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Fourier analysis of Boolean functions

𝑓 𝑥 =  
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𝑥𝑖

 Every Boolean function 𝑓: {−1,1}𝑛 → {−1,1} can be expressed 
as a polynomial 𝑝 ∶ R𝑛 → R

 Introduced into TCS by Kahn-Kalai-Linial 1988.

 Indispensable tool in TCS: hardness of approximation, learning 
theory, circuit complexity, communication complexity, …. 

 Analytic methods to study inherently combinatorial object.
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Parseval’s identity

 

𝑆⊆[𝑛]

 𝑓 𝑆 2 = 1 .

For every 𝑓: {−1,1}𝑛 → {−1,1} ,

“Fourier weight of 𝑓 on 𝑆”

Every 𝑓 induces distribution 𝐷𝑓 over all 𝑆 ⊆ 2 𝑛 where Pr
𝐷𝑓

𝑆 =  𝑓 𝑆 2.

This talk: understanding two fundamental properties of 𝐷𝑓

MAJ 𝑥1, 𝑥2, 𝑥3 =
1

2
𝑥1 +

1

2
𝑥2 +

1

2
𝑥3 −

1

2
𝑥1𝑥2𝑥3



1. Is 𝐷𝑓 concentrated on few sets, or spread out among many?

≈ Is 𝑓 close to a sparse polynomial?

2. Does 𝐷𝑓 place most of its weight on high or low degree or large sets 𝑆?

≈ Is 𝑓 close to a low-degree polynomial? 

Entropy[𝑓] Influence[𝑓]≤ 𝐶 ⋅
for some universal constant 𝐶? 

“Fourier Entropy-Influence Conjecture” 
Ehud Friedgut and Gil Kalai, 1996



outline

 The FEI conjecture.

 Motivation, applications, previous work.

 This work: 

1. Composition lemma for FEI

2. FEI true for read-once formulas

 Thoughts about FEI.



the conjecture

Let 𝑓: {−1,1}𝑛 → {−1,1}, distribution 𝐷𝑓 over 2 𝑛 where Pr
𝐷𝑓

𝑆 =  𝑓 𝑆 2.

Entropy 𝑓 = H 𝐷𝑓 =  

𝑆⊆ 𝑛

 𝑓 𝑆 2 ⋅ log2
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Influence 𝑓 = E𝑆∼𝐷𝑓
𝑆 =  

𝑆⊆[𝑛]

 𝑓 𝑆 2 ⋅ 𝑆 = Avg-degree 𝑓
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the conjecture

Influence 𝑓 = E𝑆∼𝐷𝑓
𝑆 =  

𝑆⊆[𝑛]

 𝑓 𝑆 2 ⋅ 𝑆

Fourier Entropy-Influence Conjecture: 

There exists a universal constant 𝐶 > 0 s.t.
Entropy 𝑓 ≤ 𝐶 ⋅ Influence 𝑓 .

Entropy 𝑓 = H 𝐷𝑓 =  

𝑆⊆ 𝑛

 𝑓 𝑆 2 ⋅ log2

1

 𝑓 𝑆 2

Let 𝑓: {−1,1}𝑛 → {−1,1}, distribution 𝐷𝑓 over 2 𝑛 where Pr
𝐷𝑓

𝑆 =  𝑓 𝑆 2.



Inf 𝑓 = 𝑘 Ent 𝑓 ≤ 𝑂(𝑘)

𝑘

FEI: “If 𝑓 is close to low-degree, then 𝑓 is close to sparse”



motivation and applications

 Friedgut-Kalai: threshold phenomena in random graphs. 

 e.g. probability that 𝐺 ∼ 𝐺 𝑛, 𝑝 is connected.

 sharp threshold: probability jumps from 0.1 to 0.9 by increasing 
𝑝 a little.

 Implies Mansour’s conjecture on Fourier spectrum of DNFs.

⟹ efficient algorithm for agnostically learning DNFs.

⟹ improved PRGs for DNFs.

 Implies the Kahn-Kalai-Linial theorem.

 Fundamental inequality in analysis of Boolean functions.

 Inapproximbability, metric embeddings, social choice, … 



previous work

 Folklore: Entropy 𝑓 ≤ 𝑂 log 𝑛 ⋅ Influence 𝑓 .

 No published progress for 15 years!

 Klivans-Lee-Wan 2010: random poly(𝑛)-term DNFs. 

 O’Donnell-Wright-Zhou 2011:

 symmetric functions
 read-once decision trees 



read-once de Morgan formulas

 AND2, OR2: extremely simple Fourier spectra, FEI trivially holds.

 Yet prior to this work, FEI open for read-once formulas. 

Starting point of this research:

Is FEI preserved under disjoint composition?

(i.e. Can we prove a composition lemma for FEI?)  

¬ 𝑥3 𝑥17

 Formula over the basis {AND2, OR2, NOT}.

 Binary tree with

 Internal nodes = {AND2, OR2}
 Leaves = {𝑥𝑖 , ¬ 𝑥𝑖 ∶ 𝑖 ∈ 𝑛 }

 Every variable appears exactly once. 



