I-twin

LB: g points can have i-twins for < q-1 coords.
e q = (k).

Matching upper and lower bounds?

Matching upper and lower bounds?

Algorithm was adaptive:

Matching upper and lower bounds?

Algorithm was adaptive:
e for relevant coords 1, query O(1) i-twins

Matching upper and lower bounds?

Algorithm was adaptive:

e for relevant coords i, query O(1) i-twins
e forirrelevant coords i, query O(log(k))

Matching upper and lower bounds?

Algorithm was adaptive:

e for relevant coords i, query O(1) i-twins
e forirrelevant coords i, query O(log(k))

Can’t plan this in advance:

Matching upper and lower bounds?

Algorithm was adaptive:

e for relevant coords i, query O(1) i-twins
e forirrelevant coords i, query O(log(k))

Can’t plan this in advance: X Xg need
O(log(k)) i-twins in all k+1 directions.

Matching upper and lower bounds?

Algorithm was adaptive:

e for relevant coords i, query O(1) i-twins
e forirrelevant coords i, query O(log(k))

Can’t plan this in advance: X Xg need
O(log(k)) i-twins in all k+1 directions.
.. g = Q2(k log(k)) nonadaptive LB?

Matching upper and lower bounds?

Algorithm was adaptive:

e for relevant coords i, query O(1) i-twins
e forirrelevant coords i, query O(log(k))

Can’t plan this in advance: X Xg need
O(log(k)) i-twins in all k+1 directions.

.. g = Q(k log(k)) nonadaptive LB?
(not quite)

A nonadaptive algorithm.

[Fra83]: there are g = O(k log(k) / log log(k))
points S with log(k) i-twins for each i.

A nonadaptive algorithm.

[Fra83]: there are g = O(k log(k) / log log(k))
points S with log(k) i-twins for each i.

k log(k)
e® log(log(k)/e®)

RecallourLB: qg=2

A nonadaptive algorithm.

[Fra83]: there are g = O(k log(k) / log log(k))
points S with log(k) i-twins for each i.
k log(k)

- >
Recall our LB: g £ log(log(K)/°)

Goal: e show [Fra83] is optimal

A nonadaptive algorithm.

[Fra83]: there are g = O(k log(k) / log log(k))
points S with log(k) i-twins for each i.
k log(k)

- >
Recall our LB: g £ log(log(K)/°)

Goal: e show [Fra83] is optimal
e extend to general €

A nonadaptive algorithm.

[Fra83]: there are g = O(k log(k) / log log(k))
points S with log(k) i-twins for each i.

k log(k)
e¢ log(log(k)/c°)

Goal: e show [Fra83] is optimal
e extend to general €

RecallourLB: qg=2

New distributions.

New distributions.

D : e Setf :{0,1}**'— {0,1} random e-
biased.

New distributions.

f(x) is independent from all other f(x'),

D : e Setf :{0,1}**'— {0,1} random e-
biased.

New distributions.

f(x) is independent from all other f(x'),
satisfies Pr[f(x) = 1] = ¢

D : e Setf :{0,1}**'— {0,1} random e-
biased.

New distributions.

D : e Setf :{0,1}**'— {0,1} random e-
biased.

New distributions.

D : e Setf :{0,1}**'— {0,1} random e-
biased.

New distributions.
. ® Picki~{1,...k+1} uar.

yes’

D : e Setf :{0,1}**'— {0,1} random e-
biased.

New distributions.

. o Picki~{1,...k+1}uar.
Yes o Set fyeS:{O,1}k+1—> {0,1} random &-
biased subject to not depending on
coordinate .

D : e Setf :{0,1}**'— {0,1} random e-
biased.

New distributions.

coordinate i. (a k-junta)

D : e Setf :{0,1}**'— {0,1} random e-
biased.

New distributions.

coordinate i. (a k-junta)

D, Sk*b (0,1} random ¢-
b| =7

' (usually e-far from a k-junta)

Distributions studied in [Bla08].

Distributions studied in [Bla08].
His LB: Q(k/(¢ log(k/¢))

Distributions studied in [Bla08].
His LB: Q(k/(¢ log(k/¢))

Main tool: Edge-isoperimetric inequality

Distributions studied in [Bla08].
His LB: Q(k/(¢ log(k/¢))

Distributions studied in [Bla08].
His LB: Q(k/(¢ log(k/¢))

e Only about total # of i-twins.

Distributions studied in [Bla08].
His LB: Q(k/(¢ log(k/¢))

e Only about total # of i-twins.
e Could be few directions have lots of i-twins.

Distributions studied in [Bla08].
His LB: Q(k/(¢ log(k/¢))

e Only about total # of i-twins.
e Could be few directions have lots of i-twins.
e \Want edge-iso ineq. about most directions.

Our main tool: New edge-iso inequality

Our main tool: New edge-iso inequality

Suppose X 5o X have m i-twins in d directions.
Then q 2 md / log(m).

Our main tool: New edge-iso inequality

Suppose XX have m i-twins in d directions.
Then q 2 md / log(m).

e m = |og(k) and d = k gives

Our main tool: New edge-iso inequality

Suppose XX have m i-twins in d directions.
Then q 2 md / log(m).

e m = |og(k) and d = k gives
g = k log(k)/log(log(k))

Our main tool: New edge-iso inequality

Suppose XX have m i-twins in d directions.
Then q 2 md / log(m).

e m = |og(k) and d = k gives
g 2 k log(k)/log(log(k))

e (Generalization of [Fra83]

Other ideas

e Proofs are quite technical

Other ideas

e Proofs are quite technical
e Answer you get for single query f(xj) IS not
too important

Other ideas

e Proofs are quite technical

e Answer you get for single query f(xj) IS not
too important

e Analyze a specific martingale w/r/t

f(x,), fx,), ... f(x)

Other ideas

e Proofs are quite technical
e Answer you get for single query f(x;) is not
too important
e Analyze a specific martingale w/r/t
f(x,), f(x,), ..., f(xq)
e Use McDiarmid’'s inequality (with bad events)

Open problem

Prove a separation between adapative and
nonadaptive when ¢ = const.