 Would immediately imply FEI for read-once formulas

 Unfortunately, easily seen to be false 

(e.g. 𝐹 = OR2, 𝑔1, 𝑔2 = AND2)

a first attempt, dream version

For all 𝐶 > 0, suppose 𝐹: {−1,1}𝑘 → {−1,1} satisfies Ent 𝐹 ≤ 𝐶 ⋅ Inf 𝐹 ,

and 𝑔1, … , 𝑔𝑘: {−1,1}ℓ → {−1,1} satisfy Ent 𝑔𝑖 ≤ 𝐶 ⋅ Inf 𝑔𝑖 .

Then 𝑓 = 𝐹(𝑔1(𝑥1), … , 𝑔𝑘(𝑥𝑘)) satisfies Ent 𝑓 ≤ 𝐶 ⋅ Inf 𝑓 . 𝑔1

𝐹

𝑔𝑘

Solution: reformulate FEI carefully so that it 
“bootstraps itself”



this work

1.  Strengthen FEI to “FEI+”

Ent 𝐹 ≤ 𝐶 ⋅ (Inf 𝑓 − Var 𝑓 )

Ent𝜇 𝐹 ≤ 𝐶 ⋅ Inf𝜇 𝑓 − Var𝜇 𝑓

for all product distributions 𝜇 over {−1,1}𝑛

2.  Generalize FEI+ to “𝜇-biased FEI+” 

3.  Prove composition lemma for 𝜇-biased FEI+



composition theorem for FEI

Main Theorem [O’Donnell-T.]. 

Suppose 𝑔1, … , 𝑔𝑘satisfy Ent 𝑔𝑖 ≤ 𝐶 ⋅ Inf 𝑔𝑖 − Var[𝑔𝑖 ),

and 𝐹 satisfies Ent𝜇 𝐹 ≤ 𝐶 ⋅ (Inf𝜇 𝐹 − Var𝜇[𝐹]) where 𝜇 = E 𝑔1 , … , E 𝑔𝑘

Then 𝑓 = 𝐹(𝑔1(𝑥1), … , 𝑔𝑘(𝑥𝑘)) satisfies Ent 𝑓 ≤ 𝐶 ⋅ (Inf 𝑓 − Var 𝑓 ).

𝑓 𝑥 =  

𝑆⊆ 𝑛

 𝑓 𝑆  

𝑖∈𝑆

𝑥𝑖 − 𝜇𝑖

1 − 𝜇𝑖
2

Let 𝜇 = (𝜇1, … , 𝜇𝑛) be a product distribution over {−1,1}𝑛.

The 𝜇-biased Fourier transform of 𝑓: {−1,1}𝑛 → {−1,1} is: 

 Simply the “usual” Fourier transform when 𝜇 = 0, … , 0 .

 Ent𝜇[𝑓] and Inf𝜇 𝑓 defined analogously w.r.t.  𝑓 𝑆 2’s. 



discussion

 𝜇-biased generalization natural on hindsight: 

 𝐹(𝑔1(𝑥1), … , 𝑔𝑘(𝑥𝑘)) with uniform 𝑥1, … , 𝑥𝑘 induces biased product 
distribution 𝜇 = E 𝑔1 , … , E 𝑔𝑘 on 𝐹.

 Main conceptual contribution: reformulation and strengthening of FEI

 Composition lemma: evidence that this is the “correct” formulation?

 Difficulty was in finding right statement to prove. 

 Proof = careful Fourier-analytic computations.

Main Theorem [O’Donnell-T.]. 

Suppose 𝑔1, … , 𝑔𝑘satisfy Ent 𝑔𝑖 ≤ 𝐶 ⋅ Inf 𝑔𝑖 − Var[𝑔𝑖 ),

and 𝐹 satisfies Ent𝜇 𝐹 ≤ 𝐶 ⋅ (Inf𝜇 𝐹 − Var𝜇[𝐹]) where 𝜇 = E 𝑔1 , … , E 𝑔𝑘

Then 𝑓 = 𝐹(𝑔1(𝑥1), … , 𝑔𝑘(𝑥𝑘)) satisfies Ent 𝑓 ≤ 𝐶 ⋅ (Inf 𝑓 − Var 𝑓 ).



read-once formulas revisited

¬ 𝑥3 𝑥17

 Dream version of composition ⟹ FEI by structural induction.

 Need to prove Ent𝜇 AND2 ≤ 𝐶 ⋅ (Inf𝜇 AND2 − Var𝜇[AND2])
for some constant 𝐶 independent of 𝜇.  Likewise for OR2.

 Surprisingly tricky, even for 2-variable functions!  

 But after much Fourier analysis… 

Theorem [O’Donnell-T.]. 

Every 𝐹: {−1,1}𝑘 → {−1,1} satisfies Ent𝜇 𝐹 ≤ 2𝑘 ⋅ Inf𝜇 𝐹 − Var 𝐹

for all product distributions 𝜇 = (𝜇1, … , 𝜇𝑘).



Theorem [O’Donnell-T.]. 

Every 𝐹: {−1,1}𝑘 → {−1,1} satisfies Ent𝜇 𝐹 ≤ 2𝑘 ⋅ Inf𝜇 𝐹 − Var 𝐹

for all product distributions 𝜇 = (𝜇1, … , 𝜇𝑘).

read-once formulas revisited

Corollary [O’Donnell-T.]. 

FEI holds for the class of read-once de Morgan formulas.

¬ 𝑥3 𝑥5

Corollary [O’Donnell-T.]. 

FEI holds for any class read-once formulas over arbitrary basis.

Combining with composition lemma, we get: 



thank you!


